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Abstract

Background: The aim of this study was to investigate the effects of P450 oxi-
doreductase (POR) genetic polymorphisms on the pharmacokinetic parameters of
amlodipine.

Methods: After a single 10-mg dose of amlodipine administration, 25 healthy male
subjects completed genotyping for 12 single nucleotide polymorphisms (SNPs) of
the POR genes, cytochrome P450 (CYP)3A4 g.25343G>A (CYP3A4*1G), and
CYP3A5 g.12083G>A (CYP3AS5*3). Stratified analysis and in silico analysis to
predict the possible effects of given variants on splicing were performed.

Results: The maximum blood concentration (C,,,) of amlodipine in carriers of
2.57332T>C and g.56551G>A SNPs of the POR gene was statistically signifi-
cantly different. In addition, T-allele carriers of g.57332T>C had a 21% higher C,,
than those with the CC genotype (p = .007). Subjects who carried the wild-type
2.56551G>A allele also had a 1.12-fold significantly higher C,,, than subjects with
mutant-type homozygous carriers (p = .033). In stratified analyses, g.57332T>C was
significantly associated with a 1.3-fold increase in C,,,, value in T-allele carriers
compared with subjects with the CC genotype in CYP3A4 and CYP3AS5 expressers.
POR g.57332T>C increased the score above the threshold in both ESEfinder 3.0 and
HSF 3.1.

Conclusion: This study identified a novel SNP of the POR gene, which affected
amlodipine metabolism and may reduce interindividual variation in responses to

amlodipine.
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1 | INTRODUCTION treatment of angina and hypertension (Meredith & Elliott,
1992). It has high interindividual variation in blood pres-
sure control, and polymorphisms of drug metabolism-re-

lated genes are one of the influencing factors (Fu et al.,

Amlodipine is a 1,4-dihydropyridine class of calcium chan-
nel blockers, and one of the most widely used agents for the
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2013; Kim et al., 2006). Clinical drug—drug interaction
studies have shown that amlodipine acts as a substrate
of the cytochrome P450 (CYP) 3A subfamily, especially
CYP3A4 and CYP3AS, suggesting that its metabolism
may be affected by changes in CYP3A metabolic activity
(Glesby et al., 2005; Lee, Heeswijk, Alves, Smith, & Garg,
2011).

CYP3A is involved in 40%-50% of the oxidative bio-
transformation of current therapeutic agents (Evans &
Relling, 1999). Because it is located in the intestinal mu-
cosa and liver tissue, it is associated with drug metabolism
ability after oral drug administration (Wilkinson, 1996).
Of the four types of CYP3A, CYP3A4 and CYP3AS are
the most abundant in the liver and intestine in that order,
whereas CYP3A7 and CYP3A43 are undetectable or ex-
pressed at very low levels in the adult liver (Burk et al.,
2002; Gellner et al., 2001; Nelson et al., 1996; Westlind
etal.,2001). CYP3A has large interindividual variability of
5- to 20-fold in catalyzing drug metabolism, which are the
substrates of CYP3A (Evans & Relling, 1999; Wilkinson,
1996). However, CYP3A polymorphism alone is not suffi-
cient to account for the interindividual variation in CYP3A
metabolic activity (Ingelman-Sundberg, Sim, Gomez, &
Rodriguez-Antona, 2007; Ozdemir et al., 2000).

The P450 oxidoreductase (POR, OMIM #124015) gene
is a 78-kDa microsomal protein containing both flavin ade-
nine dinucleotide (FAD) and flavin mononucleotide (FMN)
moieties, and is located on chromosome 7q11.23 containing
16 exons (Miller, Huang, Agrawal, & Giacomini, 2009). It
affects CYP activity by donating electrons that are needed
for CYP-mediated substrate oxidation from nicotinamide
adenine dinucleotide phosphate (NADPH) to microsomal
(Type II) CYP450 enzymes (Masters, 2005). The impor-
tance of the POR gene in drug metabolism was reported
in a study using liver-specific knockout mice (Henderson
et al., 2003). POR has highly polymorphic properties,
suggesting that it might be responsible for the variation
in metabolic activity among individuals (Agrawal, Choi,
Giacomini, & Miller, 2010). Several studies have shown
that POR polymorphisms affect the activity of CYP isoen-
zymes (Agrawal et al., 2010; De Jonge, Metalidis, Naesens,
Lambrechts, & Kuypers, 2011; Elens et al., 2013; Huang,
Agrawal, Giacomini, & Miller, 2008; Oneda et al., 2009).
In addition, POR polymorphisms have been shown to more
greatly influence the variation in CYP3A activity than
CYP3A polymorphisms in Caucasian patients (Oneda
et al., 2009).

Even though POR polymorphisms have important effects
on interindividual variation in CYP activity, few studies have
investigated these polymorphisms and their effects on am-
lodipine pharmacokinetics (PKs). Thus, the aim of this study
was to investigate the effects of POR gene polymorphisms on
the PK parameters of amlodipine.

2 | MATERIAL AND METHODS

2.1 | Study populations

The study population was included from 50 healthy male
volunteers who had participated in a bioequivalence study of
a 10-mg dose of amlodipine (Kim et al., 2013). Among these
volunteers, 25 healthy men participated in this study after
providing additional written consent for genotyping. Eligible
subjects were men between the ages of 20 and 50 years, who
were within 20% of their ideal body weight with no congeni-
tal abnormality or chronic disease. Exclusion criteria were
as follows: (a) use of prescription drugs or herbal medica-
tions within 2 weeks or use of nonprescription drugs within
1 week before the study, which had the potential to interact
with amlodipine; and (b) use of drugs that induce or inhibit
drug-metabolizing enzymes within 1 month before the study,
which had the potential to interact with study medications.
Vital signs monitoring, physical examination, and routine
laboratory tests were performed before the start of the study.

2.2 | Clinical study

The PK data of the study population were obtained from a previ-
ous single-dose study of amlodipine (Kim et al., 2013). Subjects
took a 10-mg tablet of amlodipine orally with 240-mL water at
8 a.m. after an overnight fast for 10 hr. Venous blood samples
were collected into ethylenediaminetetraacetic acid-containing
tubes by an indwelling catheter inserted into the forearm at 0
(predose) and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 24, and 48 hr
after dosing. Blood samples for genotyping were also collected,
and genotyping was performed after the end of the study.

2.3 | Editorial policies and ethical
considerations

The study protocol was approved by the Ethics Committee
of the Institutional Review Board (IRB No. 2012-4-0283).
Informed consent was obtained from all patients before study
participation.

2.4 | Analysis of amlodipine
concentrations and genotyping

Plasma amlodipine concentrations were analyzed using a
validated ultra-performance liquid chromatography tandem
mass spectrometry method, as previously reported (Kim et al.,
2013). Genomic DNA was prepared from blood samples
using the QIAamp DNA Blood Mini Kit (QIAGEN GmbH,),
according to the standard manufacturer's recommended



HAN ET AL.

procedures. To select POR (NM_000941.3) single nucleo-
tide polymorphisms (SNPs), genetic information on the POR
gene was incorporated into the Haploview Program (Jeong,
Lee, Jeong, Chang, & Gwak, 2015). There were 74 SNPs in
the POR gene, with a minor allele frequency (MAF)> 20%
in Japanese and Han Chinese populations. Linkage disequi-
librium blocks were constructed following the D’-method
in Haploview (Gabriel et al., 2002). Tagger function within
Haploview was used to assign tag SNPs. A total of 12 SNPs
were selected by adding 1 SNP (NG_008930.1:2.76686G>A)
from a previously published study to 11 tag SNPs
(NM_000941.3:¢c.1508C>T (p.(Ala503Val)), NG_008930.1:
2.57332T>C, NG_008930.1:2.37537C>T, NG_008930.1:
2.56228G>A, NG_008930.1:2.61444T>C, NM_000941.3:
c.387A>G/T (p.(Prol129=)), NG_008930.1:2.53506T>C,
NG_008930.1:2.40071T>C, NG_008930.1:2.56551G>A,
NG_008930.1:2.5036 A>C,and NG_008930.1:2.44272C>G)
in the POR to capture common variations within the gene
and the surrounding area with a minimum r* of 0.80 (Ma
et al, 2017). Additionally, NG_008421.1:2.25343G>A
(CYP3A4*1G)and NG_007938.1:2.12083G>A (CYP3A5%*3)
were selected based on previous studies and Asian frequency
(Danielak et al., 2017; Fukushima-Uesaka et al., 2004; Kim,
Park, Lee, Kang, & Park, 2007; Park et al., 2006; Park,
Seo, Ahn, Kim, & Park, 2009; Yuan, Zhang, Deng, Wu, &
Xiang, 2011; Zhou et al., 2011). Genotyping of CYP3A4,
CYP3AS5, and POR polymorphisms was conducted by a sin-
gle-base primer extension assay using ABI PRISM SNaPshot
Multiplex Kits (ABI, Foster City, CA, USA) according to the
manufacturer's recommendations.

2.5 | PK analysis

PK parameters were calculated using actual sampling times.
Maximum blood concentration (C,,,,) and time to maximum
concentration (T,,,,,) were determined by searching the observed
data. The area under the plasma concentration—time curve from
time zero to the time of the last concentration (AUC,,) was
calculated using the linear trapezoidal rule. The AUC from
time zero to infinity (AUC,,;) was the sum of AUC,,, and C,,/
k., where Cy is the last quantifiable concentration and k. is
the terminal elimination rate constant; the half-life was 0.693/
k.. Plasma concentrations during the terminal phase were fitted
to a log linear line by the least squares method to obtain the k..
PK parameters were analyzed by a noncompartmental method
using WinNonlin5.3 (Pharsight Corporation).

2.6 | Insilico analyses

To predict the possible effects of given variants on splic-
ing, different computational tools were used. Netgene2 and
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Splice Site Prediction by Neural Network (NNSPLICE)
were used for splice site predictions (Brunak, Engelbrecht,
& Knudsen, 1991; Reese, Eeckman, Kulp, & Haussler,
1997). Alternations of the splicing factor-binding site pattern
caused by the given mutation were evaluated by using Exonic
Splicing Enhancer (ESE) finder 3.0 and Human Splicing
Finder (HSF) 3.1 (Cartegni, 2003; Desmet et al., 2009). We
used the default threshold values, and a score for a given se-
quence was considered to be potentially significant if it was
above the threshold values.

2.7 | Statistical analysis

All PK data were expressed as the mean + standard deviation
(SD). Hardy—Weinberg equilibrium (HWE) was tested using
the chi-square test. Differences in PK parameters among the
genotype groups were evaluated using the Mann—Whitney
rank sum test for two-group comparisons. Stratified analy-
ses were conducted to investigate the effects of POR gene
polymorphisms on amlodipine PKs using CYP3A express-
ers. p values < .05 were considered statistically signifi-
cant. Statistical analyses were performed using SPSS 20.0
(International Business Machines Corp.).

3 | RESULTS

The mean age, weight, and height of the subjects were
26.8 + 5.9 years, 67.9 + 8.2 kg, and 174.2 + 4.8 cm, re-
spectively. The mean PK parameter values were as follows:
Crax: 6.09 £ 1.06 ng/ml, T,..: 6.32 = 0.75 hr, half-life:
40.75 +7.29 hr, AUC,,: 257.45 + 54.99 hr-pg/mL, AUC;
267.80 + 59.71 hr-pg/mL, ke: 0.02 + 0.00 hr', oral clear-
ance (CL/F): 39.25 + 9.35 L/h, and volume of distribution
(Vd/F): 2,278.51 + 560.01 L. All SNPs were in accordance
with HWE. The MAFs of 2.57332T>C and g.56551G>A
were 0.125 and 0.24, respectively.

Table 1 described the association between polymorphisms
of POR genes and PK parameter values. The locations of
the 12 selected SNPs in the POR gene were the intron re-
gion (n = 8), 5’- untranslated region (UTR; n = 1), 3’-UTR
(n = 1), missense region (n = 1), and synonymous region
(n=1). Of the 12 POR SNPs, g.57332T>C and g.56551G>A
were significantly associated with the C,,,, of amlodipine.
T-allele carriers of g.57332T>C had a 21% higher C,,,
than those with the CC genotype (p = .007). Subjects who
carried the wild-type allele of g.56551G>A also showed a
1.12-fold significantly higher C,,, than subjects with mu-
tant-type homozygous carriers (p = .033). The mean (+SD)
plasma concentration—time profiles of amlodipine after oral
administration according to genotypes of g.57332T>C and
2.56551G>A are shown in Figure 1. There was no statistically
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FIGURE 1

(b) 10 1 NG_008930.1:9.56551G>A

—&—G allele carriers

—&— AA carriers

Amlodipine plasma concentration
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Time (hr)

Mean (+SD) amlodipine plasma concentrations after oral administration of single 10-mg dose of amlodipine in healthy subject

according to POR genotype. (a) Mean amlodipine plasma concentration according to genotype of g.57332T>C. (b) Mean amlodipine plasma

concentration according to genotype of g.56551G>A

significant difference between CYP3A polymorphisms and
PK parameters of amlodipine.

Stratified analyses were performed for the association
between PK parameter values and POR polymorphisms in
CYP3A expressers (Table 2). POR SNPs that were statisti-
cally significant in univariate analysis were included. POR
2.57332T>C was significantly associated with the 1.3-fold
increase in C,,, value in T-allele carriers compared with
subjects with the CC genotype in CYP3A4 and CYP3A5
expressers.

Analysis of two SNPs (g.57332T>C and g.56551G>A)
with Netgene2 and NNSPLICE showed a significant asso-
ciation with the C,, of amlodipine, and did not show the
presence of an altered splicing donor or acceptor. However,
the results generated by ESEfinder 3.0 indicated that the
2.57332T>C increased the score of a SRSF1 (IgM-BRCA1)
from —0.873 to 2.232 (threshold: 1.867), creating a new
high score-enhancing motif. HSF 3.1, with a different scor-
ing algorithm from that of ESEfinder 3.0, also showed that
this mutation led to the formation of two SF2/ASF (IgM-
BRCAT1)-enhancing motifs (CTCCCCG and CCCCGCT);
the scores were 75.31 and 73.31, respectively (threshold:
70.51) (Supplement Table S1).

4 | DISCUSSION

The main result of this study was that g.57332T>C and
2.56551G>A of the POR genes showed statistically signifi-
cant differences in the C,,,, of amlodipine. After adjusting
for CYP3A effects, g.57332T>C remained a significant fac-
tor for amlodipine PKs.

POR is a gene that gives electrons to CYP450 enzymes
(Masters, 2005). The structure of the POR gene consists of
an NADPH-docking site and FAD in one lobe and FMN
and P450-interacting domain in the other lobe (Wang
et al., 1997). The electron transfer proceeds from NADPH
to FAD, followed by FMN, and finally to P450. In a study
that examined the effects of 35 POR variants on CYP en-
zymes, it was revealed that the POR variants are involved
in the activity of the CYP enzymes, although the effects
vary depending on the variants (Agrawal, Huang, & Miller,
2008).

The association between POR polymorphisms and
CYP3A4 metabolic activities using different substrates in-
cluding midazolam, testosterone, erythromycin, and quini-
dine was assessed (Agrawal et al., 2010). This study revealed
that the impact of POR polymorphisms on CYP3A4 activity
was substrate specific, possibly due to the substrate-induced
conformational changes in CYP3A4. In the case of the most
common variant, c.1508C<T (POR*28), the polymorphism
reduced the CYP3A4 activity to 61%—77% of wild-type
with testosterone and midazolam while it had similar activ-
ity to wild-type with quinidine and erythromycin. Our study
failed to show significant differences in any PK parameters
of amlodipine according to genotypes of POR*28. Instead,
novel POR variants, g.57332T>C and g.56551G>A, which
affected C,,, value of amlodipine, were identified. In strat-
ified analyses to rule out the effects of CYP3A polymor-
phisms and find POR variant effects, g.57332T>C remained
significant SNP in both CYP3A4 and CYP3AS5 expressers.
In particular, the difference in C,, values according to the
2.57332T>C genotypes in expressers increased (20.7% vs.
around 33%).
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not found. This was possibly due to the small sample size,
resulting in an underpowered study.

There were some limitations in this study. The sample
size was too small to obtain statistically significant results.
Our study population only comprised males, so it was im-
possible to analyze gender differences. Multiple testing
correction was not performed to avoid the possible loss of
true positives.

In conclusion, to the best of our knowledge, this is the first
study to evaluate the association between POR gene poly-
morphisms and amlodipine PKs in a Korean population. The
identified novel SNP of the POR gene, which was shown to
affect amlodipine metabolism, may be useful for reducing in-
terindividual variation in responses to amlodipine. However,
these results should be interpreted with caution due to the
risk of false-positive results. Additional studies are needed to
verify the results of this study.
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