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Cytokine profiling in plasma
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carcinoma and a novel
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Head and neck squamous cell carcinoma (HNSCC) can be classified according
to the histological inflammatory subtype (HIS) into inflamed (HIS-INF) or
immune excluded (HIS-IE). HIS-IE was previously associated with higher
levels of soluble Semaphorin 4D (HsS4D) in plasma, and higher
transcriptional levels of osteopontin (OPN) in the tumor tissue, compared to
HIS-INF. The goal of the current study is to investigate whether the HIS
inflammatory subtype can be distinguished by a differential cytokine panel in
peripheral blood. Retrospectively collected five HIS-INF and five HIS-IE
tumor tissue with paired plasma were included in the study. Five healthy
donors (HD) and five autoimmune/chronic inflammatory conditions (AI/CI)
were controls. The ELISA-Luminex™ system was used to detect
40 traditional cytokines in plasma. Human cytokine array (104 cytokines) was
used for the conditioned medium (CM) of the HNSCC HN6 cell line.
Semaphorin 4D (Sema4D) siRNA and recombinant human osteopontin
(rh-OPN) were used to investigate the effect of OPN on Sema4D expression.
The HIS-IE cytokine profile was higher than HIS-INF but comparable to
AI/CI. HIS-INF had the lowest cytokine levels. HIS-IE was differentially higher
in IP-10 and IL8 compared to HD, while HIS-INF was higher in IL-10.
Sema4D inhibition in HN6 resulted in a decrease of OPN in the CM of HN6,
and treatment with rh-OPN rescued Sema4D in HN6 cell lysate and
associated CM. In conclusion, the current work demonstrates a novel
association between the HIS subtypes and a differential pattern of cytokine
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expression in plasma. These findings can open new avenues for HNSCC patient
stratification and hence provide better personalized treatment.
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Introduction

Squamous cell carcinoma (SCC) is the most common

malignancy of the head and neck. Despite all advances in

diagnostic and therapeutic measures, the overall 5-year survival

rate stays at ∼60% and can be dismal for recurrent and advanced

stages (1). Immunotherapy represents the most recent advent in

the treatment of cancer. However, solid malignancies demonstrate

resistance with an approximately 15% response rate in head and

neck squamous cell carcinoma (HNSCC) (2–4). Hence, further

understanding of HNSCC inflammatory phenotypes is warranted.

Different strategies describing HNSCC tumor inflammation

have been reported in the literature. These ranged from biomarkers

expression in situ in the tumor tissue to soluble inflammatory

cytokines in body fluids (5–9). Cytokines like interferon gamma-

induced protein 10 (IP-10, or CXCL10) were shown to be higher in

plasma of early oral SCC (OSCC) compared to healthy controls (8),

while interleukin 6 (IL-6), IL8, and vascular endothelial growth

factor (VEGF) as well as IL-1β and tumor necrosis factor alpha

(TNFα) were detected in the serum of HNSCC patients (9). IL-6

seemed to be most sensitive to early-stage OSCC patients (10). IL-

1alpha, IL-6, IL-8, VEGF, granulocyte-macrophage colony-

stimulating factor (GM-CSF), and basic fibroblast growth factor

(FGF) were detected in the supernatants of SCC cell lines, and

supernatants of freshly isolated primary HNSCC cultures (9).

HNSCC can be stratified according to the histological

inflammatory subtype (HIS), i.e., inflamed (HIS-INF) and immune

excluded (HIS-IE) (6). Recent reports showed a significant

correlation between the HIS-IE tumor tissue and higher levels of the

soluble immune biomarker Semaphorin 4D (HsS4D) in plasma,

compared to HIS-INF (6, 11). Semaphorin 4D (Sema4D) (a.k.a.

CD100 or immune Semaphorin) is a transmembrane glycoprotein

belonging to the fourth group of the Semaphorins family. It can

function as a cell-bound protein or in a cleaved soluble form

(sSema4D) (6, 12). Sema4D is expressed by almost all inflammatory

cells (13–15) and plays a role in the pathogenesis of several

autoimmune conditions, allergies, and chronic inflammation (16–

18). Sema4D has been linked to poor prognosis in sarcomas, non-

small-cell lung cancer, ovarian cancer, and colorectal cancer (19–

22). It can be expressed in the tumor cells and the infiltrating

immune cells (23). HNSCC with Sema4D-positive tumor cells

correlated with dense noninflamed peritumoral stroma (6), and in

vitro models showed that HNSCC produced sSema4D can

upregulate myeloid-derived suppressor cells (MDSC) (24–26) and

playsa role inextracellularmatrix (ECM)depositionbyfibroblasts (11).
02
Osteopontin (OPN) [a.k.a. secreted phosphoprotein (SPP1)] is a

secreted, multifunctional, ECM, calcium-binding, glycosylated

phosphoprotein implicated in several normal biological functions

and pathologic processes (27). OPN is produced physiologically by

a broad range of cells and has been identified in various body

fluids, playing a key role in bone remodeling and vascularization.

OPN is also expressed by several immune cells, acting as a

chemotactic factor, as a mediator of cell activation and cytokine

production, and an antiapoptotic factor, regulating inflammation

and immune responses (28). OPN can be involved in the

tumorigenesis of several cancer types, including HNSCC acting

through multiple signaling pathways to promote cell proliferation,

adhesion, invasion, and migration (29, 30). Interestingly, higher

transcriptional levels of OPN were detected in HNSCC tumor

tissue that is associated with HsS4D in plasma (6).

Here, we present a differential pattern of cytokine expression in

plasma associated with the HIS subtypes of HNSCC and describe a

novel regulatory role of OPN in regulating Sema4D, which is

implicated in the pathogenesis of the HIS-IE phenotype. These

findings can open new avenues for HNSCC stratification to

enhance personalized care and improve patient outcomes.
Materials and methods

Tumor tissue and plasma samples

Plasma and tumor tissue pairs of 10 HNSCC patients

retrospectively collected upon obtaining informed consent

according to the Institutional Review Board (IRB) (HP-00073603)

of the University of Maryland School of Medicine (UMSOM)

were used in the study (6). The samples were selected to include

five HIS-IE and five HIS-INF tumors. The formalin-fixed

paraffin-embedded tumor tissue was processed by the University

of Maryland, Baltimore (UMB), Pathology Biorepository Services.

Blood was collected at the time of patient presentation for surgery

and plasma was prepared within 2 h of collection. Five

autoimmune/chronic inflammatory (AI/CI) conditions and five

healthy donors (HD) served as controls according to the

UMSOM IRB protocol (HP-00074877) or were purchased from

Innovative Research (Novi, MI, United States).

Sema4D immunohistochemical (IHC) staining was described

before (6), using Sema4D primary antibody (clone 30/CD100) (BD

Transduction Laboratories) and secondary antibody (BA-9200),
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followed by the Vectastain Elite ABC kit (PK-6102, mouse IgG)

(Vector Laboratories, CA, United States). Scoring for the HIS

phenotype was carried out using the Aperio ImageScope software.

sSema4D levels were previously detected using the direct ELISA

technique (6), human CD100 primary antibody (1:100) (clone:

133-1C6; Invitrogen, eBioscience), Goat anti-mouse IgM-Heavy

chain, HRP conjugate (Invitrogen USA, IL, United States; cat. # 62-

6820), and recombinant human (rh) CD100 (catalog #310-29)

(PeproTech) for standards (detection limit 3.1–1000 ng/ml,

>155 ng/ml cut-off for HsS4D).
Luminex bead-based multiplex assay

The Luminex bead-based multiplex assay was performed at the

University of Maryland Center for Innovative Biomedical

Resources, Cytokine Laboratory. The Human Cytokine/

Chemokine Luminex™ System (Panel A38—Millipore Sigma)

Millipore kit #HCYTMAG-60K was used to detect the 38

T-helper 1 (Th1) and Th2 cytokines/chemokines in plasma

following the manufacturer recommendations: EGF, FGF-2,

EOTAXIN, TGF-A, GCSF, FLT-3L, GM-CSF, FRATALKINE,

IFNA2, IFN-G, GRO, IL-10, MCP-3, IL-12 P40, MDC, IL-12 P70,

IL-13, IL-15, CD40L, IL-17A, IL-1RA, IL-1A, IL-9, IL-1B, IL-2,

IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP-1A, MIP-1B,

TNF-A, TNF-B, VEGF, and two of Th17 cytokines/chemokines:

IL-17 E and IL-17F. TGFB-MAG-64K was used for the detection

of TGF-B1 levels. The samples were run as duplicates, for each

patient or control. All plates contained high and low control. The

plates were read using a Luminex MagPix reader.
Tissue culture and reagents

HNSCC cell lines WSU-HN6 (T3N2bM0) and WSU-HN4

(T4N1M0) of the base of the tongue, NOKSI (normal oral-

keratinocytes), and DOK (potentially malignant cell lines) were

used. WSU-HN6 and NOKSI were DNA authenticated at the Johns

Hopkins Genetic Resources Core Facility, Baltimore. DOK was a

gift from Dr. Abraham Schneider. Cells were cultured in Dulbecco’s

modified Eagle medium containing fetal bovine serum.

Conditioned medium (CM) was concentrated using Millipore

Amicon Ultra centrifugal filter units. rh-OPN protein (cat. # 120-

35) was obtained from PeproTech and serially diluted in the

medium for treatment. The siRNA system Hs_SEMA4D_6 (catalog

no. SI03053701) (20 nM) and HiPerFect transfection reagent

(catalog no.301704) (Qiagen Inc., Germantown, MD, United States)

were used for Sema4D gene silencing.
Western blot

The CM were concentrated and harvested, as well as the

cells, in SDS cell lysis buffer with the protease inhibitor tablet
Frontiers in Oral Health 03
(catalog no. 11836170001) (Roche Diagnostics, Indianapolis,

IN, United States). The whole-cell lysate was separated using

SDS-PAGE Western Blot. Primary antibodies used were

Sema4D (30/CD100, catalog no. 610670; BD Biosciences/

Pharmingen), osteopontin (Cat # 889-656-7625, Rockland),

and GAPDH (8C2, sc-81545; Santa Cruz Biotechnology).

The secondary antibodies were anti-rabbit IgG (catalog no. sc-

2301) and anti-mouse IgG (catalog no. sc-2302) (Santa Cruz

Biotechnology). Image J software was used for the

immunoblot quantification analyses.
In vitro cytokine analyses

Human Cytokine Array Kit from R&D System (cat #

ARY022B) for 104 cytokines’ detection in CM was used

according to the manufacturer protocol. Concentrated CMs

were added in duplicates to the activated membranes

overnight. Membranes were washed and the detection

antibody cocktail was added and incubated for 1 h at room

temperature. Streptavidin–HRP was added to each membrane

and incubated for 30 min at room temperature on a shaker.

Chemi Reagent Mix was used for exposure.
Statistical analysis

For the distribution of the 40 plasma cytokines among the

groups, the two-group comparison was carried out using the

t-Test or Mann–Whitney U test. For multiple comparisons

using independent samples, the Kruskal–Wallis test was used.

Statistical significance was considered a P-value of less than

0.05 (*), less than 0.01 was (**) or <0.0001 (***). Prism/

GraphPad software was used for statistical analyses. No

mathematical correction was made for multiple comparisons.

The global cytokine cluster gram was plotted using

MORPHEUS Versatile matrix visualization and analysis

software (https://software.broadinstitute.org/morpheus).
Results

HNSCC and the histological pattern of
inflammation

We have previously described two main HIS subtypes in

HNSCC depending on whether the tumor-associated

inflammatory cells infiltrate into the tumor islands (HIS-INF)

or are excluded (HIS-IE) (6). Sema4D immune biomarker

stain highlighted the inflammatory cell infiltrate. Here, we

wanted to investigate if these two HIS subtypes would have

differential levels of inflammatory cytokines expression in the

peripheral blood. To answer this question, we used 10 cases of
frontiersin.org
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TABLE 1 Demographics and clinical information of the HNSCC
samples, HD, and AI/CI controls.

HNSCC HIS-IE,
N (%)

HIS-INF,
N (%)

P-value

Age
0.480

Median (range) 67 (52–80) 62 (51–69)

Gender

0.999M 3 (60%) 3 (60%)

F 2 (40%) 2 (40%)

Race

0.999Caucasian 4 (80%) 4 (80%)

African American 1 (20%) 1 (20%)

Stage

0.485

I 3 (60%) 5 (100%)

II 1 (20%) 0 (0%)

III 0 (0%) 0 (0%)

IV 1 (20%) 0 (0%)

Location

0.999Oral and mobile tongue 3 (60%) 5 (100%)

Oropharyngeal 2 (40%) 0 (0%)

HPV

0.999Positive 1 (20%) 0 (0%)

Negative 4 (80%) 5 (100%)

Smoking

0.444Yes 5 (100%) 3 (60%)

No 0 (0%) 2 (40%)

Alcohol

0.99Yes 2 (40%) 1 (20%)

No 3 (60%) 4 (80%)

Recurrence

0.99Yes 0 (0%) 1 (20%)

No 5 (100%) 4 (80%)

sSema4D

0.007LsS4D 0 (0%) 5 (100%)

HsS4D 5 (100%) 0 (0%)

sSema4D, ng/ml
0.005

Median (range) 453 (282–710) 50 (36–70)

Controls HD, N (%) AI/ CI, N (%) P-value

Age
0.126

Median (range) 31 (21–59) 55 (38–72)

Gender

0.999M 2 (40%) 3 (60%)

F 3 (60%) 2 (40%)

Race

0.999
Caucasian 3 (60%) 2 (40%)

African American 1 (20%) 3 (60%)

Hispanic 1 (20%) 0 (0%)

sSema4D

0.0079LsS4D 5 (100%) 0 (0%)

HsS4D 0 (0%) 5 (100%)

(continued)

TABLE 1 Continued

Controls HD, N (%) AI/ CI, N (%) P-value

sSema4D, ng/ml
0.038

Median (range) 68 (32–90) 195 (114–323)

Fisher’s exact test was used for categorical variables. Two-way ANOVA, for age,

stage, and sSema4D. Five cases of AI/CI: myasthenia gravis, sarcoidosis,

asthma, rheumatoid arthritis with acute tonsilitis, and rheumatoid arthritis.

HNSCC, head and neck squamous cell carcinoma; HIS-IE, histological

inflammatory subtype immune excluded; HIS-INF, histological inflammatory

subtype inflamed; HD, healthy donors, AI/CI, autoimmune/chronic

inflammation.

Ghita et al. 10.3389/froh.2022.993638
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previously collected HNSCC tumor tissue and its paired plasma

(6) (Table 1). Plasma from HD and AI/CI conditions were used

as controls. One case of HIS-INF was excluded because, in

addition to HNSCC, the patient was diagnosed with gout.

HIS-INF demonstrated the immune cells infiltrating into the

core of the tumor islands (Figures 1A–C). HIS-IE showed

very few to no immune cells infiltrating into the tumor

islands, with some cases showing peritumoral stromal fibrotic

or fibromyxoid rim (Figures 1D–F). The sSema4D level in

peripheral blood was predetermined (6), with the HIS-IE

cases expressing HsS4D in plasma (>155 ng/ml) and the HIS-

INF expressing lower levels of sSema4D (LsS4D) in plasma

(≤155 ng/ml).
Traditional cytokine panel in plasma of
HIS-INF and HIS-IE HNSCC

To investigate the differential level of expression of soluble

inflammatory cytokines in plasma of HIS-INF and HIS-IE, we

used the ELISA-Luminex™ system. Macrophage-derived

chemokine (MDC) was excluded from the analysis because its

values were beyond the detection limit except for the HIS-

INF group. IL-17 F and IL3 were also excluded because the

values were lower than the detection limit of the assay in the

HIS-INF.

The values of each cytokine were normalized to the

corresponding values of HD for global observation. The

distribution of most of the cytokines was highest in the AI/CI

group followed by HIS-IE and then HD. Most of the

cytokines were lowest in the HIS-INF group except for

Eotaxin, IL6, and IL-10 (Figure 2, Supplementary Figure S1,

and Supplementary Table). There were significant differences

between the groups for all cytokines in cluster A (Figure 2)

except for IFN-γ. In other clusters, GM-CSF, IL-5, Eotaxin,

IL-8, and GRO were also different between the groups,

whereas string tendency to significance was observed for IL-10

(p = 0.0538) and IP-10 (p = 0.0507) (Figure 2).

Multiple comparison analyses of HD, AI/CI, and HNSCC

showed that the HNSCC group was higher than the HD in
frontiersin.org
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FIGURE 1

HIS stratification in HNSCC. (A) H&E stain of HIS-INF OSCC. (B,C) IHC of Sema4D illustrating HIS-INF. (D) H&E stain of HIS-IE SCC on the base of the
tongue. (E,F) IHC of Sema4D illustrating HIS-IE (E: low power; F: higher power). HIS, histological inflammatory subtype, HIS-INF, HIS inflamed, HIS-IE,
HIS immune excluded, T, tumor islands, S, stroma.
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IL-8, IP10 (CXCL10), and IL-1RA (Figures 3A,B). Under

two-group analyses, only IL-8 maintained significance

(Supplementary Table). Upon HNSCC HIS stratification,

IL-8 and IP-10 were revealed to be higher in HIS-IE

(p = 0.028 and 0.0496, respectively), and IL-10 to be higher in

HIS-INF compared to HD (p = 0.048) (Figures 3C–E). IL-10

maintained significance in the two-group comparison

(Supplementary Table).

HIS-IE was similar to the AI/CI and significantly higher

than HIS-INF in most of the cytokines (cluster A) using

multiple comparisons and/or two-group analyses. The same

cytokine cluster was lowest in HIS-INF. Also, GRO, MCP-1

(Cluster D), and IL2 showed higher levels in HIS-IE

compared to HIS-INF (Figures 2, 3F–M, and Supplementary

Table).

The AI/CI group was significantly higher in IL-1RA, IL-1A,

and IL1B in addition to Fractalkine, IL12P40, and IL9 from

cluster A, compared to the HD, using two-group analyses

(Supplementary Table). IL-1RA, IL-5, IL-9, and IL-17E were

higher in AI/CI compared to HNSCC and most retained

significance using multiple comparisons (Supplementary

Figures S2A–C). Upon HNSCC HIS stratification, most of the

aforementioned cytokines were significantly higher in AI/CI

compared to HIS-INF but not HIS-IE. Only Eotaxin was

significantly lower in the AI/CI group compared to the

HNSCC even after HIS stratification (Supplementary Figures

S2D–L and Supplementary Table).
Frontiers in Oral Health 05
Sema4D plays a role in HNSCC HN6
inflammatory cytokine profile

Sema4D-positive tumor cells were associated with

noninflamed dense stroma (6, 11). In vitro, studies have

shown that the HN6 cell line associated with Sema4D plays

a role in the upregulation of MDSC (24, 26) and that

Sema4D inhibition in HN6 causes downregulation of

extracellular matrix deposition by fibroblasts (11), suggesting

HN6 cell line as an in vitro model mimicking the Sema4D-

positive HIS-IE tumor cells. This triggered us to investigate

if Sema4D plays a role in the inflammatory cytokine profile

associated with HN6. To answer this question, we first tested

the soluble cytokines in the CM of NOKSI compared to the

HN6 cell line. HN6 showed higher levels of GROα,

osteopontin (OPN, SPP1), FGF19, M-CSF, pentraxin 3

(PTX-3), Vit D BP, and macrophage inhibitory cytokine 1

(MIC-1) compared to NOKSI. IL-1α, IL1-RA, angiogenin,

angiopoietin 2, soluble interleukin 1 receptor-like 1 (ST2),

transferrin receptor protein 1 (TFR), PDGF-AB/BB, and

PDGF-AA were higher in the CM of NOKSI compared to

the HN6 (Supplementary Figure S3).

To explore the effect of Sema4D on the inflammatory

cytokine production by HNSCC, we transfected the HN6 cell

line with Sema4D-siRNA and collected the CM after three

days. Sema4D inhibition resulted in a significant

downregulation of several cytokines produced in the CM of
frontiersin.org
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FIGURE 2

Global cytokine differential expression in plasma among HD, AI/CI, HIS-IE, HD, and HIS-IFN. Heatmap of log2-transformed cytokine concentrations
measured in the tested samples. Cytokines were clustered using Spearman rank correlation with complete linkage. The major clusters are
sequentially labeled A–D to the right of the heatmap. The heatmap was constructed using Morpheus. The bar graph on the right shows negative
log2-transformed p-values for each cytokine based on the Kruskal–Wallis analysis across the four groups. The line crossing some of the bars at
the 4.322 value corresponds to the p-value of 0.05. HD, healthy donors, AI, autoimmune, HIS-INF, HIS inflamed, HIS-IE, HIS immune excluded.
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HN6 including GRO-α, OPN, Vit D BP, PTX-3, and brain-

derived neurotrophic factor (BDNF), in addition to a slight

reduction in TFR1, thrombospondin-1 (THBS1, TSP-1),

kallikrein 3 (PSA, KLK3), and urokinase-type plasminogen

activator receptor (uPAR) (Figure 4).
Role of OPN in the regulation of Sema4D
in HNSCC HN6 cell line

We have previously described that HsS4D correlated with

HIS-IE and higher transcriptional level of OPN in HNSCC

tumor tissue, compared with tumors with LsS4D (6). To

investigate if OPN plays a role in the regulation of Sema4D,
Frontiers in Oral Health 06
we checked the basal level of OPN in HN6 and HN4 cancer

cell lines, NOKSI, and potentially malignant cell lines DOK.

Interestingly, the immunoblot showed that Sema4D and OPN

were overexpressed in HN4 and HN6 compared to NOKSI

and DOK (Figure 5A). Then, we tested if treatment of the

HN6 cell line with rh-OPN protein would affect Sema4D

expression. Interestingly, Sema4D significantly increased in

the tumor cell upon treatment with OPN starting at a low

concentration (Figure 5B). To further investigate if OPN

would rescue Sema4D expression upon inhibition, we

transfected the HN6 cell line with Sema4D-siRNA. Indeed,

OPN treatment rescued Sema4D expression in the Sema4D-

siRNA HN6 cell lysate, and increased sSema4D produced in

the CM was noticed, especially at higher concentrations of
frontiersin.org
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FIGURE 3

Plasma cytokine levels of HNSCC versus HD. (A,B) Plasma cytokines demonstrating a significant difference in expression between HNSCC and HD.
(C–E) or upon HIS stratification and HD. (F–M) Differential cytokine expression between HIS-IE and HIS-INF. Multiple comparison analysis using the
Kruskal–Wallis test.
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OPN treatment that corresponded with less intracellular

repertoire (Figures 5C,D).
Discussion

The current work illustrates that HNSCC HIS subtypes, can

present with a differential cytokine profile in blood, reflecting a

distinct underlying disease mechanism (Figure 6). Interestingly,

the HIS-INF was the lowest in plasma cytokines compared to all
Frontiers in Oral Health 07
groups. This suggests that in the HIS-INF subtype, the immune

system recruits the inflammatory cells to the tumor bed, to an

extent that it drains the peripheral circulation rendering the

patient in a systemic immune suppressed status. On the other

hand, the higher proinflammatory cytokines in plasma of the

HIS-IE suggest that the excluded inflammatory cells at the

tumor bed keep sending positive chemotactic signals that can

be detected in the peripheral circulation. Whether these two

HIS subtypes are independent or a continuum is yet to be

investigated.
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FIGURE 4

In vitro cytokine expression in HNSCC HN6 cell line upon Sema4D inhibition. (A) CM of HNSCC HN6 cell line after 3 days of control SiRNA
transfection versus, (B) Sema4D siRNA transfection. CM, conditioned medium.
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In considering the soluble cytokine expression in

peripheral blood of HNSCC, attention to underlying AI/CI

would be warranted (18). Comparing the chronic

inflammation and fibrotic nature of most of the

collagenous autoimmune diseases (31) to the peritumoral

fibrotic rim and excluding inflammatory cells in the HIS-

IE, as well as the shared cytokine cluster observed between

the AI/CI and HIS-IE, suggest that HIS-IE may adopt a

chronic inflammatory process similar in part to

autoimmunity. More patients bearing HNSCC and AI/CI

diagnosis need to be investigated if both cytokine profiles

can be discerned in the same patient. IL-1RA, a

physiological inhibitor of preformed IL-1, can have a

significant translational aspect in this context, since our

data showed it is highest in AI/CI followed by HNSCC
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compared to HD, indicating underlying chronic

pathological condition. Interestingly, blockade of IL-1RA

demonstrated a central role in controlling several

autoimmune diseases and protects from Th2 skewing of

the immune responses (32–34).

Our data are in concordance with previous reports detecting

higher levels of IL10, IP-10 (CXCL10), and IL-8 in peripheral

blood of HNSCC compared to HD (7–9). Yet, the HIS

stratification model illustrated in the current work revealed

differential expression of IL10 in the HIS-INF, and IP-10, and

IL8 in HIS-IE compared to HD. IL-10 is a key anti-

inflammatory immune suppressive cytokine that inhibits

myeloid cells and IFN-α activation (35), while IP-10 is a

cytokine secreted in response to IFN-γ by several cells, which

may include monocytes, endothelial cells, and fibroblasts. IP-
frontiersin.org
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FIGURE 5

OPN plays a role in Sema4D regulation in the HNSCC HN6 cell line. (A) Immunoblot analysis demonstrates the basal level of OPN in HN6, HN4, DOK,
and NOKSI. (B) Treatment of HNSCC with hr-OPN at different doses upregulates Sema4D in the cell lysate. (C) Sema4D inhibition in HN6 using
Sema4D-siRNA 20 nM. OPN rescues Sema4D expression in HN6 cell lysates and (D) in the CM, after Sema4D-siRNA.

FIGURE 6

Differential cytokine expression in plasma associated with HIS
subtypes of HNSCC. Low cytokine levels in plasma associate with
HIS-INF while elevated cytokine levels associate with HIS-IE
subtype. Sema4D and OPN-positive feedback are higher in HIS-IE.
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10 has a proinflammatory role as a chemoattractant to T cells,

NK cells, monocytes/macrophages, and dendritic cells. IP-10

is involved in several autoimmune conditions (36, 37) and
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chronic infectious diseases (38). In lung cancer, the degree of

malignancy has been correlated with the level of secretion of

IP-10 by the tumor. Less progressive lung carcinoma secretes

more IP-10 (39). Whether this is true in HNSCC needs to be

investigated further. It is worth mentioning that previous

transcriptional analysis demonstrated that the HIS-IE tumor

bed expresses a lower IFN-γ gene and associated signature,

compared to HIS-INF (6). IL-8 is a proangiogenic factor and

is a chemoattractant to neutrophils (40). Moreover, other

cytokines like GRO and MCP-1, grouped with IL-8 in cluster

D of the heat map of the current work, were higher in HIS-IE

and are predominantly myeloid chemoattractants. GRO has a

neutrophil chemoattractant activity and it decreased

significantly upon inhibition of Sema4D in the HN6 cell line.

These findings are in concordance with previous

transcriptional analysis that showed myeloid cells to be higher

in the tumor bed of HIS-IE/HsS4D, especially neutrophils

compared to HIS-INF/LsS4D (6).

In addition, previous transcriptional analysis

demonstrated a higher hypoxic phenotype of the HIS-IE/

HsS4D (6). Hypoxia induces several inflammatory and

proangiogenic cytokines. Cluster A included several

proangiogenic cytokines (41). Among them, IL1b is a major

mediator of innate immunity and plays a central role in

several human autoinflammatory conditions and
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malignancies. It has been reported to be more expressed in

invasive carcinomas and correlated with lung cancer

incidence (42). In addition, the VEGF and matrix

metalloproteinases (MMPs) were shown to act

synergistically with OPN to induce a metastatic phenotype

on some cancer cells and promote angiogenesis and

invasion (43, 44). Additional angiogenic and hematopoietic

growth factors of cluster A cytokines are FMS-like tyrosine

kinase 3 ligand (FLT-3L) and CD40L (45). FLT-3L is a

hematopoietic growth factor; its receptor is upregulated

under hypoxia and can propagate B cell growth and

dysfunction. Vaccinations against FLT-3L and GM-CSF can

protect from malignancies formation in murine models

(46). CD40L also propagates B cell development and

germinal centers, is constitutively expressed in B cells and

myeloid cells, and is finally regarded as a potential immune

checkpoint therapeutic target (47).

Other cytokines differentially expressed in cluster A can

further explain the histological features of HIS-IE. FGF2 is

interestingly associated with resistance to antiangiogenic

therapy, poor survival (48), and increased tumor fibrosis,

which can impede intratumoral drug accumulation (49). In

addition, IL12p40 induces a negative feedback loop by

competitively binding to the IL-12 receptor and is also a

chemoattractant for macrophages (50), which can be induced

upon activation of NK cells and macrophages against HNSCC

(51). IL9 is mainly involved in autoimmunity, allergic

reactions, and parasitic infections, and is a growth factor of

T cells and mast cells; it has received increasing attention to

the role of IL-9-skewed CD8+ T (Tc9) cells, mast cells, and

Vδ2 T cell-derived IL-9 in tumor immunity (52, 53). IFN-α is

a major player in innate immune responses. Recent reports

suggest immunostimulating IFN-α as an attractive target to

restore the TH2 HNSCC immune microenvironment (35).

The HNSCC suppression of IFN-α, although mainly due to

several cytokines acting synergistically, the HNSCC micro

milieu was shown to severely depress IFN-α secretion,

specifically through IL-10 alone but not IL-8 (35). That is in

concordance with the differential expression of IFN-α, and

IL-8 in the HIS-IE group, vs. IL-10 in HIS-INF, which is

observed in the current study.

The current in vitro data demonstrate a novel role of OPN

in the regulation of Sema4D expression in HNSCC as well as

suggest a positive feedback loop between the two molecules.

We previously demonstrated an almost ten-fold increase in

the OPN (SPP1) transcriptional level in tumor tissue of

HsS4D phenotype compared to LsS4D and about a fourfold

increase in MMP7, which is implicated in OPN cleavage (6).

That HIS-IE tumor tissue correlated with HsS4D in plasma

and positive Sema4D tumor cells. We also described the HN6

cell line associated with Sema4D as an in vitro model for

HNSCC upregulation of MDSCs and extracellular stromal

density (11, 24). Taken together, these findings suggest that
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OPN and Sema4D play a role in modulating the HIS-IE

phenotype.

Specifically, in OSCC, elevated levels of OPN at the tumor-

free surgical margins have proven to be predictive of recurrence

(43). OPN is well known to facilitate wound healing/fibrosis

through regulation, and differentiation of fibroblasts and

myofibroblasts (54). Overexpression of OPN by both tumor

and stromal cells has been correlated with reduced survival

and drug resistance to cisplatin and 5-fluorouracil (55).

Further investigation of the role of OPN and Sema4D in

HNSCC drug resistance would be warranted.

There is increasing evidence that restoration of the HNSCC-

induced immune bias could be improved by the inhibition of

immune cell cytokine receptors (35). The current work

presents a pilot model for detecting a soluble cytokine panel in

plasma that is differentially associated with HIS subtypes in the

tumor bed. This may bear translational potential that can open

new avenues for patient stratification and personalized

treatment in the field of HNSCC.
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