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Abstract

Many questions about the genetic basis of complex traits remain unanswered. This is in part due to the low statistical power
of traditional genetic mapping studies. We used a statistically powerful approach, extreme QTL mapping (X-QTL), to identify
the genetic basis of resistance to 13 chemicals in all 6 pairwise crosses of four ecologically and genetically diverse yeast
strains, and we detected a total of more than 800 loci. We found that the number of loci detected in each experiment was
primarily a function of the trait (explaining 46% of the variance) rather than the cross (11%), suggesting that the level of
genetic complexity is a consistent property of a trait across different genetic backgrounds. Further, we observed that most
loci had trait-specific effects, although a small number of loci with effects in many conditions were identified. We used the
patterns of resistance and susceptibility alleles in the four parent strains to make inferences about the allele frequency
spectrum of functional variants. We also observed evidence of more complex allelic series at a number of loci, as well as
strain-specific signatures of selection. These results improve our understanding of complex traits in yeast and have
implications for study design in other organisms.
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Introduction

Most traits of agricultural, evolutionary, and medical signifi-

cance are genetically complex, involving multiple genes that

interact with one another and the environment [1]. Despite

decades of effort, our understanding of how such traits are

specified at the genetic level remains incomplete [2]. Studies in

model organisms can provide fundamental insights into the genetic

basis of complex traits that are applicable to other species,

including humans [3]. However, such studies typically detect only

a small fraction of the loci that contribute to a trait due to low

statistical power [4].

To improve genetic mapping of complex traits in Saccharomyces

cerevisiae, we recently developed extreme QTL mapping (X-QTL),

which is a bulk segregant mapping technique that employs millions

of cross progeny [5]. X-QTL involves three key steps: generation

of very large segregating populations, isolation of cross progeny

with extreme trait values, and quantitative measurement of pooled

allele frequencies across the genome in these phenotypically

extreme individuals [5]. To make the pools of segregants that are

the starting point for X-QTL, we use selectable markers to obtain

an effectively unlimited number of progeny from a cross of two

strains. We then employ selection-based phenotyping to isolate

large numbers of segregants with extreme trait values from

populations that contain millions of cross progeny. DNA is

extracted from pools of phenotypically extreme segregants, and

the allele frequencies of markers throughout these individuals’

genomes are determined using custom microarrays or next

generation sequencing. In an X-QTL experiment, a locus that

influences a trait is expected to show an allele frequency skew in

the direction of the parental allele that contributes to a more

extreme trait value.

By applying X-QTL to a number of chemical resistance

phenotypes in a single cross of the lab strain BY4716 and the

vineyard strain RM11-1a (hereafter, BY and RM, respectively), we

were able to show that large numbers of loci can underlie

quantitative trait variation between S. cerevisiae isolates [5].

Following our publication, another group observed similar results

in a different cross [6], suggesting that high genetic complexity

may be a common feature of heritable trait variation among yeast

strains.

Here, we examined how genetic complexity varies among

strains and crosses. We used X-QTL to identify the genetic basis of

resistance to 13 diverse chemicals in all 6 pairwise crosses of strains

BY, RM, YJM789, and YPS163. YJM789 (hereafter, YJM) is

derived from a clinical isolate, and YPS163 (hereafter, YPS) is an
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oak strain. These 4 strains are highly diverged at the sequence

level [7,8,9,10,11] and exhibit a wide range of heritable

phenotypic differences [12,13,14,15,16,17,18,19]. Because of the

statistical power gained by using very large mapping populations,

we detected approximately an order of magnitude more loci than

did previous studies involving multiple crosses of yeast strains

[15,17,20], allowing us to gain deeper insights into the genetic

architecture and evolution of complex traits in S. cerevisiae.

Results/Discussion

We previously noted that levels of genetic complexity underly-

ing heritable variation in growth differed among chemical

conditions in a single cross [5]. Here, we sought to determine

the generality of our previous finding by examining additional

crosses. We first generated the strains and microarrays to conduct

X-QTL in all 6 pairwise crosses of the BY, RM, YJM, and YPS

strains (Materials and Methods). Because the statistical power of

X-QTL is dependent on effective enrichment of highly resistant

cross progeny in a segregating pool, and the crosses vary in their

genetic compositions, leading to different distributions of resistance

among the progeny of each cross, we used dose-response

experiments to determine cross-specific, highly selective drug

concentrations for each of 13 diverse chemicals that resulted in

similar selection intensities for all crosses (Materials and Methods;

File S1). Once the selective doses were determined, we conducted

one X-QTL experiment for each chemical and cross combination.

We observed substantial variation in the number of loci detected

in different conditions and crosses (Figure 1). Across all 78 X-QTL

experiments, we identified 837 total peaks at a False Discovery

Rate (FDR) of 1%, or an average of 10.7 peaks per trait per cross

(Figure 1; Figure S1A–S1M). Both the chemical and the cross had

significant effects on the number of peaks detected in an X-QTL

experiment (ANOVA, chemical effect F = 5.27, d.f. = 12,

p = 5.6761026; cross effect F = 3.14, d.f. = 5, p = 0.014), with the

effect of the chemical (partial R2 = 0.46) being much larger than

the effect of the cross (partial R2 = 0.11). An ANOVA testing the

effects of chemical and strain resulted in a similar effect of

chemical on the number of detected peaks (partial R2 = 0.46;

F = 4.52, d.f. = 12, p = 3.5161025), but no strain had a significant

effect on its own (partial R2,0.02; F,2.5, d.f. = 1, p.0.12;

Materials and Methods). Consistent with a comparatively small

effect of strain background on genetic complexity, only one trait

showed a significant excess of peaks in crosses involving any one

strain: crosses in which RM was one of the parents had an excess

of peaks in diamide (x2 = 22.44, d.f. = 1, Bonferroni-corrected

p = 1.9761024; Figure 1). These results suggest that genetic

complexity in yeast is mainly a property of the trait being

examined rather than of the strain background.

For each trait, we expected to detect loci at the same genomic

positions in different crosses sharing a parent. To identify only the

distinct loci affecting each trait, we performed a grouping

procedure on the peaks identified in all crosses for a given

chemical condition. We found 411 distinct loci (an average of 32

loci per condition), with a minimum of 8 loci for growth in

cycloheximide and a maximum of 57 loci for growth in zeocin

(Figure 1 and Figure 2A). We then examined the extent to which

these loci showed effects on growth in multiple conditions. For a

range of genomic window sizes, we considered peaks detected for

multiple chemicals within a window to correspond to the same

underlying locus, and counted the number of conditions in which

the locus showed an effect. With 50-kilobase (kb) windows, we

found that 40% of the distinct loci had effects in only one

condition, 29% had effects in two conditions, 11% had effects in

three conditions, and only 20% had effects in four or more

conditions (Figure 2B; Materials and Methods). Although the

numbers differed across window sizes, the general observation that

most of the detected loci had effects in a relatively small number of

the tested conditions, and only a small number of loci showed

effects across a large number of conditions, held over the entire

range of plausible sizes. With 50 kb windows, three loci exhibited

effects in more conditions than expected by chance (Materials and

Methods). These loci were located on Chromosome V near the X-

QTL control marker CAN1, Chromosome X near ENT3, RSF2,

and VPS70, and Chromosome XIV near the pleiotropic gene

MKT1.

We next examined the patterns of detection of loci for each trait

across the six crosses. With four strains, two simple patterns are

possible at bi-allelic loci: one strain can carry an allele that confers

susceptibility or resistance relative to the allele carried by the other

three strains, or two strains can carry the more susceptible allele and

two strains the more resistant allele. We refer to these cases as

‘‘allelic singletons’’ and ‘‘allelic doubletons,’’ respectively. These two

cases should give rise to different patterns of peaks: peaks with a

consistent direction of effect in all three crosses involving one strain

for allelic singletons, and peaks with specific effect directions in four

specific crosses for allelic doubletons (Table S1; Table 1). Allowing

for false-negative peaks, 135 of the 411 distinct loci showed patterns

consistent with allelic singletons, and 28 showed patterns of peaks

consistent with allelic doubletons (Table S1; Table 1).

We attempted to narrow the number of candidate genes for

each of the bi-allelic loci by scanning the parental genome

sequences for SNP alleles that are found in the four strains in a

pattern consistent with the peaks. Using this approach, we found

an average of 10 candidate genes per locus, with a range of 1 to 18

genes. Further restricting the list of candidate genes to those that

carry nonsynonymous polymorphisms with appropriate allelic

patterns reduced the average number to 6 per locus. We

attempted to validate the genes underlying some of these loci by

constructing allele replacement strains, and found reproducible

evidence that HXT6 and RED1 harbor functional polymorphisms

that confer growth differences in rich medium and tunicamycin,

respectively (Figure S2; Materials and Methods). HXT6 is a high

Author Summary

Most heritable traits of agricultural, evolutionary, and
medical significance are specified by multiple genetic loci.
Despite decades of research, we have only a limited
understanding of the genetic basis of such complex traits.
Studies in model organisms have the potential to provide
fundamental insights into this research area, but most
genetic mapping studies in these species have had low
statistical power to detect multiple loci with small effects.
Using a technique in which we employed millions of cross
progeny in genetic mapping, we previously showed that
resistance to chemicals has a highly complex genetic basis
in a cross of a lab strain and a wine strain of the budding
yeast Saccharomyces cerevisiae. Because we only examined
a single cross, it was unclear how general our findings
were. Here, we expand our work to all six possible crosses
of four strains—the two isolates we used in our last study,
as well as an isolate from an immunocompromised human
being and an isolate from the sap of an oak tree. Our
results based on these four ecologically and genetically
distinct S. cerevisiae strains suggest that resistance to
chemicals commonly exhibits a highly complex genetic
basis among yeast isolates.

Genetic Architecture of Resistance Traits in Yeast
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affinity glucose transporter [21], suggesting that variability in

glucose uptake may contribute to growth differences among the

strains. The effect of RED1 on tunicamycin resistance is less clear,

as this gene is thought to be involved in chromosome segregation

[21], and tunicamycin affects the unfolded protein response. We

also constructed allele replacement strains for two other genes:

NUP157, which lies within a copper sulfate resistance locus with

the resistance allele coming from BY, and PTK1, which lies within

a paraquat resistance locus with the resistance allele coming from

YPS. However, we obtained inconsistent results for NUP157 and

PTK1: the allele replacements produced effects on resistance that

were in the opposite direction from those seen in the X-QTL

selections, and also caused growth defects on standard rich

medium, suggesting that we did not identify the right candidate

genes for these loci.

In addition to the simple bi-allelic patterns, we observed other

more complex patterns of peaks (Figure 2A). Some of these are

consistent with the presence of allelic series, in which either three

or four alleles with different phenotypic effects are present among

the four strains; we observed 29 examples involving at least 3

alleles and 9 examples that can only be explained by the presence

of 4 different alleles (Table S2). The other 210 loci (51% of all loci)

showed patterns of peaks that were not easily interpretable in

terms of specific allelic classes. This probably reflects a mixture of

false negatives in which a peak was present but not detected in a

given cross, and cross-specific effects due to non-additive

interactions and linkage between loci.

The allele frequency spectrum of causal loci is critical for the

design of genetic mapping studies and for understanding sources of

missing heritability in natural populations, including humans. As

discussed above, we were able to distinguish and enumerate two

simple allelic classes—singletons and doubletons. We used a

maximum likelihood approach that accounted for false negatives

to estimate the ratio of allelic singletons to doubletons. We

estimated the peak detection rate to be 51%, with a 95%

confidence interval of 39%–62%, and the ratio of allelic singletons

to doubletons to be 3.03, with a 95% confidence interval of 1.7–

5.3 (Figure 3A; Figure S3). This result suggests that despite the

high statistical power of X-QTL, a substantial fraction of loci with

weaker effects likely still go undetected in any one cross.

Interestingly, the estimate of the ratio of allelic singletons to

doubletons is similar to that observed for nonsynonymous

polymorphisms in the genomes of the parent strains (2.97), and

is shifted toward singletons relative to both the neutral expectation

of 2.67 and the observed ratio of 2.57 for 109,585 SNPs genome-

wide (Figure 3A). Thus, the frequency spectrum of variants that

contribute to complex trait variation in yeast appears to be mildly

shifted toward lower frequencies by purifying selection, but, given

the wide confidence interval for the estimated ratio of allelic

singletons to doubletons, we cannot rule out that the variant

frequencies follow the neutral spectrum.

Several lines of evidence suggest that lineage-specific selection

or demography has shaped variation among the four strains. We

observed an excess of allelic singletons at detected loci for BY and

RM, and a deficit for YJM and YPS, relative to the numbers of

singleton SNPs in the parent genomes (x2 = 35.98; d.f. = 3,

p,0.0001; Figure 3B). The laboratory strain BY also exhibits

other signatures of selection for both general and chemical-specific

resistance. For instance, BY carries a marginally significant excess

of allelic singletons that confer resistance relative to the other three

strains (Fisher’s exact test, Bonferroni-corrected p = 0.06;

Figure 3C; Table 1). In addition, trait-specific sign tests [22]

identified one significant result: an excess of copper sulfate

resistance alleles contributed by BY in the BYxRM cross (18 loci

with BY carrying the resistance allele and 2 loci with RM carrying

the resistance allele; binomial test, Bonferroni-corrected p = 0.031;

Figure 3D). Interestingly, BY is among the most copper-resistant S.

cerevisiae strains [23,24], and our data suggest that this resistance in

Figure 1. Numbers of detected peaks and distinct loci. The stacked bar plots show the number of peaks detected for each trait using X-QTL
selections in each cross. The first parent listed in each cross was MATa and the second parent was MATa. The grey dots indicate the number of
distinct loci detected in a condition after peak grouping.
doi:10.1371/journal.pgen.1002570.g001

Genetic Architecture of Resistance Traits in Yeast
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BY may be the result of selection, possibly due to the use of high

levels of copper or another chemical with similar effects in standard

growth media. However, the BYxYJM and BYxYPS crosses do not

show significant excess of BY alleles, and RM is also among the

more highly copper-resistant strains [23], making the excess of BY

resistance alleles in the BYxRM cross difficult to explain. Overall,

our results are consistent with previous analyses that have shown lab

strains isogenic to BY exhibit high evolutionary rates relative to

other yeast isolates [25], probably due to both relaxed purifying

selection [26] and adaptation [26,27].

We have shown that variation in chemical resistance among

yeast strains is typically due to a large number of underlying loci.

The level of genetic complexity, as measured by the number of loci

detected, is largely a property of each resistance trait, although it is

also affected to a lesser extent by the choice of parent strains. The

total number of distinct loci detected for a trait in these crosses

among four strains ranged from 8 to 57, and these numbers

substantially exceeded those seen in any one cross. These

observations suggest that the total number of loci affecting certain

resistance traits in S. cerevisiae can be very large, since many of them

Figure 2. Genome-wide plots of detected loci. (A) Loci detected for each cross and trait, with green indicating loci selected in the direction of
the MATa parent and red indicating loci selected in the direction of the MATa parent. For each trait, the crosses are vertically ordered as follows:
BYxRM, BYxYJM, BYxYPS, RMxYJM, RMxYPS, YJMxYPS. (B) The number of traits affected by loci within each 50-kb window. The grey dotted line shows
the threshold for significance, while the black dotted line highlights the bins in which only one trait was affected.
doi:10.1371/journal.pgen.1002570.g002

Genetic Architecture of Resistance Traits in Yeast
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will have escaped detection because they don’t vary among the

four parent strains examined here, have effect sizes that are too

small, or are too closely linked to be resolved as separate loci by

our mapping technique. Our results suggest that the functional

variants underlying complex traits are broadly distributed across

the frequency spectrum from rare to common alleles, and that

many loci harbor more than two allelic variants. These findings

provide multiple non-exclusive explanations for the sources of the

‘‘missing heritability’’ of complex traits, and illustrate the power of

a simple model system for probing genetic complexity.

Materials and Methods

Construction and use of segregating pools for X-QTL
The Synthetic Genetic Array marker system [28] was used to

generate MATa haploid pools as previously reported [5], with the

exception that thialysine and the dominant sensitive LYP1/lyp1D
marker system were not employed. All six pairwise crosses of BY,

RM, YJM, and YPS were made, with one strain in a cross having the

genotype MATa can1D::STE2pr-SpHIS5 his3D and the other having

the genotype MATa his3D. In notation describing crosses (e.g.,

BYxRM), we first list the MATa and then the MATa parent. The

selection experiments used for X-QTL were conducted as previously

described [5]. The drug doses used in the selections, which were

determined by plating millions of cells across a range of drug doses

and finding a concentration at which 300 to 1,000 colonies could be

resolved, are given in File S1. Each experiment was conducted once,

as we previously found that biological replicates conducted on the

same day produced highly similar results [5].

Microarray design and use
Microarrays were designed from the BY genome sequence

obtained from the Saccharomyces Genome Database (http://www.

yeastgenome.org/) and from assemblies of the RM, YJM, and

YPS genomes obtained from the Saccharomyces Genome Resequen-

cing Project [10]. Note that the YPS606 genome was used to

design the YPS array, as YPS606 is isogenic to YPS163. We

aligned the genomes chromosome-by-chromosome using Fast

Statistical Alignment (FSA) [29]. These multiple sequence

alignments were filtered for SNPs using the following criteria: i)

all 4 strains had to have been sequenced at a position and ii) all 4

strains had to have a specific base called (i.e. A, C, G, or T) at the

position. These SNPs were then used for microarray design, as

well as for downstream population-genetic analyses. Cross-specific

microarrays were designed using only bi-allelic SNPs. Probes were

chosen to have a length between 21 and 27 nucleotides and a

melting temperature between 54 and 56uC as described previously

[5,30]. One probe was designed for each allele of a SNP, and the

two probes for a SNP were randomly positioned on the

microarray. Probes were targeted to regions where only one

SNP would be covered by the probes. Markers were chosen to

provide near-uniform coverage of the genome. The arrays were

tested using control DNA from both parents and the heterozygous

diploid to ensure that they could discriminate the two alleles of a

SNP. All hybridizations and processing was done as previously

described [5]. All microarray data is available in the Princeton

University MicroArray database (http://puma.princeton.edu/).

The processed log10 hybridization intensities are included in Files

S2, S3, S4, S5, S6, S7.

Peak detection
For a given SNP, the difference in the log10 ratios of the

intensities of the MATa and MATa parent-specific probes on a

single array was computed (subsequently referred to as a ‘log10

intensity difference’), and this metric was used in downstream

analyses. Background allele frequency changes that occur during

Table 1. Patterns used to identify allelic singletons and allelic doubletons in the X-QTL data, and the number of loci detected with
these patterns.

Pattern of detection

Allele Effect BYxRM BYxYJM BYxYPS RMxYJM RMxYPS YJMxYPS
Subclass
Total

Class
Total

BY singleton Resistant BY BY BY . . . 26 42

Susceptible RM YJM YPS . . . 16

RM singleton Resistant RM . . RM RM . 19 49

Susceptible BY . . YJM YPS . 30

YJM singleton Resistant . YJM . YJM . YJM 7 18

Susceptible . BY . RM . YPS 11

YPS singleton Resistant . . YPS . YPS YPS 9 26

Susceptible . . BY . RM YJM 17

BY = RM doubleton BY & RM resistant . BY BY RM RM . 7 12

BY & RM
susceptible

. YJM YPS YJM YPS . 5

BY = YJM doubleton BY & YJM resistant BY . BY YJM . YJM 3 6

BY & YJM
susceptible

RM . YPS RM . YPS 3

BY = YPS doubleton BY & YPS resistant BY BY . . YPS YPS 7 10

BY & YPS
susceptible

RM YJM . . RM YJM 3

The strain mentioned under a cross indicates which allele should have been selected in that cross for the given pattern to hold. Both exact match patterns and patterns
that allow for one undetected peak were used to generate this table. A full listing of the exact match and ‘‘one off’’ patterns is described in Table S1.
doi:10.1371/journal.pgen.1002570.t001

Genetic Architecture of Resistance Traits in Yeast
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pool construction were removed from the data for each X-QTL

selection. This was done separately for each SNP by subtracting

the average log10 intensity difference obtained in seven cross-

specific control experiments from the log10 intensity difference

observed in an X-QTL selection. A peak detection algorithm was

then employed that used a Savitzky-Golay filter to smooth the data

within sliding windows of 100 probes. This smoothing approach

was used to preserve local maxima in the data. Loci were called at

a 1% FDR threshold, where the number of false discoveries was

determined by running the peak caller on the control data using a

range of thresholds, and the total number of discoveries was

determined by running the peak caller on the selection data at the

same thresholds used to analyze the controls. Thresholds were set

by examining the quantiles of log10 intensity differences observed

for every 100 SNP genomic window on an array, and taking the

median interquantile range between the x and 1-x quantiles,

where x ranged from 0.005 to 0.45. We found that setting x as

0.045 resulted in a 1% FDR. Peak calling and all other statistical

analyses were conducted in R (http://www.r-project.org/). The

peak caller and an associated function library are included in Files

S8 and S9. The detected peaks are listed in File S10.

Testing for effects of chemical and genetic background
on the number of peaks detected in a cross

The test for cross effect was conducted using the model

y = chemical+cross, while the test for strain effect was conducted

using the model y = chemical+strain1+strain2+strain3. Imple-

menting the second test required specifying the design matrix for

the strain effect. Each row in the design matrix represented a

single X-QTL experiment from a particular combination of

chemical and cross. Entries in the design matrix were

parameterized as follows: a strain had a value of 21, 1, or 0 if

it was the MATa parent, the MATa parent, or not a parent in a

particular experiment, respectively. Only three strains were

included in the test, because the information for the fourth could

be obtained from the other three. To ensure that results were not

dependent on the three included strains, we conducted the test

with all four possible combinations of the three strains and

Figure 3. Population genetics of identified loci. (A) shows the ratios of singletons to doubletons observed in the X-QTL data and for different
classes of sequence variation, (B) plots the ratio of observed X-QTL singletons to expected singletons by strain, (C) plots the ratio of resistance-
conferring singletons to susceptibility-conferring singletons by strain, and (D) plots the directionalities of peaks detected in the 78 X-QTL selections.
In A, the error bars denote 95% confidence intervals. For the maximum likelihood estimate of the ratio of singletons to doubletons among X-QTL loci,
the confidence interval was determined from the likelihood surface. For classes of sites analyzed in the resequencing data, confidence intervals were
obtained using bootstrapping. The neutral estimate (8/3) is derived from a folded allele frequency spectrum for n = 4. The other three measurements
were obtained directly from a multiple sequence alignment of the genome sequences of the four strains. In B, the number of expected allelic
singletons per strain was determined by multiplying the total number of allelic singletons detected by the proportion of all SNP allelic singletons
among the four strains present in that parental genome. The values in C were obtained from Table 1. The horizontal lines in B and C indicate a ratio of
one. In D, the number of peaks selected in each direction in each X-QTL selection is plotted. One experiment—copper sulfate in the BYxRM cross—
was significant for the sign test after a Bonferroni correction for multiple testing, indicating putative directional selection, and is shown in red. The
number of experiments observed with a given number of up and down peaks is indicated by the size of a circle, with a key provided in the bottom
right corner. The diagonal line in D shows a 1:1 ratio of peaks selected in the direction of each parent.
doi:10.1371/journal.pgen.1002570.g003

Genetic Architecture of Resistance Traits in Yeast
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reported the maximum partial R2 and F values, and the

minimum p value in the text.

Testing for disproportionate contributions of particular
strains to the genetic complexity of traits

We first conducted x2 tests in which single strains were examined.

This test has two categories – one that is the sum of the peaks

detected in the three crosses involving the query strain and another

that is the sum of the peaks detected in the other three crosses. The

expectation is that each of these classes will contain half of the peaks

detected for a trait. We then conducted x2 tests in which two strains

were examined. The first category here is the sum of the peaks

detected in the four crosses involving the two strains, while the

second is sum of the peaks detected in the other two crosses. Here,

the expectation is that the first category will contain two-thirds of the

peaks, while the second will contain one-third of the peaks.

Identification of distinct loci for a trait
Peaks identified across the six crosses for a single trait were

grouped into distinct loci. We started with the most strongly

selected peak on each chromosome and grouped with it all peaks

that occurred within a 200-kilobase window surrounding it. This

window size accommodated the grouping of peaks that exhibited

weak but significant allele frequency changes, and may result in

the underestimation of the total number of loci due to the

overgrouping of peaks. Remaining peaks were grouped into

distinct loci using additional iterations of the procedure until all

peaks identified for a trait were members of a group.

Analysis of distinct loci across traits
We divided the genome into equally sized bins ranging from 20

to 100 kb and counted the number of distinct loci that fell into

each bin. A bin was considered to have an excess of distinct loci if

the number present in it exceeded the number expected by chance

from a Poisson distribution, given the number of distinct loci

divided by the total number of bins and a multiple testing

correction for the number of bins. With the 50 kb bin size reported

in the text, 8 or more distinct loci were required to be present in a

bin for the bin to be considered significant.

Identification of allelic singletons, doubletons, and series
The distinct loci identified for each trait were used to classify

singletons and doubletons. The specific patterns used to identify

the allelic classes are described in Table S1. We focused on exact

pattern matches and on patterns that were missing an expected

peak at a given locus in one cross. A number of distinct loci had

peaks detected in four or more crosses, but did not conform to the

patterns expected for allelic doubletons. We considered these loci

as allelic series, and for each of these putative series we determined

the possible logical relationships of the parent alleles to each other.

These relationships are reported in Table S2.

Identification of candidate causal genes
For each bi-allelic locus, we evaluated a 30 kb interval centered

on its estimated position for polymorphisms that segregated among

the parent strains in the same pattern as the X-QTL peaks. Any

gene that harbored a polymorphism in the coding region or in the

immediate upstream and downstream regions was considered a

candidate. The candidate genes are listed in File S11.

Allele replacement strategy
To generate the replacement strains, we used the allele

replacement technique described by Storici et al. [31]. This

method is a two-step process that involves knocking out a gene

with a selectable marker cassette, and then replacing the selectable

marker cassette with a different allele of the gene. We made each

allele replacement strain once in one parental background, and

then compared the phenotypes of the strains to their progenitors.

For the two genes that exhibited the expected phenotypic effect,

we made a second version of the allele replacement strain to

validate the presence of functional variation in the gene.

Maximum likelihood estimation of the ratio of singletons
to doubletons

The observed counts of exact-match allelic singletons and

doubletons and near-exact-match allelic singletons and doubletons

were modelled using two parameters: the detection rate of peaks

(a) and the ratio of singletons to doubletons (b). The formulae

underlying this computation are provided in Text S1. The

likelihood of each combination of parameter values was examined

across a two-dimensional grid of parameter values using x2 tests

with 3 degrees of freedom. The likelihood reached a maximum at

a= 0.51 and b= 3.03. We obtained 95% confidence intervals for a
and b by using the x2 distribution with 3 degrees of freedom and

identifying the x2 value for the 95% quantile. We then identified

parameter combinations that produced an x2 value below this

threshold (7.81), and determined the minimum and maximum

values of a and b that satisfied this condition.

Supporting Information

Figure S1 Plots of X-QTL mapping results. The data for each

trait is plotted as the difference between the MATa and MATa

allele-specific probes on the selection array minus the average of

the differences between the MATa and MATa allele-specific

probes from seven control arrays. The red vertical lines indicate

positions that were called as peaks at a 1% FDR.

(DOC)

Figure S2 Cloning of genes. (A–C) show the steps taken to clone

HXT6, while (D–E) show the steps taken to clone RED1. In both

cases, a locus was identified in all three crosses sharing one

parent—the crosses involving RM in control conditions for HXT6

(A) and the crosses involving BY on tunicamycin for RED1 (B).

The regions underlying the detected peaks were surveyed for

polymorphisms that segregated across the parent strains in the

same pattern as the detected locus. Both HXT6 and RED1 were

chosen because they carry a number of nonsynonymous

polymorphisms relative to other genes in their genomic regions

(B and E). Allele replacement strains were made in the RM

background using the BY strain as a template. Each strain was

independently constructed twice and phenotyped using serially

diluted colony growth assays (C and F). Overnight cultures were

grown for each strain and then pinned onto agar plates using the

Singer RoToR. The HXT6 strains were measured after 24 hours

of growth at 30uC, while the RED strains were measured after

65 hours of growth at 30uC. RM grows better on standard

medium when it carries its own allele of HXT6, while the BY allele

of RED1 confers a growth advantage on tunicamycin. In B,

dubious ORFs are colored in blue. In C and F, cultures were

grown undiluted (abbreviated ‘‘Und.’’) and at two successive ten-

fold dilutions. Each dilution of a strain was pinned in a square of

four technical replicates.

(DOC)

Figure S3 Likelihood surface for the estimates of the ratio of

allelic singletons to doubletons and the detection rate. P(Data|-

Model) is shown, with the correspondence of colors to probabilities
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given in the key. This was generated using the model described in

Text S1, and evaluating the model across a wide, two-dimensional

range of detection rates and singleton to doubleton ratios. In

addition, this likelihood surface was used to generate the

confidence intervals described in the main text.

(DOC)

File S1 Results from dose-response experiments with segregant

pools and final drug doses used in the paper.

(XLSX)

File S2 Processed log10 hybridization intensities for the BYxRM

cross.

(TXT)

File S3 Processed log10 hybridization intensities for the BYxYJM

cross.

(TXT)

File S4 Processed log10 hybridization intensities for the BYxYPS

cross.

(TXT)

File S5 Processed log10 hybridization intensities for the

RMxYJM cross.

(TXT)

File S6 Processed log10 hybridization intensities for the

RMxYPS cross.

(TXT)

File S7 Processed log10 hybridization intensities for the YJM-

xYPS cross.

(TXT)

File S8 Peak caller.

(R)

File S9 Library for the peak caller.

(R)

File S10 Loci detected in the X-QTL experiments.

(TXT)

File S11 Candidate genes for bi-allelic loci.

(TXT)

Table S1 All patterns used to identify allelic singletons and

allelic doubletons in the X-QTL data, and the number of loci

detected with these patterns. The strain mentioned under a cross

indicates which allele should have been selected in that cross for

the given pattern to hold. We show all exact patterns used to

identify singletons and doubletons, as well as each of the patterns

that indicate the presence of a singleton or doubleton if one

undetected peak is allowed. Both the exact match and ‘‘one off’’

patterns were used in the counts of bi-allelic loci described

throughout the paper.

(DOC)

Table S2 Allelic series inferred from the data. The most

parsimonious relationship of alleles to each other is indicated.

Greater than and equal signs indicate the effects of the alleles

relative to each other, with ‘‘A.B’’ meaning that allele A confers

higher resistance than allele B and ‘‘A = B’’ meaning that the

effects of allele A and allele B are not distinguishable. In some

cases, there are two equally parsimonious relationships that can

explain the data.

(DOC)

Text S1 Formulae used to estimate the detection rate (a) and the

ratio of allelic singletons to doubletons (b).

(DOC)
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