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1  |  INTRODUC TION

The traditional view where taxa accumulate incompatibilities over 
time and gradually become reproductively isolated from each 
other—speciation—has led to insight into the processes generat-
ing and maintaining biodiversity (Coyne & Orr, 2004). However, it 
has become apparent that reticulate evolution is common: taxa do 
not necessarily only branch, they can also come back together—
hybridization—(Abbott et al., 2013). This means that, while the an-
cestry of nonrecombining DNA can be traced linearly back in time 
(e.g. mitochondrial lineages), the ancestry of genomes backward 

in time will branch at admixture events. In plants, it has been 
known for quite some time that hybridization is a widespread 
phenomenon that can not only generate viable offspring, but also 
potentially lead to the formation of new taxa and, ultimately, spe-
cies (Grant, 1981). It has long been debated whether this process 
is also common in animals, but over the past few years numerous 
examples have appeared, including, but not limited to, butter-
flies (Capblancq et al., 2015; Mavárez et al., 2006), cichlid fishes 
(Keller  et al., 2013; Koblmüller et al., 2007), warblers (Brelsford 
et al., 2011), fruit flies (Schwarz et al., 2005) and sculpins (Nolte 
et al., 2005).
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Abstract
After admixture, recombination breaks down genomic blocks of contiguous ancestry. 
The breakdown of these blocks forms a new “molecular clock” that ticks at a much 
faster rate than the mutation clock, enabling accurate dating of admixture events in 
the recent past. However, existing theory on the breakdown of these blocks, or the 
accumulation of delineations between blocks, so-called “junctions”, has mostly been 
limited to using regularly spaced markers on phased data. Here, we present an exten-
sion to the theory of junctions using the ancestral recombination graph that describes 
the expected number of junctions for any distribution of markers along the genome. 
Furthermore, we provide a new framework to infer the time since admixture using 
unphased data. We demonstrate both the phased and unphased methods on simu-
lated data and show that our new extensions have improved accuracy with respect to 
previous methods, especially for smaller population sizes and more ancient admixture 
times. Lastly, we demonstrate the applicability of our method on three empirical data 
sets, including labcrosses of yeast (Saccharomyces cerevisae) and two case studies of 
hybridization in swordtail fish and Populus trees.
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Understanding the timeline of these hybridization events is para-
mount in obtaining a full understanding of the process and its impact. 
A “recombination clock” is particularly useful for studying recent 
evolutionary dynamics since detectable recombination events are 
markers of admixture (Baird, 2006), and the statistical association 
across loci created by admixture (admixture linkage disequilibrium) 
decays slowly (Baird, 2015). After admixture of two taxa, contigu-
ous genomic blocks are broken down by recombination over time. 
The delineations between these blocks were termed “junctions” by 
Fisher (1949, 1954), and inheritance of these junctions is similar to 
that of point mutations. Further work on the theory of junctions has 
shown how they accumulate over time for sib–sib mating (Fisher, 
1954), self-fertilization (Bennett, 1953), alternate parent–offspring 
mating (Fisher, 1959; Gale, 1964), a randomly mating population 
(Baird et al., 2003; Stam, 1980) and for substructured populations 
(Baird, 1995; Barton, 1983; Chapman & Thompson, 2002, 2003).

So far, applying the theory of junctions has proved difficult, as it 
requires extensive genotyping of the admixed individuals, but also of 
the source taxa. With the current decrease in genotyping costs (Muir 
et al., 2016), such analyses are coming within reach, and frameworks 
are being developed that assist in inferring local ancestry and de-
tecting junctions, given molecular data of source and admixed taxa 
(Corbett-Detig & Nielsen, 2017; Guan, 2014; Maples et al., 2013; 
Medina et al., 2018; Paşaniuc et al., 2009; Svedberg et al., 2021). 
Nevertheless, molecular data always paints an imperfect image of 
ancestry along the genome, and inferring the number of junctions in 
a chromosome remains limited by the number of diagnostic markers 
available (see Figure 1, first panel). Previous work on the theory of 
junctions does not take into account the effect of a limited num-
ber of genetic markers, and so far this effect had to be corrected 
using simulations (Buerkle & Rieseberg, 2008; MacLeod et al., 2005). 
Recent work by Janzen et al. (2018) resolves this issue by extending 

the theory of junctions with the effect of using a limited number 
of markers, but they had to assume an evenly spacing of markers. 
However, molecular markers are rarely evenly spaced. The first re-
sult we present here is an extension of the theory of junctions which 
includes the effect of marker spacing on inferring the number of 
junctions in a genome and that has the advantage of working well 
with fewer markers.

Furthermore, most existing theory on the accumulation of junc-
tions is developed for the case where ancestry can be determined 
within a single chromosome (with the exception of ancestry hmm 
(Corbett-Detig & Nielsen, 2017)). For diploid species, sequencing 
data presents itself as the pileup of ancestry across both chromo-
somes, requiring an additional step to separate the contributions of 
both chromosomes, called “phasing” (see Figure 1, second and third 
panel). Phasing methods can be classified into three main categories, 
including haplotype-resolved genome-sequencing, pedigree-based 
methods and statistical methods. Haplotype-resolved genome-
sequencing methods (reviewed in Snyder et al. (2015)) yield accurate 
results, but are expensive and require a large number of sequences 
in order to be able to resolve the required haplotypes (but see 
(Lutgen et al., 2020)). Pedigree-based phasing methods do not re-
quire resolved haplotypes, but instead rely on accurate genotyping 
of related individuals to resolve the required phase. These meth-
ods often yield good results but their application has been limited 
to humans, where large pedigree data sets are available (Browning 
& Browning, 2011; Kong et al., 2008; Loh et al., 2016). Statistical 
methods do not require large pedigree data sets and are based on 
recombination rate estimates and allele frequencies in a population. 
While some of these methods make use of a reference genome (e.g. 
Eagle (Loh et al., 2016b), Beagle (Browning & Browning, 2007) or 
ShapeIt (O'Connell et al., 2016)), others allow de novo haplotype 
aware assembly (e.g. POLYTE (Baaijens & Schönhuth, 2019)). Further 

F I G U R E  1  Visual depiction of the observed data. We show the differences between the type of data generated by the three methods 
we present in this study. On each panel, the chromosome in the centre is coloured according to ancestry (blue represents source taxa � 
and red represents source taxa �). Above the chromosome are indicated the locations of ancestry informative markers zi. Resulting inferred 
ancestry on these markers is shown below, where grey indicates heterozygous ancestry. The first panel represents the one chromosome 
method. There are seven junctions in the chromosome, but only three are observed in the data due to a limited marker coverage. Notice 
that a junction in the inferred ancestry corresponds to an odd number of junctions in the “true” genome ancestry and conversely that an 
even number of junctions in the “true” ancestry yields no inferred junctions. The second and third panels represent the methods that use 
information from two chromosomes. In the second panel, data are phased whereas in the third panel data are unphased
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improvements include the usage of third-generation sequencing 
(Ebler et al., 2019; Kronenberg et al., 2021; Tangherloni et al., 2019; 
Tourdot & Zhang, 2021). However, data from hybrid populations 
are not often available in this form. Across these three groups of 
methods, the overarching theme is that phasing is often costly and 
accuracy can be left wanting. Yet, inclusion of information from both 
chromosomes is expected to improve inference of the onset of ad-
mixture considerably and hence expansion of the theory of junctions 
towards a framework that takes into account data from both chro-
mosomes is warranted.

Here, we provide a framework to estimate the time since admix-
ture using phased or unphased data from two homologous chromo-
somes, taking into account marker spacing along the chromosome. 
Our framework is based on modelling the joint genealogy of loci that 
are located in the same chromosome or in two homologous chro-
mosomes, using the ancestral recombination graph (ARG; Griffths, 
1991; Griffths & Marjoram, 1997; Hudson, 1983). It has the advan-
tage of being fast since it relies on mathematical computations and 
does not require simulations. It has been implemented in the r pack-
age “junctions”. In comparison with previous methods (ancestry hmm, 
Corbett-Detig and Nielsen (2017)), our method has the advantage of 
working well with small population sizes and larger admixture times.

Our study is organized as follows. In Section 2, we introduce 
our model, which is a simplified version of the ARG, and present 
three maximum-likelihood methods to infer the time since ad-
mixture in hybrid populations: the first method uses information 
from a single chromosome, the second method uses phased data 
from two homologous chromosomes, and the third method uses 
unphased data from two homologous chromosomes. At the end of 
Section (2.4), we validate our methods using simulations. In Section 
3, we provide a detailed comparison to previous methods. Lastly, in 
Section 4 we apply them to a data set from experimental evolution 
in yeast and to two case studies of hybridization in swordtail fish 
and Populus trees.

2  |  MATERIAL S AND METHODS

2.1  |  Mathematical model

We assume a diploid population that evolves according to Wright–
Fisher dynamics; that is, generations are nonoverlapping, mating is 
random, and all individuals are hermaphrodites. We only keep track 
of one chromosome (or one pair of chromosomes), assuming that the 
accumulation of junctions on different pairs of chromosomes is inde-
pendent of each other (see Section 2.2.1). We assume that hybridiza-
tion occurred T generations ago between two source taxa, � and � . 
The proportion of individuals from source � in the initial generation 
is p and the proportion of individuals from source � is q = 1 − p . We 
define the initial heterogenicity H0: = 2pq as the probability that, 
when sampling two individuals from this generation, they are from 
different source taxa. This also represents the probability that at any 
given locus, one allele can be traced to source taxon � and the other 

allele to �. Following Janzen et al. (2018), instead of referring to the 
lesser known term of heterogenicity, we use the term of heterozy-
gosity in the manuscript throughout because these two concepts are 
mathematically equivalent.

We assume that the length of the chromosome is C Morgan 
and that there are n molecular markers whose positions are given 
by (z1,…, zn) ∈ [0,C]. For two consecutive markers at sites zi and 
zi+1, we define di = zi+1 − zi, the distance between them in Morgan. 
We assume that there are enough markers on the chromosome 
such that the di's are small compared to 1. The genealogy of these 
n (or 2n for a diploid genome) loci is given by the ARG, defined in 
Hudson (1983), Griffths (1991), and Griffths and Marjoram (1997). 
The ARG is a branching-coalescence process which follows back-
wards in time the ancestry of loci sampled in the present popula-
tion (time 0). If two loci belong to the same block at time t, they 
are identical by descent (IBD) with respect to generation t, that 
is the sampled loci have been inherited from the same individual 
living t units of time ago.

Although the ARG for many loci has complicated transition rates 
and is a computationally intensive model, here we consider only two 
loci (or two pairs of loci for a diploid genome) at a time. This is suf-
ficient since for our maximum-likelihood approach, we only use the 
expected number of junctions—and not its variance or higher mo-
ments (see, e.g. Equation 3).

We assume that the number of diploid individuals N is large, so 
that we can neglect some transitions (double coalescences and si-
multaneous coalescence and recombination) and that di ≪ 1 so that 
there is no more than one crossover per generation between two 
molecular markers and the mutation rates are small enough so that 
we can neglect mutations that happened between the admixture 
time and the present.

2.2  |  Two sites, one chromosome

The aim of this section is to derive a formula for the expected num-
ber of observed junctions on one chromosome given the population 
size N, the distances between the markers (d1, …, dn) and the initial 
heterozygosity H0: = 2pq. We start by considering two consecutive 
loci zi and zi+1 sampled in the same chromosome in the present popu-
lation. The ARG for these two sites has two possible states: 

•	 If the loci are in state (zi ∼ zi+1) at time t, it means that the two 
sampled loci have been inherited from the same individual living t 
generations before, that is that they are IBD.

•	 If the loci are in state (zi  zi+1), it means that the two loci have 
been inherited from different individuals.

To model the observed junctions, we look at identity-by-descent 
with respect to time T, when admixture took place. Recall that we 
only model observed junctions, that is where adjacent markers have 
alleles corresponding to different source taxa (which corresponds to 
an odd number of “true” junctions, see 1 and its caption).
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•	 If the two loci are in state (zi ∼ zi+1) at time T, the ancestor can be 
from source � (with probability p) or red (with probability q). In 
both cases, we observe no junction.

•	 If the two loci are in state (zi  zi+1) at time T (not IBD), they have 
two different ancestors at generation T, which can be:
a.	 Both blue (with probability p2) or both red (with probability q2), 

in this case there is no junction.
b.	 One blue and one red (with probability 2pq), in this case, there 

is a junction in the chromosome sampled in the present.
The dynamics of the ARG are controlled by two types of events:

•	 Recombination (zi ~ zi+1) → (zi  zi+1) with probability di,
•	 Coalescence (zi  zi+1) → (zi ~ zi+1) with probability 1

2N
.

Since N ≫ 1 and the di ≪ 1, other events (such as simultaneous 
coalescence and recombination events) have probabilities that are 
negligible. This yields the following transition matrix:

Let Pt be the probability vector at time t for this Markov chain 
with two states. (Pt)1 is the probability of (zi ∼ zi+1) at time t and (Pt)2 
the probability of (zi  zi+1) at time t. We have P0 = (1, 0) (in the pres-
ent, we sample the two loci in the same individual) and Pt = P0M

t
. 

We denote by ℙ(JT (zi , zi+1)) the probability that a junction is observed 
between zi and zi+1 (conditioning on the fact that hybridization oc-
curred T generations ago). We have

which corresponds to the probability that the two loci were carried 
by different individuals T generations ago and they are from different 
source taxa (see Figure 2, left panel).

Solving Equation (1) gives

Let �(JT ) be the expected number of observed junctions on one 
chromosome, we have

2.2.1  |  Maximum likelihood

For each chromosome, we can calculate the likelihood of observing 
the data, where the data are n − 1 pairs of markers (zi ∼ zi+1), which 
is given by

where ℙ((zi , zi+1)) is the probability of observing the pair of markers 
(zi , zi+1) given by:

•	 ℙ((zi , zi+1)) = ℙ(JT (zi , zi+1)), if there is a junction between the two 
markers. This is given by Equation (2).
•	 ℙ((zi , zi+1)) = 1 − ℙ(JT (zi , zi+1)), if there is no junction be-

tween the two markers.For different chromosomes sampled in the 
same individual, we can assume independence between chromo-
somes and the full likelihood of observing the data, given the time 
since admixture, are given by the product of these likelihoods, for 
example

where C indicates the number of chromosomes, and nC indicates the 
number of markers on chromosome C.

When we have data from several individuals (which are not in-
dependent, due to coalescence), we first compute the maximum-
likelihood estimator of T for each individual (using (4)). Our estimator 
of the time since admixture is the average of the maximum-likelihood 
estimator of T obtained for all individuals in the sample. Confidence 
intervals (CIs) are obtained by bootstrap (reported are the 95% in-
terquartile range of different bootstrap samples). To visualize the 
dispersion of the data, we also plot the distribution of the maximum-
likelihood estimator across individuals.

2.3  |  Two sites, two chromosomes

We consider two consecutive loci zi and zi+1, which are at distance di 
(in Morgan) that we sample in two homologous chromosomes. The 
ARG for these two sites in two chromosomes has seven states (see 
Durrett (2008), Chapter 3). To describe them, we borrow the nota-
tion from Durrett (2008) and we write (zizi+1) to indicate that sites zi 
and zi+1 are IBD, and notation (zi) (or (zi+1)) to indicate that the ances-
tor to zi (or (zi+1)) is only ancestor to one of the two sites. The result-
ing seven states are summarized in Table 1. An example of realization 
of this process is shown in Figure 2 (right panel).

The initial state is S1 because in the present time we sample two 
different loci in two different chromosomes. The transition matrix 
of the ARG with two loci and a sample size 2 can be approximated, 
when N ≫ 1 by

M =

⎛⎜⎜⎝
1−di di
1

2N
1−

1

2N

⎞⎟⎟⎠
.

(1)ℙ(JT (zi , zi+1)) = H0(Pt)2,

(2)ℙ(JT (zi , zi+1)) = H0

2Ndi
2Ndi + 1

(
1 −

(
1−di−

1

2N

)T
)
.

(3)

𝔼(JT ) =

n−1∑
i=1

ℙ(JT (zi , zi+1)) = H0

n−1∑
i=1

2Ndi
2Ndi + 1

(
1 −

(
1−di−

1

2N

)T
)
.

n−1∏
i=1

ℙ(zi , zi+1),

(4)ℒ =

C∏
c=1

nC−1∏
i=1

ℙ(zi , zi+1),

M(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
1

2N
−2di 2di 0 0 0

1

2N
0

1

2N
1−3

1

2N
−di di 2

1

2N
0 0 0

0 2
1

2N
1−4

1

2N
0 2

1

2N
0 0

0 0 0 1−
1

2N
−di di

1

2N
0

0 0 0 2
1

2N
1−3

1

2N
0

1

2N

0 0 0 0 0 1−di di

0 0 0 0 0
1

2N
1−

1

2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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All other potential events (e.g. double crossovers or simultane-
ous crossover and coalescence events) have probabilities that are 
negligible compared to 1/2N.

Let P(i)
t

 be the vector containing the probabilities of observing 
each of the states (S1, …, S7) at time t. P(i)

t
 satisfies

where P0 = (1, 0, 0, 0, 0, 0, 0), since at time 0 we sample all loci in two 
homologous chromosomes. This equation can only be solved numeri-
cally. Recall that the stationary distribution of this process P(i) satisfies

and has the analytical expression

Thus, for large values of t the system reduces to states S6 and S7, 
which means that each locus has only one ancestor, that is forwards 
in time the process has reached fixation (at each locus). Recall that 
state S6 is the state where there is one ancestor for the sample; thus, 
we observe no junctions on either chromosome. Furthermore, recall 
that state S7 is the state where there are two ancestors, one for the 
first locus and one for the second locus, and with probability 2pq 
each one of them comes from a different source taxa. This is exactly 
the probability of observing a junction when t → ∞ for one chromo-
some (Equation 2). In other words, when t is very large, fixation is 
reached and the two sampled chromosomes are homozygous so the 
problem reduces to the single chromosome case.P

(i)

t
= P0(M

(i))t ,

P(i) = P(i)M(i)

P(i) =

(
0, 0, 0, 0, 0,

1

2diN + 1
,

2diN

2diN + 1

)
.

F I G U R E  2  The ARG with two markers. Each colour represents one source taxa (� and �). The black and grey lines (or dotted lines) 
represent the ancestral lineage of each marker. In the left panel, we show the ARG for two markers in one chromosome. In the present, 
there is an observed junction between the two markers. In the past (t generations ago, when hybridization took place), each lineage is carried 
by a different individual and these two individuals are from different source taxa. The right panel shows the ARG for two markers in two 
homologous chromosomes

TA B L E  1  States of the reduced ARG

State ni ni+1 ntot

S1 (zizi+1), (zizi+1) 2 2 2

S2 (zizi+1)(zi)(zi+1) 2 2 3

S3 (zi)(zi)(zi+1)(zi+1) 2 2 4

S4 (zizi+1)(zi) or 
(zizi+1)(zi+1)

2 (or 1) 1 (or 2) 2

S5 (zi)(zi+1)(zi+1) or 
(zi+1)(zi)(zi)

1 (or 2) 2 (or 1) 3

S6 (zizi+1) 1 1 1

S7 (zi), (zi+1) 1 1 2

Note: ni (resp. ni+1) denotes the number of ancestors of site zi (resp. zi+1) 
and ntot the total number of ancestors to the sample.
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2.3.1  |  Maximum likelihood, phased data

We first consider the case of phased data. Each pair of homologous 
markers can be in one of four states:

•	 PP, that is, both homologous markers carry the allele from 
source �,

•	 QQ, that is, both homologous markers carry the allele from 
source �,

•	 PQ, that is the marker on the first chromosome carries the allele 
from source � and the marker on the second chromosome carries 
the allele from source �,

•	 QP, that is the marker on the first chromosome carries the allele 
from source � and the marker on the second chromosome carries 
the allele from source �.

The data can then be represented as a sequence (Oi , 1 ≤ i ≤ n) 
that takes values in {PP,QQ,PQ,QP} such that Oi is the state of the 
i-th marker. To derive a maximum-likelihood formula for the time 
since admixture T, we compute the probability of each sequence in 
{PP,QQ,PQ,QP}n given T, N, C, the distances between the n loci and 
the initial heterozygosity H0.

We want to compute the probability of our observations 
(O1,…,On). These n observations are not independent, as there 
are nontrivial correlations between loci along the chromosome. 
However, we can neglect long-range dependencies and assume that 
Oi only depends on Oi−1, that is that the probability of observing 
(O1,…,On), t units of time after hybridization is

Recall that ignoring long-range dependencies is a natural approx-
imation and it has been used for example by McVean and Cardin 
(2005) to define the sequentially Markov coalescent. To compute 
ℙt(Oi+1|Oi), we use the ARG for markers at zi and zi+1 denoted by (Γi

t
) 

(and to compute ℙ(O1,O2), we use (Γ1
t
)). For example, we can observe 

O1 = PP and O2 = QQ if: 

•	 Γ1
t
= S3 and the two ancestors for locus 1 are from source taxa 

� and the two ancestors for locus 2 from �, which happens with 
probability p2q2 or,

•	 Γ1
t
= S5, with probability 1/2 there are two ancestors for locus 1 

and one for locus 2 and they are from desired source taxa with 
probability p2q. With probability 1/2, there is one ancestor for 
locus 1 and two for locus 2 and they are from the desired source 
taxa with probability pq2 or,

•	 Γ1
t
= S7 and the ancestor to 1 is from source taxa � and the ances-

tor to 2 from �, which happens with probability pq.

To sum up, when O1 = PP and O2 = QQ,

The probabilities for all combinations of O1 and O2 are listed in 
Figure 3. To compute ℙt(Oi+1|Oi) we use Bayes’ formula:

where, using the total probability theorem, ℙt(Oi) can be obtained by 
summing over the appropriate row in Figure 3. Then, the total proba-
bility of observing the data, given N and t, that is

can be maximized in order to find the maximum-likelihood estimator 
of t and N. If the data consist of multiple chromosomes from the 
same individual, we can calculate the joint likelihood of observing 
the data, given t and N by assuming independence across chromo-
somes and calculating the likelihood as the product across chromo-
somes. As in the one chromosome case, we provide estimates of T 
by averaging across the different individuals of the sample, and the 
CIs reflect the 95% interquartile range of the T estimates across the 
different individuals of the sample.

2.3.2  |  Maximum likelihood, unphased data

If the data are unphased, we cannot distinguish which allele is in 
which of the two homologous chromosomes. We can observe one 
of these three states at each marker:

•	 P, that is we only observe the allele from source �, that is both 
chromosomes carry the allele from source �,

•	 Q, that is we only observe the allele from source �.
•	 x, that is we observe both alleles, that is each one of the two ho-

mologous chromosomes carries a different allele.

The data can then be represented as a sequence (Oi) of length n 
that takes values in {P,Q,x} such that Oi is the state of the i-th marker. 
We can perform exactly the same method, as in the previous sec-
tion, except that now the probabilities of each state are given by 
Figure 4. Again, if the data consist of multiple chromosomes from 
the same individual, we can calculate the joint likelihood of ob-
serving the data, given t and N by assuming independence across 
chromosomes and calculating the likelihood as the product across 
chromosomes.

2.4  |  Individual-based simulations

To test the validity of our maximum-likelihood approach, we use 
individual-based simulations, as described in Janzen et al. (2018), 
that is Wright–Fisher type simulations of randomly mating popu-
lations of constant size N, with nonoverlapping generations. We 

ℙt((O1,…,On)) = ℙt(O1,O2)

n−1∏
i=2

ℙt(Oi+1|Oi).

ℙt(O1,O2) = p2q2(P(1)
t
)3 +

1

2
(pq2 + qp2)(P(1)

t
)5 + pq(P(1)

t
)7.

ℙt(Oi+1|Oi) =
ℙt(Oi ,Oi+1)

ℙt(Oi)
,

(5)ℙt((O1,…,On)) = ℙt(O1,O2)
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then recover local ancestry by analysing ancestry at n mark-
ers whose positions are chosen uniformly at random along the 
genome.

Unless otherwise specified, we show how time can be accurately 
inferred for a population of 10,000 individuals, for time points be-
tween the first generation and 1000 generations. We use n = 10,000 
markers, which is considered to be sufficient to detect the majority 
of accumulated junctions (Janzen et al., 2018). We report our find-
ings across 100 replicates, where in each replicate 10 individuals 
were randomly selected from the admixed population and used to 
infer T. We report the mean and the 95% percentile across these 100 
replicates. The number of individuals in the sample for the real data 
sets analysed is always larger than 10 (see Section 4). We have sim-
ulated with three different values of the initial proportion of source 

taxa �, (p ∈ {0.053, 0.184, 0.5}), to vary the initial heterozygosity H0 
in {0.1,0.3,0.5}.

We have first compared the methods we have developed here 
to previous methods based on the theory of junctions (Figure 5). We 
observe that, when the number of markers is low, previous methods, 
that do not take into account marker spacing, tend to underestimate 
the time since admixture, which is not the case for our methods.

We have then compared the estimations of the time since admix-
ture, using the method for one chromosome and the method for two 
chromosomes (phased; Figure 6). We observe that using data from 
the two homologous chromosomes allows to infer the time since ad-
mixture more accurately, since it reduces uncertainty.

Using unphased data instead of phased data might introduce 
additional error and in Figure 7, we compare the methods that use 

F I G U R E  3  ℙt(Oi ,Oi+1) for phased 
data. The allele from source taxa � is 
represented in blue and the allele from 
source taxa � is represented in red

F I G U R E  4  ℙt(Oi ,Oi+1) for unphased 
data. The allele from source taxa � is 
represented in blue and the allele from 
source taxa � is represented in red
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phased or unphased information of two homologous chromosomes. 
We observe that both methods yield very similar results in terms of 
the relative error. This can be due to the fact that homozygous sites 
have an important contribution to the likelihood and the uncertainty 
that comes from sites that are of type x (in the unphased case) is well 
managed by our method.

Finally, we explore error in phasing assignment (switching error). 
We simulate the effect of error in phasing assignment by randomly 
swapping a fraction of the markers between chromosomes. We ex-
plore phasing error in {0.0025,0.005,0.0075,0.01,0.02}. These errors 
are comparable to the switching error rates reported in the literature. 
For example, Choi et al. (2018) compared different phasing methods 

and reported switching error rates between 0.1% and 2%. (Notice 
that these error rates are for human data where there are good qual-
ity references and sample sizes are large). More recent reference-free 
methods (based on third-generation sequencing techniques) report 
switching error rates of 1–2% (see, e.g. Ebler et al., 2019; Kronenberg, 
2019; Tourdot & Zhang, 2021). Switching error rate error has strong 
effects on the inferred time since admixture, as shown in the bottom 
panel in Figure 8. Generally, imposed errors increase the inferred age, 
by introducing novel junctions due to mis-phased markers.

Another important source of error is the lack of coverage, which 
would have the effect of reducing the number of markers. An analysis 
of the sensitivity of our method to reducing the number of markers can 

F I G U R E  5  Comparison to previous 
methods. Shown are the median estimates 
for the time since admixture for 100 
replicates, where in each replicate 10 
individuals were analysed. Boxplots 
represent the 95% interquantile range 
across replicates. The dashed line 
indicates the simulated time. “Evenly 
spaced markers” corresponds to the 
method in Janzen et al. (2018). “Infinite 
markers” corresponds to an idealized 
scenario where ancestry is known 
for every locus in the chromosome 
and is there to quantify the amount 
of randomness in the process. The 
population size was 10,000 individuals, 
and 10,000 randomly spaced markers 
were used 100
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be found in the S3 Appendix and shows that a reduction of coverage 
also tends to lead to an overestimation of the time since admixture.

3  |  COMPARISON WITH OTHER 
METHODS

Our framework provides a methodology to infer the time since 
admixture, provided that local ancestry is known. Previous 

methods aiding in inferring the time since admixture, such as elai 
(Guan, 2014) and ancestry hmm (Corbett-Detig & Nielsen, 2017) 
jointly infer the time since admixture and local ancestry, because 
they use the time since admixture to correct for the impact of 
recombination on local ancestry estimates. We have chosen to 
compare our framework with results obtained using ancestry hmm, 
which we currently consider the most accurate method available 
to jointly infer local ancestry and time since admixture. We do so 
in a twofold manner: first, we directly compare the ability of both 

F I G U R E  7  Accuracy in age estimate using the unphased framework versus the phased framework. Shown are the median difference 
across 100 replicates, where for each replicate 100 individuals were analysed. We represent the results for three different initial 
heterozygozities, as indicated at the top of each plot. The population size was 10,000 individuals, and 10,000 randomly spaced markers were 
used. The inset plots show the same results, including the 95% percentile, which are far outside the boundaries of the main plot
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methods to infer the time since admixture, provided data with 
known local ancestry. Second, we provide both packages with 
imperfect data, where local ancestry is uncertain. Because our 
framework is not able to infer local ancestry, we directly use the 
inferred local ancestry of ancestry hmm, which might add an extra 
layer of error, but is a good reflection of an empirical use case 
(see also Section 4.3). For both approaches (known and uncertain 
ancestry), data were simulated using the junctions package, using 
a population size N of [1000, 10,000] and imposing n markers, 
where n was [1000, 10,000, 40,000] (in line with the number of 
markers available in the Swordtail and Populus data sets in Section 
4). Simulations were run for 10,000 generations, using H0 = 0.5 
and C = 1. At each generation, time since admixture was inferred 
for 10 individuals sampled randomly from the population. Time 
since admixture was inferred given the superimposed n markers, 
whose location was drawn randomly in [0, 1]. For each parameter 
combination, 10 replicate simulations were performed. When the 
maximum likelihood did not converge to a final value within the 
given range, the data point was removed from the analysis. This 

only occurred when t  >  N, and typically only when there were 
very few ancestry informative markers.

3.1  |  Known ancestry

Because ancestry hmm requires information on allele frequencies in 
the source taxa in order to jointly infer local ancestry and time since 
admixture, input data for ancestry hmm were created assuming both 
source taxa were fully separated; for example, two alleles were dif-
ferentially fixed across the source taxa. Results show (Figure 9) that 
when time is small compared to population size (i.e. when the ad-
mixture time is small in “coalescence units”), our method performs 
as good as ancestry hmm. However, for small population sizes, we ob-
serve that, as the number of generations since admixture reaches 
N, ancestry hmm becomes increasingly incorrect in contrast to our 
method, which remains accurate. For large values of N, in our simu-
lation, our method performs as good as ancestry hmm. For compu-
tational reasons, we could not simulate times exceeding N, but we 

F I G U R E  8  Effect of switching error on the estimated time since admixture. Data simulated with N = 10,000, p = 0.5, C = 1 and 
n = 10,000. The solid black line indicates the simulated = estimated time. Dots indicate the mean estimate across 100 replicates, where 
in each replicate, 10 individuals were analysed. Coloured area indicates 95% interquantile distribution across replicates. Colours reflect 
different degrees of phasing error, where a phasing error of 0.01 represents a 1% probability of a SNP being phased incorrectly
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expect the performance of ancestry hmm to decrease when the time 
since admixture reaches N generations.

3.2  |  Uncertain ancestry

To mimic uncertainty in ancestry, we explored different degrees of 
uncertainty, indicated by different values of the allele frequency dif-
ferential dx = Ax − Ay, where Ax is the frequency of allele A in popula-
tion x and Ay is the frequency of allele A is population y, following 
Shriver et al. (1997). Higher values of dx indicate higher ancestry in-
formation content in the respective marker. Here, we explored val-
ues of dx in [0.5, 0.7, 0.9]. Because our framework does not infer local 
ancestry, we used the inferred local ancestry by ancestry hmm, using 
a threshold of including only markers with at least 95% certainty of 
ancestry. For a large population size (N = 10,000, S5 Appendix), we 
observe that ancestry hmm consistently underestimates the true age 
when the time since admixture becomes large, in line with our find-
ings with known ancestry (Figure 9). In contrast, our method behaves 
differently, underestimating the true age even further, most likely as 
a result of a stacking of errors: because our method cannot infer 
local ancestry, we have used the local ancestry estimates of ancestry 
hmm. However, when population size is small (N = 1000, Figure 10), 
we observe a striking phenomenon (Figure 10): when the time since 
admixture becomes large, our framework starts inferring the time 
correctly again, whereas the age estimates obtained using ancestry 
hmm remain incorrect and seem to reach a plateau. This effect only 
occurs when there is a sufficient number of markers of reasonable 

quality, as we observe that when n = 1000 and d ≤ 0.7, our frame-
work is also unable to accurately infer the time since admixture. We 
believe that the improved performance when time since admixture 
becomes large is the result of the interplay between two phenom-
ena. First, while our method can work for any value of T, ancestry 
hmm typically requires T ≪ log2(N) (this is the same assumption used 
in SMC’ (Liang & Nielsen, 2014)). This could introduce some error in 
the ancestry assignment and thus lead to the underestimates ob-
tained using ancestry hmm. Second, our method seems to work better 
with a small number of informative markers. Combined, our method 
outperforms ancestry hmm in inferring the time since admixture when 
population size and number of markers are small.

4  |  RESULTS

4.1  |  Saccharomyces cerevisiae

Experimental evolution provides an important reference point to 
verify our findings. Here, we reanalyse data from an advanced in-
tercross line (AIL) experiment, where two highly differentiated 
yeast (Saccharomyces cerevisiae) lines were crossed, and the result-
ing hybrid offspring was outbred for 12 generations in order to ob-
tain maximum genetic diversity (Illingworth et al., 2013; Parts et al., 
2011). The data consist of sequencing data for 171 individuals, for 
all 16 chromosomes. There are on average 3271 ancestry informa-
tive markers per chromosome (95% CI: [929, 6284]). Local ances-
try was certain in the data, as both source taxa were differentially 

F I G U R E  9  Comparison in estimating the time since admixture between ancestry hmm and the method proposed here. The solid black line 
indicates the simulated = estimated time. Dots indicate the inferred ages, with the green dots representing ages inferred by ancestry hmm, 
and the blue dots indicate ages inferred by the junctions framework. Age estimates are based on simulated data with known ancestry, using 
n = 40,000, C = 1, H0 = 0.5
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homozygous on each ancestry informative SNP. H0 was 0.5, reflect-
ing a 50/50 contribution of both strains to the first generation. We 
used three different recombination rate estimates: first, we used the 
linkage map of Cherry et al. (1997) where the average recombination 
rate is 1 cM/2.7 kb (1 centi Morgan per 2.7 kilobases); second, we 
used the average recombination rate of 1 cM/2.2 kb as inferred in 
Mancera et al. (2008); and lastly, we used the average recombination 
rate of 1 cM/5.8 kb as inferred for the two-way cross in Illingworth 
et al. (2013). In the absence of a detailed recombination map, we 
assume that recombination is constant across the chromosome, ig-
noring hot spots and cold spots. We assume a large population size 
(N = 100,000), reflecting outbreeding.

We find that when using the older recombination rate estimates, 
we consistently underestimate the age of the hybrids (see Figure 11, 
panel a). The mean age using the recombination rate from Cherry 
et al. (1997) corresponds to 9.1 generations (95% CI across all in-
dividuals =  [6.2, 11.3]) and the mean age using the recombination 
rate from Mancera et al. (2008) corresponding to 7.0 generations 
(95% CI: [5.4, 8.6]). These estimates suggest that the true recombi-
nation rate is slightly lower than assumed. When using the most re-
cent recombination rate estimate (i.e. 1 cM/5.8 kb, from Illingworth 
et al. (2013)), we slightly overestimate the age (mean age estimate: 
18.7 generations, 95% CI: [13.0, 22.5]). Alternatively, we could be 
overestimating population size, suggesting that perhaps the rate of 
inbreeding in the experimental design was higher than anticipated. 
Reducing the population size tends to increase the time since admix-
ture (S4 Appendix), which could help bring the age estimates using 

the two oldest recombination rates closer to the true number of gen-
erations. However, for the most recent recombination rate estimate, 
this would only increase the error made. The likelihood profiles (see 
Figure 11, panel b) suggest that the maximum-likelihood estimates 
are robust, and thus, it seems more likely that the recombination rate 
estimates do not accurately reflect the amount of recombination ac-
cumulated in the experiment.

4.2  |  Swordtail fish

Here, we reanalyse data of hybridizing swordtail fish published in 
Schumer et al. (2018). Swordtail fish have received considerable 
attention in the past years, as they have been shown to hybrid-
ize readily in nature. We focus here on a hybrid population lo-
cated in Tlatemaco, Mexico (Schumer, Cui, et al., 2014; Schumer 
et al., 2018). The population is the result of a hybridization event 
between Xiphophorus birchmanni and X. malinche, approximately 
100–200 generations ago (Pers. Comm. M. Schumer and (Powell, 
Moran, et al., 2021; Schumer et al., 2018)). Currently, the hybrid 
genome consists for 75% of X. malinche, suggesting that the ini-
tial hybrid swarm was strongly biased towards X. malinche, or that 
strong selection after hybridization has favoured genomic mate-
rial from X.  malinche. We use ancestry information provided in 
the data supplement of Schumer et al. (2018), which contains 
unphased local ancestry estimates based on multiplexed shotgun 
genotyping (MSG) results (Andolfatto et al., 2011), with on average 

F I G U R E  1 0  Comparison in estimating 
the time since admixture between 
ancestry hmm and the method proposed 
here, for a small population of N = 1000. 
The solid black line indicates the 
simulated = estimated time. Dots indicate 
the inferred ages, with the green dots 
representing ages inferred by ancestry hmm 
and the blue dots indicate ages inferred 
by the junctions framework. Missing 
dots are caused by a lack of convergence 
of the maximum-likelihood algorithm. 
Age estimates are based on simulated 
data with uncertain ancestry, where 
uncertainty in ancestry is reflected by the 
allele frequency differential (Shriver et al., 
1997). Because the method proposed here 
does not include ancestry uncertainty, 
local ancestry as inferred by ancestry hmm 
was used
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38,936 markers per chromosome (95% CI: [22,765, 50,256]). The 
MSG pipeline provides a posterior probability of observing local 
ancestry. Following Schumer et al. (2018), we converted local an-
cestry probabilities of >95% to hard ancestry calls. To obtain age 
estimates, we use the estimated population size in Schumer, Cui, 
et al. (2014) of 1830 individuals. We infer the age for 187 individu-
als from the Tlatemaco population. We use ancestry information 
from 24 linkage groups, but remove linkage groups 17 and 24, as 
these are known to include large inversions (Schumer et al., 2018), 
making them unsuitable for admixture analysis. As a recombina-
tion map, we use three approaches. First, we use the average re-
combination rate of 1 cM/378 kb as used in Schumer, Cui, et al. 
(2014), which is based on the average genome-wide recombina-
tion rate in Xiphophorus (Walter et al., 2004). Second, we use the 
average recombination rate of 1 cM/500 kb as reported in Powell, 
García-Olazábal, et al. (2020). Lastly, we use the high-density re-
combination map reconstructed from linkage disequilibrium pat-
terns as presented in Schumer et al. (2018), which represents an 
average recombination rate of 1 cM/485 kb.

We find that the distribution of ages inferred for individuals from 
the Tlatemaco population is overall higher than the previously in-
ferred age but still consistent with those estimates (see Figure 12a). 
We recover a mean age of 163 generations (95% CI: [81, 201]) when 
using the recombination rate reported in Schumer et al. (2014). Using 
the high-density recombination map from Schumer et al. (2018), we 
obtain a mean age estimate of 210 generations (95% CI: [111, 257]), 

due to the shorter map length. Alternatively, using the most recent 
recombination rate estimate of 1  cM/500  kb reported by Powell, 
García-Olazábal, et al. (2020), we recover a mean age of 217 gen-
erations (95% CI: [115, 265]). Thus, we generally find that the pop-
ulation is perhaps slightly older than expected, but we would like to 
emphasize that the likelihood profile across all samples (Figure 12b) 
is extremely flat, suggesting that the age estimates obtained tend 
to be uncertain and susceptible to potential inconsistencies in the 
data (e.g. sequence errors). Exploration of different values for the 
population size (S4 Appendix) shows that if the true population size 
is larger than reported by Schumer, Cui, et al. (2014), this would de-
crease the time since admixture, but only minimally so (by only a few 
generations).

4.3  |  Populus trees

Here, we reanalyse a data set of Populus trees, published by 
Suarez-Gonzalez et al. (2016). The data set focuses on two species 
of trees, Populus trichocarpa, found mainly in West America, and 
Populus balsamifera, which is found in Northern America. The two 
species are thought to have diverged relatively recently, around 
760k years ago. Where their ranges meet (around the southern 
tip of Alaska), the two species hybridize, and a hybrid popula-
tion has been established. The data set consists of 32 individuals 
which are mainly P.  balsamifera, admixed with P.  trichocarpa and 

F I G U R E  11  Inferred age for F12 hybrid yeast (Saccharomyces cerevisiae) individuals. (a) Inferred age for three different recombination 
rates: 1 cM/2.7 kb (Cherry et al., 1997), 1 cM/2.2  kb (Mancera et al., 2008) and 1 cM/5.8 kb (Illingworth et al., 2013). Shown is the 
distribution of inferred ages across 171 individuals. Solid black dots indicate the bootstrapped average across all individuals; black error bars 
indicate the 95% CI of these bootstraps. (b) Loglikelihood profile across all chromosomes, where each line represents one individual. Shown 
is the loglikelihood profile for the most recent recombination rate estimate, from Illingworth et al. (2013). The vertical dotted line indicates 
the 12 generations line (e.g. the true age of the F12 hybrid individuals)
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36 individuals that are mainly P. trichocarpa, admixed with P. bal-
samifera. Three chromosomes of interest (chromosomes 6, 12 and 
15) were Illumina-sequenced, and unphased data were available 
for on average 60,071 ancestry informative markers per chromo-
some (95% CI: [28,745, 101,425]). Ancestry information in the 
markers was very high, with on average 40,852 markers with an 
allele frequency differential of at least 0.7 (Shriver et al., 1997), 
and 21,009 markers with an allele frequency differential of at 
least 0.9. We use three different population-level recombination 
rates recovered from the literature, being ρ  =  0.00219 (Wang 
et al., 2016), ρ = 0.0092 (Olson et al., 2010) and ρ = 0.0197 (Slavov 
et al., 2012). We converted these population-level recombina-
tion rates to individual rates using an effective population size 
of 5106 individuals, as estimated using phylogenetic methods in 
Slavov et al. (2012). This yielded three local recombination rates 
of 1 cM/10.4 kb (Slavov et al., 2012), 1 cM/22.2 kb (Olson et al., 
2010) and 1 cM/93.3 kb (Wang et al., 2016). Local ancestry was 
determined using ancestry hmm (Corbett-Detig & Nielsen, 2017), 
assuming equal admixture of both source taxa. Because admix-
ture differed strongly across samples, we used the average local 
ancestry per sample as input for a second run of ancestry hmm in 
order to obtain accurate local ancestry calls. We converted local 
ancestry probabilities of >95% to hard ancestry calls. Lastly, we 
compared the observed variation in ancestry across samples with 
the expected variation in ancestry for a single panmictic popula-
tion, as given by equation 8 in Gravel (2012).

We find that the time since admixture strongly correlates with 
the recombination rate used (see Figure 13a), with a mean num-
ber of generations since admixture of 14 (95% CI: [13, 15]) when 
using the highest estimate of recombination (1 cM/10.4 kb (Slavov 
et al., 2012)), an intermediate estimate of 30 generations (95% CI: 
[29, 33]) when using a recombination rate of 1 cM/22.2 kb (Olson 
et al., 2010) and a much higher age estimate of 123 generations 
(95% CI: [131, 10]) when using the lowest recombination estimate 
of 1  cM/93.3  kb (Wang et al., 2016). The likelihood profiles (see 
Figure 13b) intersect on multiple occasions, suggesting multiple op-
tima. We measure a variation in ancestry across the three chromo-
somes of 0.042. However, we obtain expected levels of variation of 
ancestry of 0.0088, 0.0010 and 0.0008 for the three different re-
combination rate estimates (and their corresponding age estimates). 
Observed variation in the data is thus much higher than expected 
from admixture in a single panmictic population.

5  |  DISCUSSION

The aim of this article was to improve the estimation of the time 
since admixture in hybrid populations. To do so, we have ex-
tended the theory of junctions in two directions. First, we have 
derived a formula for the expected number of observed junctions 
in one chromosome that takes into account the number of mark-
ers and their positions (Equation (3)). Second, we have considered 

F I G U R E  1 2  Inferred age for hybrid Swordtail fish (a) Inferred age for hybrid Xiphophorus fish from Tlatemaco (Mexico). Shown is the 
distribution age inferences across 187 individuals, based on three different recombination maps: 1 cM/370 kb (Schumer, Cui, et al., 2014), 
1 cM/485 kb (Schumer et al., 2018) and 1 cM/500 kb (Powell, García-Olazábal, et al., 2020). Dotted lines indicate the hypothesized age 
limits of the admixed population. Solid black dots indicate the bootstrapped average across all individuals; black error bars indicate the 
95% CI of these bootstraps. (b) Loglikelihood profile across all chromosomes, where each line represents one individual. Shown is the 
loglikelihood profile for the most recent recombination rate estimate (Powell, García-Olazábal, et al., 2020)
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the case in which there is sequencing data from two homologous 
chromosomes. We have developed a maximum-likelihood ap-
proach that infers the time since admixture, for both phased and 
unphased data.

First, we have used simulations to validate the accuracy of our 
method. Results from our simulations show that our method for a 
single chromosome performs better than previous methods that ig-
nore the effect of having a limited number of markers or assume that 
the markers are even-spaced (see Figure 5). Furthermore, we find 
that using information from two chromosomes improves accuracy 
considerably, as expected. This effect is even stronger for small pop-
ulation sizes (see figures 6 and 2 in S2 Appendix).

Surprisingly, the method based on unphased data performs sim-
ilarly to our method based on phased data (see figures 7 and 3 in 
S2 Appendix). The phased and unphased approaches differ in their 
treatment of markers that are heterozygous for ancestry, and hence, 
we expected differences between these methods to manifest them-
selves primarily during the initial stages of admixture, when hetero-
zygosity is still high. We did find that there were slight differences 
during these stages (figures 7 and 3 in S2 Appendix), but these were 
negligible compared to the overall uncertainty. Furthermore, these 
errors were much smaller than errors accumulated due to incor-
rect phasing (see Figure 8). Our findings here are conservative, as 
we show that the unphased method performs better even for small 
error rates, comparable to error rates for human data (e.g. in Choi 
et al., 2018). Human data sets are typically of very high quality, and 
these error rates represent an extremely favourable scenario. Thus, 

given the impact of error rates incurred during phasing, we recom-
mend using our unphased framework if possible, to obtain more ac-
curate time estimates.

Apart from sensitivity to phasing error, we have tested the sen-
sitivity of our method to different parameters such as the number 
of markers n, the population size N, the initial heterozygosity H0 and 
the total recombination rate C (see S1 Appendix). Our method seems 
to be quite sensitive to H0 but this parameter can easily be estimated 
from the proportion of markers that come from each source taxa. 
One advantage of our approach is that age inference is not very sen-
sitive to population size (see figure 1 in S1 Appendix), which was 
not true for previous methods that rely on a good estimation of N 
(see Janzen et al. (2018)). Our method is not very sensitive either 
to the number of markers (see figure 4 in S1 Appendix), provided 
that it is above a certain threshold. Janzen et al. (2018) inferred that 
when using regularly spaced markers and information for a single 
chromosome, the number of markers typically needs to be an order 
of magnitude larger than 1

2
Ct, where t is the admixture time and C 

the total amount of recombination. We find similar results when 
using information from a single chromosome with arbitrarily spaced 
markers or information from both chromosomes (see S1 Appendix). 
When analysing empirical data, it is often impossible to know a priori 
whether the number of ancestry informative markers is much larger 
than the admixture time. However, our simulation results indicate 
that when the number of markers is too small, variation in the age es-
timate across different chromosomes tends to increase. Thus, large 
variation in the estimate of admixture time, or inferred admixture 

F I G U R E  1 3  Inferred age for hybrid Populus trees. (a) Distribution of inferred time since admixture for 68 individuals. Colours indicate 
different recombination rates used: 1 cM/10.4 kb (Slavov et al., 2012), 1 cM/22.2 kb (Olson et al., 2010) and 1 cM/93.3 kb (Wang et al., 
2016). Solid black dots indicate the bootstrapped average across all individuals; black error bars indicate the 95% CI of these bootstraps. (b) 
Inferred time since admixture, split out across the average frequency of Populus trichocarpa in the admixed individual. Loglikelihood profile 
across all chromosomes, where each line represents one individual. Shown is the loglikelihood profile for the most recent recombination rate 
estimate (Wang et al., 2016)
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times that tend to extremely large values, are potentially indicative 
of an insufficient marker number.

The main issue with our method is its sensitivity to the recombi-
nation rate. This is shown in figure 2 of S1 Appendix but also exem-
plified by the varying results in the empirical data sets, dependent 
on our assumptions about recombination rates. However, it should 
be noted that this issue is not novel to our approach, but is a gen-
eral issue with the theory of junctions. Apart from sensitivity to the 
average recombination rate, local hot spots or cold spots of recom-
bination could potentially also influence admixture time estimates.

Furthermore, the recombination rate factors into inference 
of local ancestry. Our methodology assumes local ancestry to be 
known and relies on upstream inference of local ancestry. However, 
methods to infer local ancestry such as msg (Andolfatto et al., 2011), 
elai (Guan, 2014) and ancestry hmm (Corbett-Detig & Nielsen, 2017) 
also use recombination in their calculations to infer local ancestry. 
Thus, by using these local ancestry estimates, our methodology re-
uses the recombination rate (both for local ancestry inference, and 
subsequent age estimation). Any errors in the recombination rate 
estimate might then propagate through the pipeline and affect age 
estimates using our framework. Using simulations including ancestry 
uncertainty, we have looked into this effect of stacking errors and 
have found that our method performs similarly to ancestry hmm, even 
if we use the local ancestry inferred by ancestry hmm. Furthermore, 
our method outperforms ancestry hmm when the number of gener-
ations since admixture is small compared to the population size (i.e. 
when time in “coalescence units” is small, where one coalescence 
unit corresponds to 2Ne generations, which reflects the number 
of allele copies in a diploid population of effective size Ne, which is 
reflected by our parameter of population size N). ancestry hmm as-
sumes T ≪ log2(N) (this is the same assumption used in SMC’ (Liang 
& Nielsen, 2014)), while our framework does not need to make these 
assumptions to obtain age estimates. However, when marker num-
bers dwindle (S5 Appendix), our framework can no longer correct for 
this approximation, and performance of our framework drops below 
inference using only ancestry hmm. Yet, in the empirical data sets we 
have analysed, we have generally found marker densities for which 
these limits were not reached and with full genome sequencing now 
within reach for many researchers, we expect this not to be an issue.

To validate our approach, we have reanalysed three data sets. 
The first data set is from a crossing experiment with S.  cerevisiae. 
Here, we applied the single chromosome equations, and estimates 
of the time since the onset of admixture line up well with the exper-
imental design, although assumptions regarding the recombination 
rate remain of strong influence on the admixture time estimates.

The second data set we reanalysed is of Swordtail fish 
(Xiphophorus). We infer an admixture time that is older than previ-
ous estimates (Schumer, Rosenthal, et al., 2014) but that is in line 
with more recent estimates done by the same authors (M. Schumer, 
personal communication (Powell, Moran, et al., 2021)) using more 
recent recombination rate estimates (Powell, García-Olazábal, et al., 
2020). However, likelihood profiles are fairly flat, indicating that our 
maximum-likelihood estimates are sensitive to changes in the data, 

further reflected by the sensitivity of the results to assumptions 
made regarding the recombination rate. Other plausible explana-
tions are recombination rate variation along the genome or a more 
complex evolutionary history that is not well modelled by a single 
admixture event.

Finally, we have reanalysed a data set on Populus trees (Suarez-
Gonzalez et al., 2016). We infer an admixture time that is in line 
with previous findings, but the original analysis did not focus on ad-
mixture time and only used admixture time to infer local ancestry. 
However, we find that the time since admixture correlates strongly 
with the genetic distance to either of the source taxa, with individ-
uals more closely related to the source taxa inferred to be younger. 
This suggests that the data set does not consist of a sample from 
a single, admixed, population and that this invalidates our analysis. 
Furthermore, variation in ancestry is much higher than expected 
from the admixture time alone (Gravel, 2012), again indicating that 
the analysed population is most likely not a single admixing popula-
tion. Lastly, admixture mapping analyses have shown that perhaps 
late generation backcrosses have contributed as well to the hybrid 
population (Suarez-Gonzalez et al., 2018), suggesting an intermedi-
ate form between on the one hand adaptive introgression and back-
crossing and on the other hand ongoing hybridization across a spatial 
gradient. Across these results, it is clear that our assumption of a 
single admixed population is violated, and hence it seems likely that 
our age estimates are incorrect and that our framework is not a good 
fit for this empirical data set. Yet, we believe that it provides an inter-
esting example on how our methodology can be applied.

Summarizing, we have presented a framework to estimate the 
time since admixture using phased or unphased data from two ho-
mologous chromosomes, taking into account marker spacing along 
the chromosome. We have shown that using data from two chro-
mosomes improves the estimations of the admixture time compared 
to the method that uses only one chromosome. This is true whether 
the data are phased or unphased. In addition, we have shown, using 
simulations, that applying the phased or the unphased method yields 
very similar results. However, given that even small (unavoidable) 
phasing errors produce overestimates in the time since admixture, 
we suggest that, in most cases, using unphased data are the best 
strategy. In comparison with previous methods, such as ancestry 
hmm (Corbett-Detig & Nielsen, 2017), our method performs better 
when the population size is small or the time since admixture is long. 
With our new framework, we hope to have opened new avenues 
towards inferring the time since admixture in admixed populations, 
and primarily hope to have brought this analysis within reach also 
for data sets where phased data are unavailable or impossible to 
acquire. Furthermore, we would like to emphasize that our method 
also works for a relatively small number of SNPs, which opens up 
avenues towards analysis of closely related taxa, where the number 
of ancestry informative markers might be low. We have included the 
derivations and the numerical solution framework in the r package 
“junctions” (Janzen, 2021). By providing the code in an easy to use 
package, we hope to lower the threshold for other users to apply the 
theory of junctions to their model system.
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