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Lectins are carbohydrate-binding proteins with various biological activities, such as antitumor and immunomodulatory effects.
Although lectins have various biological activities, they are still limited by cytotoxicity in normal cells. To overcome this
problem, we used the noncytotoxic part of Korean mistletoe lectin B-chain (KML-B) to induce maturation of dendritic cells
(DCs). A previous study reported that KML-B induces DC maturation by triggering TLR-4, including expression of
costimulatory molecules (CD40, CD80, and CD86), MHC II, and secretion of cytokines in DCs. Additionally, matured DCs by
KML-B induced T helper (Th) cell activation and differentiation toward Th1 cells. However, the interaction of KML-B-treated
DCs with CD8+ T cells is still poorly understood. In this study, we confirmed the ability of matured DCs by KML-B to stimulate
cytotoxic T cells using OT-1 mouse-derived CD8+ T cells. KML-B induced MHC I expression in DCs, stimulation of CD8+ T
cell activation and proliferation, and IFN-γ secretion. Moreover, tumor sizes were reduced by KML-B treatment during
vaccination of OVA257−264-pulsed DCs. Here, we confirmed induction of CD8+ T cell activation and the antitumor effect of
KML-B treatment in DCs.
1. Introduction

To overcome the generation and aggravation of cancer, many
treatment methodologies have been developed, including
drugs, surgeries, and chemo- and radiotherapy. Despite these
treatments, current treatment approaches have clinical limi-
tations [1]. The immune system of many cancer patients does
not appropriately respond to cancer cells [2]. Inefficient anti-
gen presentation to helper and cytotoxic T cells is responsible
for inhibition of the anticancer immune response by antigen-
presenting cells (APCs) [3]. In tumors, antigen-presenting
function and induction of the immune response are inhibited
due to the inhibitory activities of tumor cells and the pres-
ence of tumor-derived TGF-β, regulatory T cells (Treg),
tumor-associated macrophages, tumor-associated neutro-
phils, and myeloid-derived suppressor cells (MDSCs) [4].

To evade immunosuppression during cancer in vivo,
antigen-specific activated immune cells are transplanted
to the body after activation in vitro for immunotherapy.
Dendritic cells (DCs) are the most promising candidate
for immunotherapy since they initiate the adaptive immune
response. In addition, DCs stimulate both helper and cyto-
toxic T cells (CD4+ cells and CD8+ T cells) by antigen
cross-presentation [5]. TLR ligands are promising immu-
noadjuvants for immunotherapy since they stimulate many
kinds of immune cells and initiate activation of antigen
presentation by APCs [6]. A previous study reported that
KML-B (B chain of Korean mistletoe lectin) induces
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maturation of DCs by triggering toll-like receptor-4 (TLR-4)
signaling [7]. Induction of the Th1-type immune and cyto-
toxic T lymphocyte (CTL) responses is necessary for effective
anticancer immunotherapeutic strategies for cancer. In
particular, TLR-4 is known to induce the Th1 response, and
its ligands are candidate immunostimulatory adjuvants for
cancer therapy [8].

Many lectins have been examined as immunoadjuvant
candidates in biological and therapeutic research studies,
as they have been shown to interact with glycan-linked
receptors on cell surfaces to prime cell signaling and bio-
logical responses [9–13]. Korean mistletoe (Viscum album
coloratum) lectin was reported to have various biological
activities. However, although KML has various biological
and immunological activities, its use is limited in cancer
therapy or as an adjuvant due to its toxicity in normal
cells [14]. A previous study confirmed that the nontoxic
part of KML-B exhibits potent immunomodulatory proper-
ties via induction of DC maturation, which increases the
Th1-type immune response and decreases Treg cell activa-
tion, suggesting it can be considered a potential DC-based
cancer therapy and immunoadjuvant [7].

In this study, we confirmed activation of CD8+ T cells
and its antitumor activity by treatment with KML-B-
treated DCs.

2. Materials and Methods

2.1. Animals. Female C57BL/6 mice (7 to 8 weeks old)
were bred and maintained under specific pathogen-free
conditions at Dae Han Bio Link (Eumseong, Korea).
C57BL/6 OT-1 T cell receptor (TCR) transgenic mice were
obtained from Jackson Laboratories. All mice were treated
in strict accordance with the guidelines issued by the
Sunchon National University Institutional Animal Care and
Use Committee (SCNU_IACUC-2013-4) for the care and
use of laboratory animals.

2.2. Reagents and Antibodies. Recombinantmouse granulocyte-
macrophage colony-stimulating factor (GM-CSF) and inter-
leukin- (rmIL-) 4 were purchased from R&D Systems.
Mitomycin C (MMC) was purchased from Sigma-Aldrich.
Carboxyfluorescein succinimidyl ester (CFSE) and LPS were
purchased from Invitrogen. OVA peptide (OVA257−264) was
purchased from InvivoGen. The following FITC-, PE-, or
APC-conjugated monoclonal antibodies (Abs) and nonlabeled
Abs were purchased from BD Biosciences: CD8 (53-6.7),
CD16/32 (2.4G2), CD11c (HL3), H-2kb (AF6–88.5), and
IFN-γ (XMG1.2). Cytokine ELISA primary and secondary
antibodies for murine IL-4 and IFN-γ were purchased from
BD Biosciences.

2.3. Preparation of KoreanMistletoe Lectin B-Chain (KML-B).
KML-B was prepared as previously described [15, 16].
Briefly, subchains of KML were dissociated with 5% β-
mercaptoethanol in PBS for 16 hours at 25°C. The solution
was then loaded onto a lactose affinity column (Sigma-
Aldrich), and unbound materials were washed out with
equivalent buffer. Bound B-chain was eluted using 0.1M
lactose in PBS and dialyzed with PBS. Protein concentrations
were determined using a BCA protein assay kit, and KML-B
was stored in PBS at −80°C until required.

2.4. Generation of BMDCs. BMDCs were derived from
C57BL/6 mouse bone marrow cells. Briefly, cells from bone
marrow flushed from femurs and tibiae of mice were cultured
in 6-well tissue culture plates at 1× 106 cells/ml in complete
RPMI culture medium supplemented with 10% FBS and
2-mercaptoethanol (50μM/ml) in the presence of IL-4
(1000U/ml) and GM-CSF (1000U/ml). On days 2 and 4,
fresh medium and cytokines were added after removing
nonadherent cells. The immature BMDCs obtained on day
6 were used in subsequent experiments.

2.5. Flow Cytometry. BMDCs (1× 106 cells) were incubated
for 18 hours with or without various concentrations of
KML-B or LPS (1μg/ml). BMDCs were then harvested
and washed with flow cytometry buffer. FcγII and FcγIII
receptors on BMDCs were blocked by incubation with
anti-mouse CD16/32 (1μg/1× 106 cells) for 30min on ice.
Cells were then stained with fluorescence-labeled antibodies
(1μg/1× 106 cells) specific for the following markers: anti-
mouse CD11c-FITC and MHC I-PE. Following 30min of
incubation on ice, cells were washed with flow cytometry
buffer and read on a BD FACScanto™ II. Data analysis was
performed using BD FACS Diva software or FlowJo program.

2.6. CD8+ OT-1 Cell Proliferation. BMDCs were incubated
for 18 hours with or without LPS (1μg/ml), KML-B, or
OVA257−264. Matured BMDCs were harvested and then
treated with MMC (50μg/ml, Sigma-Aldrich). Splenocytes
were isolated from C57BL/6 OT-1 T cell receptor (TCR)
transgenic mice. Splenocytes were then washed in PBS
and labeled with 1μM CFSE in PBS. After CFSE labeling,
splenocytes (1× 105) were cocultured with, in various con-
ditions, treated BMDCs (1× 104) in 96-well U-bottom
plates. After 2 or 3 days, cells were harvested and washed
in PBS. The proliferation of OVA257−264-specific CD8+ T
cells was evaluated by flow cytometry after staining with
anti-mouse CD8-APC.

2.7. Intercellular Cytokine Staining. BMDCs were incubated
for 18 hours with or without LPS (1μg/ml), KML-B, or
OVA257−264. Matured BMDCs were harvested and then
treated with MMC (50μg/ml, Sigma-Aldrich). Splenocytes
were isolated from C57BL/6 OT-1 T cell receptor (TCR)
transgenic mice. Splenocytes (1× 105) were cocultured with,
in various conditions, BMDCs (1× 104) in 96-well U-bottom
plates. After 48 hours, splenocytes were assayed for intra-
cellular cytokines by flow cytometry. CD8+ T cells were
stained with anti-CD8-PE. Cells were fixed and perme-
abilized with 4% Fixation/Perm buffer III (BD Biosciences)
and stained with anti-IFN-γ-FITC. Finally, CD8+ T cells
were gated and analyzed on a BD FACScanto II.

2.8. Cytokine Assay. Levels of various cytokines were
measured in cell culture supernatants. Cytokine levels were
measured by ELISA. The lower detection limits of these
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Figure 1: KML-B-induced expression of MHC class I in BMDCs. BMDCs were treated with the indicated concentrations of LPS or KML-B
for 18 hours. Flow cytometry was used to analyze expression levels of costimulatory molecules on CD11c+-gated BMDCs. Results are
representative of three experiments. a,b,cThe means not sharing a common letter are significantly different among groups at p < 0 05 by
Ducan’s multiple-range test.
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Figure 2: KML-B-treated BMDCs induced proliferation of OT-1 mouse-derived CD8+ T cells. Splenocytes from the OT-1 mouse were
stained with CSFE and cocultured for 48 or 72 hours with BMDCs which was treated with LPS or KML-B and pulsed with OVA257−264
peptide (1 μg/ml). Proliferation of OVA257−264 peptide-specific CD8

+ T cells was assessed by flow cytometry after staining by anti-mouse
CD8-APC. Results are representative of three experiments. a,b,c,dThe means not sharing a common letter are significantly different among
groups at p < 0 05 by Ducan’s multiple-range test.
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Figure 3: KML-B-treated BMDCs induced IFN-γ secretion of OT-1 mouse-derived CD8+ T cells. Splenocytes from the OT-1 mouse were
cocultured for 48 hours with BMDCs which was treated with LPS or KML-B and pulsed with OVA257−264 peptide (1 μg/ml). IFN-γ
production was measured by intercellular staining and ELISA in cells and supernatants, respectively. Results are representative of three
experiments. A,B,C,DThemeans not sharing a common letter are significantly different among groups at p < 0 05 byDucan’smultiple-range test.
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assays were 1.11 pg/ml for IL-4 and IFN-γ. All samples were
tested in triplicate for standard curves.

2.9. Antitumor Activity. C57BL/6 mice were subjected to
subcutaneous injection of 1× 105 E.G7 cells, an OVA-
expressing EL4 variant, into a flank site and then injected
intravenously with PBS, untreated DCs (imDC), DCs pulsed
with OVA257−264 (OVA-DC), or KML-B (500 ng/ml)-treated
DCs pulsed with OVA257−264 (OVA-KML-B-DC) on days
0, 2, and 4 after tumor inoculation. Tumor growth was
monitored and measured every 2 days (n = 8 mice/group).

2.10. Statistical Analysis. Results are presented as means±
SDs. Statistically significant differences between groups were
identified by one-way analysis of variance (ANOVA) using
SPSS version 22 (Chicago, IL) with Duncan’s multiple-
range test. Values were considered to be statistically signifi-
cant when p < 0 05.

3. Results

3.1. KML-B Induces Expression of MHC I Molecules on
BMDCs. A previous study reported that KML-B induces
phenotypic and functional maturation of BMDCs; also, we
confirmed that those phenomena were not affected by LPS
[7]. In this experiment, we tested whether or not KML-B
induces expression of major histocompatibility complex
class I (MHC I) on BMDCs. LPS served as a positive con-
trol. Untreated BMDCs expressed basal levels of MHC I
(42.7± 2.5%) (Figure 1). As expected, expression of MHC
I was higher on BMDCs treated with LPS (74.4± 0.6%).
Likewise, the treatment of BMDCs with KML-B (500 ng/ml)
significantly increased expression of MHC I (61.4± 1.5%).
In addition, as indicated in Figure 1, medium intensity of
fluorescence (MFI) was increased with similar pattern with
percent. These findings show that MHC I expression was
upregulated in KML-B-treated BMDCs, similar to the level
of LPS-treated BMDCs.

3.2. KML-Treated BMDCs Induce OT-1 T Cell Activation. As
mentioned above, expression of MHC I was upregulated on
BMDCs by KML-B treatment. MHC I is an important
molecule in the activation of CD8+ T cells. For this reason,
CD8+ T cell activation by KML-B-treated BMDCs was
investigated using splenocytes from OT-1 mice. Proliferation
and cytokine production of CD8+ T cells were measured by
anti-CD8-APC staining after splenocytes from OT-1 mice
were cocultured with various BMDCs for 48 or 72 hours.
CD8+ T cells cocultured with KML-B-treated BMDCs pulsed
with OVA257−264 showed greater proliferation than those
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cocultured with untreated BMDCs after 48 hours. In addi-
tion, proliferation of CD8+ T cells which was cocultured with
KML-B-treated BMDCs pulsed with OVA257−264 was
more increased in the 72-hour incubation time than in
the 48-hour incubation time (Figure 2), demonstrating that
KML-B acted as a potent immunostimulator of CD8+ T cells
via DC activation.

We then investigated IFN-γ production in CD8+ T
cells activated with KML-B-treated BMDCs pulsed with
OVA257−264 for 48 hours. CD8+ T cells primed with
KML-B-treated BMDCs produced significantly higher
levels of IFN-γ than cells primed with untreated BMDCs
(Figures 3(a) and 3(b)). ELISA studies also revealed high
levels of IFN-γ in the supernatant of KML-B-treated BMDCs
pulsed with OVA257−264 (Figure 3(c)). These results provide
evidence that KML-B acted as an efficient immunostimulator
of CD8+ T cells via induction of DC activation.

3.3. KML-B-Treated DCs Enhance Antitumor Efficacy. In the
in vitro experiment, KML-B treatment induced MHC class
I expression on DCs, and this phenomenon subsequently
induced CD8+ T cell activation. Therefore, to confirm
whether or not KML-B-treated DCs upregulate antitumor
activity in vivo, mice were injected with PBS, untreated
DCs (imDC), DCs pulsed with OVA257−264 (OVA-DC),
or KML-B-treated DCs pulsed with OVA257−264 (OVA-
KML-B-DC) on days 0, 2, and 4 after tumor inoculation
and then monitored for tumor growth for 24 days. As
shown in Figure 4(a), KML-B-treated DCs significantly
suppressed E.G7 tumor growth compared to that of tumors
in mice that received imDCs and OVA-DC. After vaccina-
tion of each DC type into normal mice, we checked cytokine
secretion in splenocytes to determine what types of immu-
nity increased. Figure 4(b) indicates that IFN-γ secretion
was upregulated in the OVA-KML-B-DC-vaccinated group
compared to the OVA-DC group. Interestingly, IL-4 secre-
tion was reduced in the OVA-KML-B-DC group. These data
mean that cellular immune responses were enhanced by
KML-B treatment to DCs.

4. Discussion

Our immune systems are unable to respond to many kinds of
tumors due to the ability of many cancer cells to evade host
immunity [17]. In an attempt to boost immune functions
for detection of low immunogenicity tumors, we previously
reported that KML-B, a nontoxic subchain from KML,
induces DC maturation in the form of surface molecule
expression (CD40, CD80, and CD86), MHC class II, cytokine
secretion (IL-1β, IL-6, IL-12p70, and TNF-α), and antigen
presentation function to CD4+ T cells [7]. Finally, these
responses are characteristic of Th1 cell immunity in vitro
and in vivo. The Th1 cell immune response is very important
to establishing cellular immunity against pathogens and
cancer [18]. Moreover, to overcome tumor growth, CTL
activity is important since CTLs directly kill tumor cells [19].

In this study, we determined whether or not KML-B-
treated DCs can activate the CD8+ T cell response. DCs
are able to present exogenous antigens to MHC class I
molecules by cross-presentation [5]. KML-B treatment
induced expression of MHC class I on DCs. To activate
CD8+ T cells, several signals such as MHC class I, costim-
ulatory molecules (CD80 and CD86), and cytokines are
needed [5]. We already confirmed that KML-B enhances
secretion of IL-12 and expression of costimulatory molecules
by DCs. In addition, matured DCs by KML-B-induced
secretion of IFN-γ from CD4+ T cells. Synthetically, these
phenomena suggest that DCs matured by KML-B promote
CD8+ T cell activation. As shown above, KML-B-treated
OVA256−264-pulsed DCs incubated with peptide-specific
CD8+ T cells from OT-1 mice enhanced proliferation of
CD8+ T cells compared with OVA256−264-pulsed DCs treated
to CD8+ T cells. For the other activation markers, production
and secretion of IFN-γ were also elevated from CD8+ T cells
cocultured with KML-B-treated DCs. IFN-γ is an important
cytokine in the anticancer response, as it induces macro-
phage activation, increases MHC molecule expression, and
enhances the Th1 cell immune response [20]. To sum up,
KML-B-treated DCs clearly induce CD8+ T cell activation,
including proliferation and cytokine secretion.

As KML-B was shown to be a potential immunoadjuvant
in DC vaccination, we next applied KML-B-treated DCs in
an in vivo tumor model to prevent tumor growth. Figure 4
indicates that tumor growth was significantly reduced by
OVA-pulsed KML-B-treated DCs. In addition, the secretion
pattern of cytokines also changed by KML-B. IL-4 is an
inhibitory cytokine of the cellular immune response and
secreted from a Th2 cell. As reported in the previous study,
this study also confirmed an inhibitory effect of the Th2
response [7]. Furthermore, IFN-γ which secreted from
activated Th1 and CD8+ T cells is increased by KML-B-
treated DCs. We suggest that this phenomenon was induced
by activation of lymphocytes such as Th1 cells and CD8+ T
cells, and this explanation is supported by cytokine (IL-4
and IFN-γ) production in splenocytes from OVA-KML-
B-DC-immunized mice. Finally, these kinds of responses
inhibited tumor growth compared with those of the other
groups in vivo.

5. Conclusion

Taken together, we confirmed the ability of KML-B-treated
DCs to induce CD8+ T cell activation, which enhanced the
anticancer response in an in vivo E.G7 tumor mouse model.
Moreover, a previous study reported that KML-B-treated
DCs enhance the Th1 immune response. Thus, we suggest
that the nontoxic part of KML-B can be a potent immunoad-
juvant for vaccination. In addition, KML-B-treated DCs can
be used as a DC-based immunotherapy for tumor treatment.
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