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Abstract: Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged,
and then subjected to the fracture toughness test. The experimental results revealed that the higher
crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable
with increasing hydrogen embrittlement (HE) indexes. Moreover, the transition in the microstructural
fracture mechanism from ductile (microvoid coalescence (MVC)) without hydrogen to a mixed
quasi-cleavage (QC) fracture and QC + intergranular (IG) fracture with hydrogen was observed.
The hydrogen-enhanced decohesion (HEDE) mechanism was characterized as the dominant HE
mechanism. According to the experimental testing, the coupled problem of stress field and hydrogen
diffusion field with cohesive zone stress analysis was employed to simulate hydrogen-assisted brittle
fracture behavior by using ABAQUS software. The trapezoidal traction-separation law (TSL) was
adopted, and the initial TSL parameters from the best fit to the load-displacement and J-integral
experimental curves without hydrogen were calibrated for the critical separation of 0.0393 mm
and the cohesive strength of 2100 MPa. The HEDE was implemented through hydrogen influence
in the TSL, and to estimate the initial hydrogen concentration based on matching numerical and
experimental load-line displacement curves with hydrogen. The simulation results show that the
general trend of the computational CTOD-R curves corresponding to initial hydrogen concentration is
almost the same as that obtained from the experimental data but in full agreement, the computational
CTOD values being slightly higher. Comparative analysis of numerical and experimental results
shows that the coupled model can provide design and prediction to calculate hydrogen-assisted
fracture behavior prior to extensive laboratory testing, provided that the material properties and
properly calibrated TSL parameters are known.

Keywords: hydrogen embrittlement; low alloy steel; cohesive zone modeling; hydrogen-enhanced
decohesion; CTOD-R curve

1. Introduction

Hydrogen atoms penetrate into the interior of steel which can change the mechanical
properties of steel, leading to the premature fracture of steel components. This phenomenon
is called hydrogen embrittlement (HE) [1–3]. The degradation in metallic materials due to
HE is a complex mechanism question which combines mechanical and physical–chemical
standpoints. Previously, related research showed that the mechanistic characteristics of
hydrogen-assisted fracture transformed from dimples ductile fracture (microvoid coales-
cence (MVC)) without hydrogen to brittle fracture (quasi-cleavage (QC) or intergranular
(IG) fracture + transgranular (TG) fracture mechanism) under hydrogen-charged condi-
tion [4,5]. For the HE mechanism, some classical theories have been developed, and so far
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the following three theories have been widely accepted: a hydrogen-enhanced decohesion
(HEDE) mechanism [6–9], in which it is assumed that hydrogen atoms entering the steel
causes lattice expansion and reduces surface energy. The second theory is a hydrogen-
enhanced localized plasticity (HELP) mechanism [10–13], which states that hydrogen atoms
in steel enhance dislocation mobility, thus reducing apparent yield stress and promoting
local plastic deformation under low stress or stress intensity factor. The third theory is
an adsorption-induced dislocation emission (AIDE) mechanism [9–14], and it is assumed
that hydrogen atoms promote dislocation emission and motion to reach critical conditions,
and hydrogen-induced crack nucleation causes damage. Apparently, out of these three
theories, no single theory can provide adequate explanation of the HE mechanism, thus
it seems that different mechanical systems correspond to different theories [15–17]. It is
generally believed that when the local hydrogen concentration (driven by the high hydro-
static pressure) in front of the notch tip or notch root exceeds a critical value, the materials’
strength decreases giving rise to crack initiation. Novak et al. [18] built a comprehensive
micro-mechanical model based on physical statistics, and proposed a synergistic effect of
HELP and HEDE on hydrogen-induced IG fractures in steels. Wasim et al. [19] developed
a new model for hydrogen degradation of the KQ of steel based on the fractography of the
specimen, and confirmed that the simultaneous action of HELP + HEDE could be active
depending on the local concentration of hydrogen in low carbon steel. Zafra et al. [20]
studied the fracture toughness behavior of 42CrMo4 and 2.25Cr1Mo steels under low
displacement rate under pre-charged hydrogen and obtained J − ∆a curves of compact
tension (CT) specimens. The results of microstructural study revealed the existence of tem-
pered martensite, and the fracture surfaces exhibited a mixed mode IG and lath decohesion
fracture, which revealed the HELP-mediated HEDE mechanism. They concluded that the
HEDE was the final failure mechanism. The similar research results have also been found
in previous scientific reports [21,22]. Although the role of the HELP mechanism cannot
be ignored in various material-hydrogen systems, the HEDE mechanism can still play a
dominant role in the research of HE for low alloy steel investigated in this study. Many
recent studies affirmed that these steels (with yield stress of over 1000 MPa) exhibit traces
of IG fracture mode, and it is usually believed that the critical grain-boundary (GB) hy-
drogen concentration weakens the cohesive strength of GB and leads to the GB separation
following the HEDE mechanism [23,24].

Nowadays, numerical simulation is attracting progressively more attention as a
method for HE modeling. Integration of the experimental data with numerical analy-
sis can effectively provide improved comprehensive understanding of the interaction
between hydrogen and steel. Numerical models have been explored and developed by
Sofronis and McMeeking [25], Krom et al. [26] and Taha and Sofronis [27], who introduced
the framework to allow the coupling between hydrogen diffusion and mechanical behavior.
Furthermore, a coupled deformation-hydrogen diffusion-phase field fracture scheme of the
finite element method (FEM) was introduced by Martínez-Pañeda et al. [28]. Cohesive zone
modeling (CZM) is attracting significant research interest as an approach for failure analy-
sis [29,30]. For instance, Sung [31] simulated the fracture toughness tests of 304 stainless
steel single edge bend specimens by using CZM in the absence and presence of hydrogen,
respectively. Wu [32] used a two-dimensional (2D) FEM with cohesive elements to model
the crack extensions in arc-shaped hydrogen-charged specimens of conventionally forged
(CF) 21-6-9 austenitic stainless steel. The coupling effect of hydrogen diffusion in metal and
the CZM based on hydrogen degradation law were not considered. In order to include the
HEDE mechanism in the numerical analysis, many researchers made an attempt to obtain
the HE phenomenon through quantum mechanics based on first principles to calculate
the effect of hydrogen on decohesion [33–35]. Jiang and Carter [36] calculated that the
ideal fracture energy nearly decreased in linearity with increasing hydrogen coverage
based on periodic density functional theory. Serebrinsky et al. [37] presented a numerical
mode for damage analysis in high-strength steel, accounting for the hydrogen influence
in the HEDE mechanism, and the simulation results were in good agreement with the
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experimental results. Sobhaniaragh et al. [38] proposed fully coupled hydrogen trans-
port and elastic-plastic deformation within CZM framework to predict hydrogen-induced
cracking in high strength steels. The simulation of hydrogen-assisted fracture is a complex
calculation process, including the transient hydrogen diffusion requiring the calculation
of the strain-stress field of elastic-plastic material and the effect of hydrogen degradation
on the promoted material fracture must be carried out into the CZM [39–41]. However,
the macroscopic characteristic curve and microscopic fracture mechanism of hydrogen
embrittlement can be obtained by in-depth analysis of the test process. It is also very
time consuming to obtain full test characteristic data of a material using this methodology.
Henceforth, it is necessary to study hydrogen embrittlement based on the combination of
experimental investigations and finite element analyses (FEA) analysis.

The main objective of study was to provide a practical numerical tool to predict
hydrogen-assisted brittle fracture response based on experimental results. First, CT spec-
imens made of low alloy 30CrMo steels were hydrogen-charged, following which the
fracture toughness test was performed, and then the failure microstructural characteriza-
tion was carried out by scanning electron microscopy (SEM). Second, a 2-D plane strain
FE was employed to simulate the hydrogen-assisted brittle fracture behavior by using
ABAQUS software, which was approached for implementing the three steps including
elastic-plastic stress analysis, hydrogen diffusion analysis and hydrogen-influenced cohe-
sive zone stress analysis. A HEDE mechanism was adopted to simulate hydrogen-assisted
fracture. The trapezoidal traction separation law (TSL) was devised, and the TSL parame-
ters were calibrated by fitting the load-displacement and J-integral experimental curves
in the absence of hydrogen. Furthermore, the influence of hydrogen concentration on the
hydrogen coverage and hydrogen decreasing factor profile ahead of the crack tip were
also evaluated. Finally, the numerical results for the hydrogen-charged specimens were
compared with the experimental data.

2. Material and Experiment

In this study, a cylindrical bar of low alloy 30CrMo steel with a diameter of 60 mm was
used as research material. The chemical compositions of low alloy 30CrMo are summarized
in Table 1. The material was heated at 880 ◦C for 1 h, quenched into oil, tempered at 540 ◦C
for 1 h and gradually cooled down to room temperature. Then the specimens were cut,
ground and mechanically polished by grinding, which were then chemically corroded in a
solution of 96% nitric acid and 4% alcohol to characterize the phase, structure, and grain
boundaries of the compositions. The as-obtained microstructure shows the presence of
tempered martensite, as presented in Figure 1a. The stress–strain curves were obtained
by the uniaxial tests performed on the smooth round tensile bars (with a diameter of
6 mm) at room temperature, in accordance with ASTM E8 standard. The tests were carried
out using an MTS809 axial-torsion servo hydraulic fatigue testing machine (MTS Systems
Corporation, Eden Prairie, MN, USA). The longitudinal deformation was measured using
an extensometer (MTS Systems Corporation, Eden Prairie, MN, USA) with a calibrated
length of 25 mm. The mechanical properties of this steel are as follows: Young’s modulus
196 GPa, initial yield stress 1050 MPa, and Poisson’s ratio 0.3. The isotropic von Mises
plasticity model was applied and the true stress relation to true plastic strain was defined
by using the Hollomon hardening law: σt = 1370 · (εp)

0.043, as shown in Figure 1b.

Table 1. Chemical composition of the 30CrMo steel (wt.%).

C Si Mn Cr Ni Mo Cu

0.31 0.25 0.48 0.91 0.02 0.17 0.03
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placement rate of 0.002 mm s−1 in order to study the influence of HE with the longer dif-

Figure 1. (a) Microstructure of the tested specimen and (b) experimental stress-strain curve obtained from the uniaxial tests.

Fracture toughness tests were determined using CT specimens with a notch length of
15 mm, a width of 30 mm, and a thickness of 7.5 mm, as shown in Figure 2a. The orientations
of CT specimens in this investigation are designed to be along the radial direction of the
round bar. The specimens were first fatigue pre-cracked before the experiment. Fatigue tests
on pre-cracked specimens were carried out on an MTS809 axial-torsion servo hydraulic
fatigue testing machine (MTS Systems Corporation, Eden Prairie, MN, USA) under a
frequency of 5 Hz and a load ratio R = 0.1 until an initial crack length versus width ratio
of a/W = 0.6 was acquired, following the ASTM E1820 standard [42]. CT specimens were
charged in 0.1 mol/L NaOH solution at a constant current density of 2 mA cm−2 by the
electrochemical method. The specimen was employed as the cathode and a carbon rod
was used as the anode. The definition of the maximum hydrogen diffusion distance (x)
as a function of the hydrogen diffusion coefficient (D) and hydrogen charging time (t) is
expressed as follows [43]:

x = 4
√

Dt (1)
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The value of hydrogen diffusion coefficient (D) was selected according to the literature
study [32] to be about 10−5 mm2 s−1 for low alloy martensitic steels. By substituting
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x = 3.75 mm and D = 10−5 mm2 s−1 into Equation (1), the calculated hydrogen charging
time was about 24 h. In order to study the effect of different initial hydrogen content on the
mechanical properties of the steel, hydrogen charging was carried out for 12, 24 and 36 h in
the present study. To prevent the amount of hydrogen escaping from hydrogen-charged
specimens, specimens were carried out immediately after hydrogen charging.

Hydrogen-charged specimens were investigated in air under a lower nominal dis-
placement rate of 0.002 mm s−1 in order to study the influence of HE with the longer
diffusion time. Moreover, an uncharged specimen was also tested as a reference. The
MTS 632.02F-20 COD extensometer (MTS Systems Corporation, Eden Prairie, MN, USA)
was used to measure the crack mouth opening displacement during the experiment. The
mechanical experimental process is represented in Figure 2b. Measurement of the crack
length, a, was obtained by compliance method based on the following equations [44]:

a
W

= 1.0010− 4.6695ux + 18.460u2
x − 236.82u3

x + 1214.9u4
x − 2143.6u5

x (2)

ux =

([
EV0B

P

]1/2
+ 1

)−1

(3)

where a is the crack length, W is the specimen width, E is the Young’s modulus, V0 is the
crack mouth opening displacement, and P is the applied load.

The calculation of load-line displacement (Vll) was based on the linear elastic rela-
tionship with the crack mouth opening displacement, which is represented as follows [45]:{

Vll/V0 = f
( a

W
)

f
( a

W
)
= 0.2255 + 1.8352

( a
W
)
− 2.8046

( a
W
)2

+ 1.8742
( a

W
)3

+ 0.3276
( a

W
)4 − 0.6812

( a
W
)5 (4)

The load-line displacement (Vll) curves of the uncharged and hydrogen-charged speci-
mens for 12, 24 and 36 h, are plotted in Figure 3a. The maximum load shows a distinct trend
for the hydrogen-charged specimens. The black dotted vertical lines indicate the maximum
load and the corresponding load-line displacement on the curves. Maximum HE occurred
under hydrogen-charged time of 36 h, and the effect of hydrogen on mechanical properties
was obvious: maximum load and corresponding load-line displacement decreased by 50%
and 60%, respectively. This is attributed to the fact that when the specimen was charged
with hydrogen for 36 h, which exceeded the theoretical calculation for 24 h, hydrogen
atoms could transport into the center regions, leading to the deterioration of mechanical
properties of 30CrMo steel. The crack growth resistance (CTOD-R) curves of the uncharged
and hydrogen-charged specimens for 12, 24 and 36 h, are shown in Figure 3b. Analysis
of graphs revealed that the lower curves for hydrogen-charged specimens indicate that
the steel undergoes a significant degradation due to dissolved hydrogen, giving rise to
the higher crack propagation and the lower crack growth resistance, and similar curve
trend has been found in previous study by Scheider et al. [46]. However, the CTOD-R
curves show a decreasing trend in fracture toughness with the increase in the hydrogen
charging time. Indeed, taking the fixed value of crack extension as, ∆a = 1.0 mm, the black
dotted vertical lines corresponding to the figure, the crack tip opening displacement values
reduce by about 1/3 from uncharged to hydrogen-charged for 12 h (the corresponding
figure data are 0.18 to 0.13 mm), and by 1/6 from 24 to 36 h (the corresponding figure
data are 0.11 to 0.09 mm). For the same fixed value of crack tip opening displacement,
CTOD = 0.12 mm, the black dotted horizontal lines corresponding to the figure, the crack
extension values increase by 0.46 mm from uncharged to hydrogen-charged for 12 h (the cor-
responding figure data are 0.36 to 0.82 mm), and by 0.9 mm from 24 to 36 h (the correspond-
ing data are 1.26 to 2.16 mm). It is well known that hydrogen atoms diffuse and accumulate
ahead of the crack tip (driven by the high hydrostatic stress existing at the crack front)
when a mechanical load is applied to the hydrogen-charged specimen, giving rise to the
HE phenomenon.
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Figure 3. (a) Load-line displacement and (b) crack growth resistance (CTOD-R) curves for uncharged and hydrogen-
charged specimen.

The fracture surfaces of broken specimens were observed by SEM (ZEISS Gemini
SEM500, CarlZeiss, Oberkochen, Germany) under an acceleration voltage of 20 kV, and
only the fracture surfaces of CT specimens at the appropriate locations were illustrated.
The fracture surface of uncharged specimen is displayed in Figure 4a. The fracture surfaces
consist of three regions, i.e., pre-crack region, crack initiation region and crack growth
region. Figure 4b presents a higher-resolution SEM image of the central crack initiation
region in Figure 4a. The entire fracture surface exhibits ductile fracture mode with a range
of deep dimples fracture mode, as illustrated by fully ductile MVC.
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Figure 5 presents the fracture surfaces associated with specimens charged with hydro-
gen for 12 h. Figure 5a shows a general view of the fractured surface, where two different
fracture regions can be distinguished: pre-crack region, with plane facets and ductile
striations (similar features regardless whether the specimens were charged with hydrogen
or not (see Figure 4a)), while fracture region consists of the crack initiation region and the
crack growth region. Figure 5b exhibits the enlarged view of the edge of fracture surfaces
of a small region shown in the SEM image in Figure 5a. The fracture mode is characterized
by a mixed fracture micromechanism composed of plasticity-related hydrogen induced
fracture in a general MVC micromechanism. Compared to the uncharged specimen, the
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fracture exhibits fracture mode with smaller and shallower dimples. Figure 5c presents the
magnified view of a small central crack initiation region in Figure 5a. The fracture surfaces
exhibit QC fracture with flat facets (FFs) and river markings features, which correspond to
typical features of hydrogen-assisted fracture [47]. A high-magnification image of the QC
fracture is given in Figure 5d, which clearly shows such fine, lath-like features accompanied
by fine serrated markings and deep secondary cracks (SCs), which is shown as the typical
brittle fracture mode. It is thus confirmed that the fracture surfaces of hydrogen-charged
specimen for 12 h shows a mixture of QC fracture and ductile MVC features.
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Figure 5. SEM images of the fracture surface of specimen charged for 12 h, and (a) overview of the fracture surface;
(b,c) High magnification SEM images of the indicated region in image (a); (d) High magnification SEM image of the
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The fracture surfaces of specimens after charging for 36 h are shown in Figure 6. The
general view of the fractured surface exhibits similar features as those observed for the
specimens charged for 12 h (see Figure 5a). The high-magnification images of the central
crack initiation region and the edge of the fracture region are shown in Figure 6b,c, respec-
tively. The fracture surfaces show a mixed brittle and ductile mode of fracture, such as QC,
IG fracture and some evidence of small-scale MVC fracture occupying other areas. The
high-magnification SEM image (Figure 6d) indicates that the fine tear ridges (marked with
white arrowheads) and intergranular secondary cracks (marked with red arrowheads) are
observed on the fracture surface. Hydrogen-assisted fracture mode depends on mechanical
properties, hydrogen concentration and microstructure [48]. The microscopic mechanism
can be explained as follows: hydrogen atoms diffuse and accumulate ahead of the crack tip,
where the maximum hydrostatic stress is located in this region [49,50]. When the hydrogen
concentration of GB exceeds a critical value, the cohesive strength of GB is weakened and
the GB separations occur, leading to the HEDE failure mechanism. The HEDE failure
mechanism appears to occur and gives rise to IG fracture. The IG fracture and QC fracture
modes have been observed and studied for hydrogen-charged tempered high strength
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low-alloy steels [51,52]. In summary, the fracture surface morphology of hydrogenated
specimens are followed by the change from the QC and MVC mode with reduced dimple
sizes due to HELP mechanism dominance at lower content of diffused hydrogen. Then,
the transition to predominately brittle mixed QC and IG fracture mode occurs due to the
HEDE mechanism activation and exceeding the critical hydrogen concentration for their
separations. Recently, Kumar et al. [53] reported that HEDE mechanism was the dominant
mechanism in tempered 13 wt % Cr martensitic stainless steel when apparent hydrogen
concentration was higher. The present study carried out the experiments under serious
hydrogen charging conditions and could obtain high hydrogen concentration in specimens;
however, the 30CrMo steel specimens exhibited higher HE susceptibility and IG fracture
mode after hydrogen-charging for 36 h, in which the failure mechanism followed the
HEDE mechanism.
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3. Model Framework

The aim of the model is to provide a numerical tool to calculate and predict hydrogen-
assisted fracture behavior. The model geometry represents a two-dimensional discretization
of the CT specimen used for the fracture mechanics testing. The HE simulation procedure
(ABAQUS 6.14, (dassault)SIMULIA, Providence, RI, USA) needs to be implemented in the
three steps following the work of Olden et al. [34,54], which include elastic-plastic stress
analysis, hydrogen diffusion analysis, and the final elastic-plastic analysis with addition
of user-defined cohesive elements in the crack ligament area. The coupled problem of
transient diffusion-mechanics was solved in a simulation procedure. In the first step,
the stress field was given as input for the following hydrogen diffusion analysis. In the
second step, the hydrogen diffusion ahead of the crack tip analysis was based on the stress
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field previously calculated. In this last step, the hydrogen concentration computed in the
previous step was imported and hydrogen-influenced cohesive stress was implemented by
altering a TSL. Further details of the simulation process are described as follow.

3.1. The First Step: Elastic-Plastic Analysis

The standard von Mises plasticity model was used for the elastic-plastic stress analysis,
and the elastic-plastic parameters are obtained by the previous uniaxial test. The model is
loaded to a certain load level and generates the stress field information under the control
of displacement. The stress field information conducts outputs in the result Abaqus file to
provide an input for hydrogen diffusion analysis.

3.2. The Second Step: Hydrogen Diffusion Analysis

Hydrogen atoms adhere to different positions of the metal, i.e., in lattice sites CL
and trapping sites CT at a variety of defect microstructures such as dislocations, GB, and
carbides. The stress field influences hydrogen diffusion by means of two phenomena:
hydrostatic stress, which produces lattice dilatation so hydrogen will tend to reach ex-
panded sites, and plastic strain, which increases the amount of crystal defects creating
trapping sites.

Stress-driven hydrogen diffusion analysis is defined as an extension of Fick’s law The
driving force for diffusion is the chemical potential gradient ∇u, The mass flux is related
to ∇u via Onsager coefficients Lij, which denote the action of force j on component i; a
negative sign indicates that the net movement of i-type hydrogen atoms, i.e., hydrogen flux
Ji, occurs from high to low chemical potential regions:

Ji = −
n

∑
j=1

Lij∇uj (5)

In particular, for lattice and trapping sites, fluxes might be expressed in a matrix form:[
JL
JT

]
=

[
LLL LLT
LTL LTT

][
∇uL
∇uT

]
(6)

However, it is usually assumed that the lattice chemical potential uL does not affect
the flux between trapping sites and the trapping chemical potential uT does not affect the
flux between lattice sites. Cross-terms are thus neglected, LLT = LTL = 0, so:

JL = −LLL∇uT (7)

JT = −LTT∇uT (8)

The Onsager coefficient is related to Einstein’s equation of diffusion:

LLL =
DL

R(T − Tz)
CL (9)

LTT =
DT

R(T − Tz)
CT (10)

where DL is the lattice diffusivity, DT is the diffusivity between trapping sites, T is the
temperature, TZ is the absolute temperature, and R is the universal gas constant.

Here, assuming that the mobility between trapping sites is considered close to zero:
DT = 0, because traps are not connected or because their deep potential energy prevents
hydrogen from diffusing well. The driving force for diffusion is the chemical potential
gradient, and fluxes might be expressed as follows:

JL = − DLCL
R(T − Tz)

· ∇µL (11)
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JT = 0 (12)

The lattice chemical potential µL is defined as follows:

µL = µ0 + R(T − Tz) ln φ + pVH (13)

where µ0 is the chemical potential at standard condition, VH is the partial molar volume
of hydrogen, φ is the normalized hydrogen concentration. The normalized hydrogen
concentration is defined as φ = CL/s denoting the relation between the mass concentration
of the diffusing material CL, s = 4300 · e−3261/(T−Tz) is the solubility of hydrogen. By
substituting Equation (13) into Equation (11) we obtain:

JL = −sDL ·
[

∂φ

∂x
+ ks

∂

∂x
[ln(T − Tz)] + kp

∂p
∂x

]
(14)

where D is the diffusion coefficient for hydrogen. ks = φ ln φ is the “Soret effect” factor,
providing diffusion because of temperature gradient and kp = VHφ

R(T−Tz)
is the pressure

stress factor, providing diffusion driven by the gradient of the equivalent pressure stress,
p = −trace(σ)/3 = −σh, σh is hydrostatic stress.

The mass conservation equation is expressed as follows:

∂CL
∂t

= −∇ · JL (15)

The experimental test was carried out immediately after hydrogen charging. The
temperature variation was very small during the test. Taking no account of the temperature
gradient and substituting Equation (14) into Equation (15), the diffusion equation under
the gradient of stress is obtained [32]:

∂CL
∂t

= DL∇2CL + DL ·
VH

R(T − Tz)
∇CL · ∇p + DL ·

VH
R(T − Tz)

CL · ∇2 p (16)

Taha and Sofronis [27] revealed the characteristic distributions of hydrogen in trapping
sites and the plastic strain exhibited a similar trend around the crack tip. Actually, if we
assume that the content of hydrogen in trapping sites are always in equilibrium with those
in lattice sites. Both of these contribute to hydrogen-induced fracture and need to be taken
into account. The relation used in this work, a linear relationship between the hydrogen in
trapping sites and the plastic strain, was proposed by Olden et al. [34]:

CT = (49 · εp + 0.1) · CL (17)

The lattice hydrogen concentration results were calculated from Equation (16), and
the trapping hydrogen is considered to be caused by plastic strain near the crack tip after
applying stress, which can be obtained from Equation (17). In this paper, the author consid-
ers only one kind of trap, i.e., hydrogen trapped at dislocations. The total concentration of
hydrogen is given by C = CL + CT .

3.3. The Third Step: Cohesive Analysis

The CZM was first posed by Dugdale [55] and Barenblatt [56], who used to simulate
the material separation in the process of fracture by defining a suitable TSL. For the present
study, a trapezoidal TSL was used, which was proposed by Scheider et al. [46]. The
trapezoidal traction separation law consists of four polynomials, defined as follows:
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T(δ) =



σmax
δ1
· δ δ < δ1

σmax δ1 ≤ δ ≤ δ2
σmax

δ f−δ2
·
(

δ f − δ
)

δ2 ≤ δ ≤ δ f

0 δ > δ f

(18)

where T(δ) is the traction, σmax is the critical cohesive strength, and δ f is the critical
separation. The δ1 and δ2 are the critical separation in the linear part and the plastic stage
of the TSL, respectively.

The area inside TSL curve represents the cohesive energy Tc, the equation is
defined by:

Tc =
1
2

σmax

(
δ f + δ2 − δ1

)
(19)

The reduction of cohesive energy calculated with increasing hydrogen coverage θ was
originally proposed by Serebrinsky et al. [37], the calculation of breaking energy based on
experimental data was reported by Jiang and Carter [36], and the current cohesive strength
σ(θ)max associated with the local critical hydrogen concentration is expressed as follows:

σ(θ)max
σ(0)max

= 1− 1.0467θ + 0.1687θ2 (20)

where θ is the hydrogen coverage, σ(0)max is the cohesive strength with no hydrogen
influence and f (θ) = 1− 1.0467θ + 0.1687θ2 is the decreasing factor. Figure 7a shows the
effect of the coverage factor θ on the normalized trapezoidal TSL curve.
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Relationship between the hydrogen concentration C and hydrogen coverage θ, from
the Langmuir–McLean isotherm is defined as follows [36,57]:

θ =
C

C + exp(−∆G0
g/RT)

(21)

where C = CL + CT is the sum of trapped and lattice hydrogen populations, ∆G0
g is the

Gibbs free energy, T is the temperature and R is the universal gas constant. The curves of
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hydrogen coverage with hydrogen concentration for various levels of Gibbs free energy
range of 10 to 60 kJ mol−1 are shown in Figure 7b. Clearly, hydrogen concentration covers
about four orders of magnitude for a given Gibbs free energy. The lower boundary and
the upper boundary represent the hydrogen concentration at fracture initiation and the
ultimate saturation level, respectively. Therefore, the value of Gibbs free energy is very
important and cannot be determined arbitrarily. Following the study by Serebrinsky
et al. [37], the Gibbs free energy ∆G0

g is assigned a value of 30 kJ mol−1, representing the
initiation hydrogen concentration and an ultimate saturation level ranging between 0.01
and 100 ppm in the α-Fe grain boundary.

4. Finite Element (FE) Computational Model

A 2D finite element model (ABAQUS 6.14 (dassault)SIMULIA, Providence, RI, USA)
was established to study experimental testing. Considering the geometric symmetry of the
model, only the upper half of the specimen was modeled, as shown in Figure 8. Boundary
conditions were related to geometric symmetry and the vertical load F was applied directly
to a vertical strip of nodes in the hole region. During the elastic-plastic analysis, the
four-node plane strain elements (CPE4R) were adopted for the continuum elements. The
number of continuum elements is 7 765. The experimental true stress-plastic strain data for
material were obtained by laboratory tensile test, reported in Table 2. In order to ensure
sufficient resolution of the local stress and strain after loading, the mesh was locally refined
at the crack tip and along the ligament of the specimen with the smallest element length of
18.75 µm. A mesh sensitivity study was considered by using two different finite element
meshes with the smallest sizes of 62.50 µm and 18.75 µm. The computational results
showed that the difference in stress field information near the crack tip was very small. In
the mass diffusion analysis, the concentration field of hydrogen uses 2D elements (DC2D4).
In the cohesive analysis, the cohesive zone was predefined and uniformly distributed using
zero thickness cohesive elements (COH2D4) along the crack growth path. The number
of cohesive elements was 133, and the element sizes range from 18.75 µm to 0.6 mm. Li
et al. [58] reported that the cohesive model was not sensitive to the element size in a large
number of crack fracture calculations. In order to implement the three-step calculation
process, the same nodes and elements were used in the three steps. Finally, data collection
point is set on the model loading line to simulate load-line displacement Vll. Table 3 lists
the values of the parameters adopted in the model.
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Table 2. Experimental true stress- plastic strain data for ABAQUS input analysis.

σ (MPa) Plastic-Strain (mm/mm)

1067.2 0.003
1143.6 0.015
1192.9 0.04
1229 0.08

1240.9 0.1
1278.4 0.2
1329.8 0.5
1349.1 0.7
1363.8 0.9
1370 1.0

Table 3. Values of the parameters adopted in the model.

Parameter Value Source

Hydrogen solubility s 0.071 ppm mm N−1/2

The universal gas constant R 8.314 J K−1 mol−1 [25]
Partial molar volume of hydrogen VH 2.0 × 103 mm3 mol−1 [34]

Hydrogen diffusion coefficient DL 4.0 × 10−5 mm2 s−1 [23]
The Gibbs free energy ∆G0

g 30 KJ·mol−1 [37]
Temperature T 296 K

4.1. Selection of Trapezoidal Traction-Separation Law (TSL) Parameters

The cohesive simulation assumes that the model fails under the condition of crack
initiation, and the complete separation of the first cohesive element is considered as a
complete failure. In the present study, the cohesive elements start to damage when the
maximum cohesive strength reaches the critical cohesive strength σmax, and the crack
tip is defined at the location where the critical separation δ f just reaches. Therefore, the
appropriate selection of TSL parameters is very important. The cohesive energy Tc is
represented by the area below the trapezoidal TSL curve, which determines the fracture
behavior. The unit of J-integral and cohesive energy Tc are the same as per unit area
below the TSL. The cohesive energy Tc is obtained from the combination of the cohesive
strength σmax and the critical separation δ f . In this investigation, the ratio δ1/δ f and
δ2/δ f are selected to be fixed values of 0.05 and 0.65 for all simulations, respectively [40].
Therefore, the cohesive energy Tc and the critical cohesive strength σmax are selected as two
independent parameters to be applied to the simulation. Based on previous experiments,
the experimental results of the J-integral curve are presented in Figure 9a. In this study,
the cohesive energy is selected based on the J-integral of the uncharged specimen at crack
initiation from the experiment [31]. The cohesive energy Tc at the crack initiation is selected
to be 132KJ/m2 for an uncharged specimen (Figure 9a). The upper half of the FE is used
for simulation; therefore, the cohesive energy Tc is half of the initiation cohesive energy
of the experiment. The numerical calculation results from the selection of the cohesive
energy corresponding to the J-integral at crack initiation indicate that the J-R and the
load-displacement (Vll) curves are in accordance with the experimental data (Figure 9a,b).
Therefore, the independent TSL parameters providing the best fit to experimental data for
the trapezoidal TSL are selected as the cohesive strength of 2100 MPa, which equals 2σy,
and 0.0393 mm for the critical cohesive separation δ f . Table 4 lists the TSL parameters for
the uncharged specimen.
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Table 4. The TSL parameters for the uncharged specimen.

σmax (MPa) δ1 (mm) δ2 (mm) δf (mm) σy (MPa)

2100 (2 σy) 0.00197 0.0255 0.0393 1050

4.2. Implementing Hydrogen-Influenced TSL

This section mainly describes the approaches for implementing the coupling relation-
ship between hydrogen diffusion and CZM. In the step of hydrogen diffusion analysis,
a uniform hydrogen distribution through the specimen C(t = 0) = CL0 (as is the case in
experiments, where the specimen is pre-charged) is prescribed as an initial condition. The
outer surfaces of specimens are assumed to have zero hydrogen flux boundary conditions,
which are prescribed as Cb = CL0. The initial hydrogen concentration is defined as a
predefined field as follows: *Initial Condition, type = CONCENTRATION. The hydrogen
diffusion analysis shows the normalized concentration φ, NNC. In the cohesive analysis,
the normalized hydrogen concentration φ, NNC, is read from the database of the previous
step and the following step is imported as the value of predefined field (FV1), which
is defined as follows: *Initial Conditions, type = FIELD, variable = 1, file = file-name,
output variable = NNC, interpolate. It is noteworthy that in order to calculate the trap-
ping sites CT , the UVARM subroutine was used. The UVARM calls the utility routine
GETVRM to provide access to material integration point data for each increment of the
step. The equivalent plastic strain εp is obtained by the utility routine GETVRM. Then,
the hydrogen in lattice sites CL is calculated by Equation (16), CT can be obtained from
Equation (17) and the total concentration can be calculated by C = CL + CT, with θ taken
from Equation (21) and f (θ) taken from Equation (20). The f (θ) factor is defined as field
variable with the USDFLD subroutine and is stored in a common block to transfer from
the continuum elements to the adjoining cohesive elements. Finally, the effect of hydrogen
degradation on the promoted material fracture is implemented into the TSL.

5. Numerical Results and Discussion

Electrochemical pre-charged hydrogen technique shows that hydrogen has an obvious
effect on the mechanical properties of the steel; nonetheless, the limitation of this technology
lies in the lack of effective methods to accurately measure the hydrogen distribution and
content in steel. According to the HEDE mechanism and FEM, the effective initial hydrogen
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content can be estimated by using a numerical model. Using the above three steps in finite
element (FE) model analysis, the initial hydrogen concentration CL0 defines a predefined
field (FV1), and the elastic-plastic and TSL parameters remain constant for all simulations.
After several iterations of simulation, the load-line displacement (Vll) curves obtained from
numerical analysis provide the best fit to the experimental curves. The variation of the
applied load with load–line displacement for different initial hydrogen concentrations is
shown in Figure 10. The general trends of the simulation and the experiment curves are
consistent. The normalized hydrogen concentration is defined as φ = CL/s, and the solubility
of hydrogen s is 0.071 ppm mmN−1/2. As a result, three different initial normalized concen-
trations corresponding to hydrogen-charged specimens for 12, 24 and 36 h are 49.30, 77.46 and
119.72 NNC (corresponding to initial hydrogen concentration in lattice sites CL0 of
49.30 × 0.071 = 3.5, 77.46 × 0.071 = 5.5 and 119.72 × 0.071 = 8.5 ppm), respectively.
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Figure 10. F − Vll curves from experimental data and results of numerical simulations. (Exp:
experiment; Sim: simulation).

The calculated distribution of hydrostatic stress at the end of load for the elastic-
plastic analysis as a function of the distance from the crack tip, is shown in Figure 11a.
Figure 12 shows the contour plots of hydrostatic pressure after the elastic-plastic analy-
sis. The results show that the maximum hydrostatic stress appears ahead of the crack
tip. Figure 11b shows the calculated distribution of three normalized hydrogen concen-
trations at the end of diffusion time. Figure 13 exhibits the contour plots of normalized
hydrogen concentration after 600 s diffusion for CL0 (119.72 NNC, corresponding to initial
hydrogen concentration of 8.5 ppm). Herein, in the simulation, the normalized hydrogen
concentration is clearly observed near the first element ahead of the crack tip, and its
peak corresponds with the peak of hydrostatic stress. The peak of hydrogen concentration
is almost 2.4 times of the initial value, equal to 289.7 NNC at the end of diffusion time.
Comparison of Figure 11a,b with Figures 12 and 13 clearly indicates that the distribution of
normalized hydrogen concentration is consistent with the hydrostatic stress. This result
can be understood from the mass diffusion equation (recall Equation (16)), which causes
hydrogen concentration to accumulate in the high hydrostatic stress region.



Materials 2021, 14, 3711 16 of 21Materials 2021, 14, x FOR PEER REVIEW 17 of 23 
 

 

  
(a) (b) 

Figure 11. (a) Calculated hydrostatic stress distribution as a function of the distance from the crack tip; (b) calculated normal-
ized hydrogen concentration NNC distribution as a function of the distance from the crack tip for 0LC  (49.30, 77.46 and 119.72 
NNC). NNC: normalized hydrogen concentration. 

 

Figure 12. The contour plots of p hydrostatic pressure after the elastic-plastic analysis. Avg.: averaging threshold 

 
Figure 13. The contour plots of normalized hydrogen concentration after 600 s diffusion. NNC: normalized hydrogen 
concentration. 

Figure 11. (a) Calculated hydrostatic stress distribution as a function of the distance from the crack tip; (b) calculated
normalized hydrogen concentration NNC distribution as a function of the distance from the crack tip for CL0 (49.30, 77.46
and 119.72 NNC). NNC: normalized hydrogen concentration.

Materials 2021, 14, x FOR PEER REVIEW 17 of 23 
 

 

  
(a) (b) 

Figure 11. (a) Calculated hydrostatic stress distribution as a function of the distance from the crack tip; (b) calculated normal-
ized hydrogen concentration NNC distribution as a function of the distance from the crack tip for 0LC  (49.30, 77.46 and 119.72 
NNC). NNC: normalized hydrogen concentration. 

 

Figure 12. The contour plots of p hydrostatic pressure after the elastic-plastic analysis. Avg.: averaging threshold 

 
Figure 13. The contour plots of normalized hydrogen concentration after 600 s diffusion. NNC: normalized hydrogen 
concentration. 

Figure 12. The contour plots of p hydrostatic pressure after the elastic-plastic analysis. Avg.: averaging threshold.

Materials 2021, 14, x FOR PEER REVIEW 17 of 23 
 

 

  
(a) (b) 

Figure 11. (a) Calculated hydrostatic stress distribution as a function of the distance from the crack tip; (b) calculated normal-
ized hydrogen concentration NNC distribution as a function of the distance from the crack tip for 0LC  (49.30, 77.46 and 119.72 
NNC). NNC: normalized hydrogen concentration. 

 

Figure 12. The contour plots of p hydrostatic pressure after the elastic-plastic analysis. Avg.: averaging threshold 

 
Figure 13. The contour plots of normalized hydrogen concentration after 600 s diffusion. NNC: normalized hydrogen 
concentration. 
Figure 13. The contour plots of normalized hydrogen concentration after 600 s diffusion. NNC: normalized
hydrogen concentration.



Materials 2021, 14, 3711 17 of 21

Figure 14a shows the distributions of the hydrogen concentration (CL,CT ,C = CL +CT)
as a function of the distance from the crack tip. The results show that the three types of hy-
drogen concentration are observed ahead of the crack tip; however, this decreases sharply
at a distance from the crack tip. According to previous experimental results presented
in Figure 1b, the equivalent plastic strain level is below 0.2. In our simulation, the hy-
drogen in trapping sites is not sufficient to significantly increase the total concentration
ahead of the crack tip. This indicates that the hydrogen in lattice sites CL0 plays a signif-
icant role in determining HE. Based on the HEDE theory [34–37], the cohesive energy is
expressed as the area inside the TSL curve, which reduces with the change of local hydro-
gen concentration. Then, corresponding to the peak of the total hydrogen concentration
C = CL + CT , the decreasing factor f (θ) reaches the minimum value ahead of the crack tip
from Equation (20). Owing to the consideration of the decreasing factor f (θ), it is possible
to simulate and predict hydrogen-assisted fracture. Figure 14b shows hydrogen coverage θ
and decreasing factor f (θ) as a function of the distance from the crack tip. The contours
of the four simulation results (CT ,C = CL + CT ,θ, f (θ)) for the initial hydrogen concentra-
tion of 8.5 ppm are illustrated in Figure 15a–d, and the values of hydrogen coverage θ
and decreasing factor f (θ) are equal to 0.794 and 0.276 at a layer of continuum elements
ahead of the crack tip, respectively. Based on the total concentration (C = CL + CT), the
decreasing factor characterizes the effect of hydrogen on the ultimate embrittlement of this
steel. Figure 16a shows the computed TSL of the fracture initiation for three initial hydro-
gen concentrations discussed above, and it can be calculated that hydrogen decreases the
critical cohesive strength by 57% and 72% for CL0 values of 3.5 and 8.5 ppm, respectively.
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The criterion to measure the complete failure of cohesive element is the state when
all two integration points of a cohesive element (COH2D4) fail. The numerical value
corresponding to forward crack propagation is one element length when the cohesive stress
reduces to a value of zero and its normalized separation is equal to one. Figure 16b describes
the computational and experimental CTOD-R curves corresponding to previous set of
parameters. In these curves, the results of the uncharged specimen from the simulation
and the experiment are in good agreement with each other, which is the same as that
presented in Figure 9b. However, for the hydrogen-charged specimens, the general trend
of the simulation curve is the same as the experimental data, but not fully in agreement,
the slightly higher curves indicate that the simulation significantly underestimated the
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experimentally measured crack propagation resistance. Indeed, according to the previous
fracture micromechanism for the hydrogen-charged specimen, the fracture surfaces showed
mixed ductile and brittle fracture surfaces, such as QC, IG and some evidence of small-scale
MVC fracture. The microfracture characteristics showed that hydrogen embrittlement
was a complex mechanism, and it is possible for more mechanisms to work together. The
simulated model only adopts the HEDE model, but the HELP model and AIDE model are
not taken into account in it.
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6. Conclusions

In the present study, the fracture toughness test in a compact tension (CT) specimen
made of low alloy 30CrMo steel and charged with hydrogen was analyzed, and then the
coupled problems of stress and hydrogen diffusion with cohesive zone stress analysis was
employed to simulate hydrogen-induced brittle fracture behavior using ABAQUS software.
The major contents and conclusions of the present study are as follows:

1. From the fracture toughness test, the CTOD-R curves show a decreasing trend with
the increase in the hydrogen charging time, which leads to the higher crack prop-
agation and the lower crack growth resistance. This trend is also reflected in the
change of fracture micromechanism: MVC is a dominant mode in an uncharged
specimen, changing to QC fracture and to QC and IG fracture under hydrogen-
charged condition.

2. In our simulation, the peak of hydrogen concentration (NNC) corresponds to the peak
of hydrostatic stress, and is formed ahead of the crack tip. This result can explain
the experimental phenomena well: hydrogen atoms diffusing ahead of the crack tip,
thereby promoting the hydrogen embrittlement indexes.

3. The initial TSL parameters from the best fit to the load-displacement and J-R experi-
mental curves without hydrogen were calibrated for the critical cohesive separation
of 0.0393 mm and the cohesive strength of 2100 MPa. According to FEM and ex-
perimental curves, the initial normalized hydrogen concentrations corresponding
to hydrogen-charged specimens for 12, 24 and 36 h were estimated 49.30, 77.46 and
119.72 NNC (corresponding to initial hydrogen concentration in lattice sites CL0 of
3.5, 5.5 and 8.5 ppm), respectively.

4. The general trend of the computational CTOD-R curves is the same as that obtained
from the experimental data but not fully in agreement, the computational CTOD
values are slightly higher. Therefore, it is possible for more (HE) mechanisms to work
together in order to predict the crack extension resistance correctly. The numerical
model can provide design and prediction to calculate hydrogen-assisted fracture
behavior prior to extensive laboratory testing, provided that the material properties
and properly calibrated TSL parameters are known.
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