
ll
OPEN ACCESS
iScience

Article
Single-cell multiomics reveals heterogeneous cell
states linked to metastatic potential in liver cancer
cell lines
Shanshan Wang,

Jiarui Xie,

Xuanxuan Zou, ...,

Shiping Liu,

Huanming Yang,

Liang Wu

wuliang@genomics.cn

Highlights
Provide a high-resolution

single-cell triple-omics

data of five liver cancer

cell lines

Identify a robust 14-gene

set representing hypoxia

signature

The hypoxia signature is

associated with prognosis

Establish an assessment

model to characterized

metastasis ability

Wang et al., iScience 25,
103857
March 18, 2022 ª 2022 The
Authors.

https://doi.org/10.1016/

j.isci.2022.103857

mailto:wuliang@genomics.cn
https://doi.org/10.1016/j.isci.2022.103857
https://doi.org/10.1016/j.isci.2022.103857
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.103857&domain=pdf


iScience

Article

Single-cell multiomics reveals heterogeneous
cell states linked to metastatic potential
in liver cancer cell lines

ShanshanWang,1,3,5 Jiarui Xie,2,3,5 Xuanxuan Zou,1,3,5 Taotao Pan,3 Qichao Yu,1,3 Zhenkun Zhuang,2,3 Yu Zhong,3

Xin Zhao,1,3 Zifei Wang,1,3 Rui Li,3 Ying Lei,3 Jianhua Yin,3 Yue Yuan,1,3 Xiaoyu Wei,1,3 Longqi Liu,3 Shiping Liu,3

Huanming Yang,1,3,4 and Liang Wu1,3,6,*

SUMMARY

Hepatocellular carcinoma (HCC) is the most common liver cancer with a high rate
of metastasis. However, the molecular mechanisms that drive metastasis remain
unclear.We combined single-cell transcriptomic, proteomic, and chromatin acces-
sibility data to investigate how heterogeneous phenotypes contribute to meta-
static potential in five HCC cell lines. We confirmed that the prevalence of a
mesenchymal state and levels of cell proliferation are linked to the metastatic po-
tential. We also identified a rare hypoxic subtype that has a higher capacity for
glycolysis and exhibits dormant, invasive, andmalignant characteristics. This sub-
type has increased metastatic potential. We further identified a robust 14-gene
panel representing this hypoxia signature and this hypoxia signature could serve
as a prognostic index. Our data provide a valuable data resource, facilitate a
deeper understanding of metastatic mechanisms, and may help diagnosis of met-
astatic potential in individual patients, thus supporting personalized medicine.

INTRODUCTION

Hepatocellular carcinoma (HCC), a neoplasm derived from hepatocytes, is the dominant form of primary

liver cancer, and has a poor prognosis because of a high recurrence rate (Singal et al., 2020; Zheng

et al., 2017b). The high metastasis rate is a major obstacle to treating HCC, but the mechanisms underlying

this characteristic remain unclear (Fang et al., 2015; Li et al., 2020). HCC is also characterized by high het-

erogeneity (Marquardt and Thorgeirsson, 2014), which contributes to both tumor relapse and drug resis-

tance (Liu et al., 2018). However, the relationship between the heterogeneous phenotypes and metastatic

potential has not been systematically assessed. It is increasingly believed that epithelial-mesenchymal tran-

sition (EMT), a critical step in metastasis (Aiello et al., 2018), is not a binary process. Instead, a hybrid EMT

state which is associated with an increased ability to migrate and invade tissues has been proposed to exist

(Schliekelman et al., 2015; Hendrix et al., 1997). Aberrant cell proliferation is also one of the hallmarks of

cancer, and operates both in early tumorigenesis and during tumor metastasis (Feitelson et al., 2015;

Jarrett et al., 2018). Indeed, cell cycle progression is increased in patients with metastatic pancreatic ductal

adenocarcinoma (PDAC) (Connor et al., 2019). Hypoxia, which is common in most tumors, is also linked to

metastasis, tumor immune responses, and resistance to therapy (Nobre et al., 2018; Multhoff and Vaupel,

2020; Wigerup et al., 2016; Muz et al., 2015). It is still difficult to define hypoxia status in tumors because of

the incredible diversity in hypoxia levels across tissues (Muz et al., 2015).

High throughput single-cell sequencing technologies make it possible to study tumor heterogeneity, and

identify rare cell subtypes (Kieffer et al., 2020; Qian et al., 2020; Zhang et al., 2021). The human liver cell atlas

revealed heterogeneous cell types (Aizarani et al., 2019) and diversity of cancer stem cell (CSC) subpopu-

lations in HCC. This highlighted the role of CSC in tumor heterogeneity, prognosis, and hepatic CSC ther-

apy (Zheng et al., 2018). Higher genomic complexity has also been related to a worse prognosis in HCC

(Kwon et al., 2019). Single-cell genomics have revealed that genomic complexity results from mutation

and copy number variations (CNVs), as well as diverse modes of clonal evolution in HBV-related HCC

(Duan et al., 2018). Several studies have profiled the single-cell landscape of the tumor microenvironment,

and elucidated the nature of the immune response in primary HCC as well as relapsed cases (Yang et al.,
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2020; Sun et al., 2021; Zheng et al., 2017a). A limitation of single-cell methods is that most studies focus on a

single omics dimension. Multiomics approaches enable the integration of data from diverse omics plat-

forms, providing multifaceted insights into the heterogeneity within a population of cells (Hou et al.,

2016; Lareau et al., 2021; Mimitou et al., 2021). Combined quantification of the transcriptome and prote-

ome, as well as chromatin accessibility, would give a more comprehensive view of cell states linked to met-

astatic potential in HCC.

Here, we gathered single-cell transcriptomic, proteomic, and epigenomic data from five HCC cell lines with

different metastatic potentials. We thereby assessed the link between phenotypic heterogeneity and HCC

metastatic potential, examining EMT capacity, cell proliferation, and hypoxia status. Through this analysis

we identified a rare hypoxia subtype that expresses a robust hypoxia signature based on a 14-gene panel.

We show that this hypoxia signature is applicable to clinical data. Our data provide deep insights into met-

astatic mechanisms in HCC, which may accelerate the development of tumor treatments.

RESULTS

Single-cell transcriptomic, proteomic, and epigenetic landscapes in HCC cell lines

To systematically characterize the global transcriptomic, proteomic, and epigenetic landscapes of

individual cells in HCC cell lines, we generated single-cell transcriptomic, proteomic, and chromatin

accessibility data by applying cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)

(Stoeckius et al., 2017) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-

seq) (Buenrostro et al., 2015) on DNBelab C Series Single-cell System (Liu et al., 2019). Five human-

derived HCC cell lines with different metastatic potentials were used in the study (Figure 1A) (Aden

et al., 1979; Hidekazu Nakabayashi et al., 1982; Li et al., 2001; Eun et al., 2014): HepG2 and Huh7 cells

lack metastatic potential, MHCC97L cells have low metastatic potential, and MHCC97H and SK-HEP-1

cells have high metastatic potential. Given that CSC has been linked to tumorigenicity, invasiveness,

and metastasis, the six markers of liver cancer stem cells (LCSC) were measured originating from

antibody-derived tag (ADT) sequencing (Stoeckius et al., 2017), including CD44 (Yang et al., 2008; Zhu

et al., 2010), EPCAM (Yamashita et al., 2007), CD133 (Yin et al., 1997), CD24 (Lee et al., 2011), CD90

(Yang et al., 2008), and CD54 (Liu et al., 2013). We obtained qualified and integrated single-cell data

from 7311 (mean: 1462, range: 907–1833) transcriptomes and 17,736 (mean: 3547, range: 2735–4572)

epigenomes from all five cell lines as well as 5683 (mean: 1421, range: 907–1833) proteomes from the

Huh7, MHCC97L, MHCC97H, and SK-HEP-1 cell lines (Figures 1B, 1C, and S1A, and Table S1; see

STAR Methods). Different cell lines showed distinct patterns in terms of gene expression levels or chro-

matin accessibility states.

We compared the expression and gene activity score (GA) of six LCSC markers at the triple-omics level

(Figure 1D). CD24 (CD24), CD44 (CD44), and CD90 (THY1) were consistent in five cell lines but showed

variations in expression level and GA. For instance, CD24 (CD24) had a higher level of expression and

GA in Huh7 and a lower level in MHCC97L, MHCC97H, and SK-HEP-1 cells. In contrast, CD44 (CD44)

had a relatively high-level of expression and GA in MHCC97L, MHCC97H, and SK-HEP-1 cells, and a lower

level in Huh7. Other markers including EPCAM (EPCAM), CD133 (PROM1), and CD54 (ICAM1) were not

consistent at the triple-omics level. For example, EPCAM (EPCAM) which was highly expressed in Huh7

and CD133 (PROM1) was expressed at low levels across cell lines. However, GA for these examples was

inconsistent with protein/gene expression levels. In addition to the inconsistency between GA and

protein/gene expression levels, protein and gene expression levels were inconsistent in some cases. For

example, CD54 (ICAM1) had relatively high protein expression and low gene expression inMHCC97H cells,

indicating that gene expression levels are not sufficient to predict protein expression levels, consistent with

previous reports (Rodriguez et al., 2019; Liu et al., 2016). Our data profiled heterogeneous landscapes of six

LCSC markers at the molecular level in different HCC cell lines.

Epithelial-mesenchymal transition states are associated with the metastatic potential of HCC

cell lines

Using previously defined epithelial (E) and mesenchymal (M) related gene expression programs (Huang

et al., 2013; Aiello et al., 2018) (Table S2), we calculated the E and M score of each cell in five cell lines using

single-cell RNA sequencing (scRNA-seq) data (see STARMethods). We observed increasedM scores along

with increased metastatic potential. MHCC97H had a similar M score to MHCC97L despite the former
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having a highermetastatic potential (Figure 2A).We further verified that HepG2 andHuh7 showed thedomi-

nant E state, whereas MHCC97L, MHCC97H, and SK-HEP-1 cells tended to show the M state (Figure 2B).

Data from scRNA-seq and scATAC-seq in terms of EMT showed the relative consistency (Figure S1B; see

STARMethods). The EMT state in each cell line was further investigated using chromatin accessibility of the

A

D

B C

Figure 1. Single-cell multiomics landscape of five HCC cell lines

(A) Overview of study design and experimental pipeline for single-cell sequencing.

(B) Uniform manifold approximation and projection (UMAP) plot visualization of color-coded clustering of 7311 cells from five cell lines based on cellular

indexing of transcriptomes and epitopes by sequencing (CITE-seq) data.

(C) UMAP plot visualization of color-coded clustering of 17,736 cells from five cell lines based on single-cell assay for transposase-accessible chromatin

sequencing (scATAC-seq) data.

(D) UMAP plot of protein expression (top; centered log ratio (CLR) normalized), RNA (middle; log gene expression (Exp.)), and gene activity score (GA)

(bottom; logGA) reflects signal from antibody panel (CD24, EPCAM, CD44, CD54, CD133, and CD90). See also Figure S1A and Table S1.
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characteristic epithelial marker CDH1 (Lamouille et al., 2014), early hybrid EMT state of the gene KRT14

(Pastushenko et al., 2018), and the classical EMT transcription factors SNAI2 and TWIST1 (Nieto et al.,

2016) (Figures 2C, S1C, and S1D). CDH1 was more accessible and KRT14 was less accessible in HepG2

and Huh7 cells, consistent with a global E state in the two cell lines. KRT14 was more accessible in

MHCC97L and MHCC97H cells than SK-HEP-1, whereas SNAI2 and TWIST1 were more accessible in

SK-HEP-1 than MHCC97L and MHCC97H. The accessibility patterns confirmed that MHCC97L and

MHCC97H exhibited an earlier hybrid EMT state (Pastushenko and Blanpain, 2019) compared with

SK-HEP-1. The various EMT states of cell lines were highly correlated with their metastatic potential where

M state showed a positive correlation with cancer metastasis.

Both theEMTprogramandLCSCmarkers, includingCD24,EPCAM,CD44, andCD54, are relevant to cell adhe-

sion andmigration capacity (Nietoet al., 2016; Aiello et al., 2018; Ye andWeinberg, 2015).Wenext explored the

potential relevance between the expression of LCSC markers and E or M state (Table S3; see STARMethods).

Notably, expression of theCD24 and EPCAMproteins were correlated to the E state, whereas CD44 andCD54

werecorrelated to theMstate (Figure 2D,TableS3). ExpressionofCD24,EPCAM,CD44, andCD54at the triple-

omics levels were further visualized in each cell line, and the overall expression tendency supported the above

conclusion (Figure 2E, Table S4). In addition, the expression ofCD44 at gene and chromatin accessibility levels

was increased inMHCC97L,MHCC97H,andSK-HEP-1according tometastaticpotential (Figure2E,TableS4). It

indicated the strongly underlying relevance between CD44 and M state (r = 0.60) (Figure 2D). All the results

elucidated thatCD24andEPCAMcharacterizedamoreepithelial state,whereasCD44andCD54characterized

a more mesenchymal state in HCC cell lines.

In addition to the overall differences of EMT states in cell lines, intercellular heterogeneity was explored.

We verified the correlations of LCSC markers assessed above with E or M state within each cell line, and

only Huh7 exhibited the significant correlations (Figure 2F and S2, Table S3). Cells were further classified

into CD24, EPCAM, CD44, and CD54-high, CD54-medium, or CD54-low based on the expression of

markers (Figures 2F and S2; see STAR Methods). EPCAMhigh and CD24high cells had higher E scores in

Huh7 (p = 3.4e-24, p = 1.14e-05), whereas CD54high cells had higher M scores (p = 1.13e-27). CD44 showed

no specific signal in the E (p = 0.26) or M state (p = 0.75), owing to the low proportion of HCC cells express-

ing this marker. In sum, our results indicated that expression levels of surface markers were capable of char-

acterizing the nuances of EMT state in the HCC cell lines we tested.

Taken together, heterogeneous EMT states corresponded to metastatic potential in five HCC cell lines

indicating that it works as a valuable signal for metastasis in HCC. Varying degrees in the M state hinted

at its importance in EMT and cancer metastasis. In addition, LCSC markers were capable of characterizing

E vs. M state and metastatic potential in HCC.

Proliferation capability correlates in part with the metastatic potential of cell lines

Cell proliferation drives tumor development and has been linked to metastasis (Hanahan and Weinberg,

2000). To define the cell cycle phase of each cell more precisely, we performed K-means analysis

(Macosko et al., 2015; Wagstaff et al., 2001) using cell cycle gene sets (Macosko et al., 2015; Whitfield

et al., 2002) (Table S5; see STARMethods).We identified four prominent clusters (cluster C1-C4) (Figure 3A).

Cluster C3 had the highest gene expression levels of G2/M and M phase signatures among clusters, and

Figure 2. Identification and characterization of different EMT states in HCC cell lines

(A) Scatter diagram of epithelial (E) and mesenchymal (M) states for five HCC cell lines at the single-cell level (top panel) and pseudo-bulk level (bottom

panel) based on single-cell RNA sequencing (scRNA-seq) data. The top left of the arrow indicates M state, and the bottom right indicates E state. In the

pseudo-bulk level analysis, the average scores of E and M in each cell line were plotted on the scatter diagram.

(B) Density distribution of E (pink) and M (light blue) scores in five HCC cell lines.

(C) Density map of normalized GA based on scATAC-seq data. CDH1, a classic epithelial gene. KRT14, an early EMT gene. SNAI2 and TWIST1, classical EMT

transcription factors.

(D) EMT scatter diagram showing the relevance of adhesion and migration related surface markers (CD24, CD44, EPCAM, and CD54) with E or M state using

normalized protein expression. p and r values of Pearson correlation coefficients analysis were compiled in Table S3.

(E) Violin plot depicting EMT state in each cell line using the normalized expression level of CD24, EPCAM, CD44, and CD54 in triple-omics. Wilcoxon rank-

sum test was used to test the statistically significant differences. p values were compiled in Table S4.

(F) EMT scatter diagram showing the normalized protein expression level of CD24, EPCAM, CD44, and CD54 in Huh7. Cells with expression greater than the

upper quartile were defined as ‘‘High’’, less than the lower quartile were defined as ‘‘Low’’, and others were defined as ‘‘Medium’’. p and r values of Pearson

correlation coefficients analysis were compiled in Table S3. See also Figures S1 and S2 and Tables S2–S4.
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was assigned G2-M (Figures S3A, S3B, S3F, and S3G). Cluster C2 had the highest gene expression levels of

G1/S and S phase signatures among clusters, and was assigned G1-S (Figures S3C, S3D, S3H, and S3I).

Cluster C1 had the lowest cell cycle gene expression scores among clusters (Figures 3B, S3E), and showed

low levels of the proliferation marker MKI67 (Sun and Kaufman, 2018; Sobecki et al., 2017) (Figure 3C),

revealing C1 cells were in G0 phase. The expression pattern of cluster C4 was ambiguous; therefore, we

assigned it to the intermediate period.

The heterogeneity of cell proliferation in the five cell lines was explored by elucidating the composition of

cells in different cell cycle phases. The proportion of cell cycle phases for each cell line was calculated,

which indicated varying proliferation profiles for the different HCC lines (Figure 3D). The HCC cell lines

could be ranked by the fraction of cells in G0 phase in decreasing order: HepG2 (0.53), MHCC97L (0.41),

MHCC97H (0.16) to SK-HEP-1 (0.02). This suggested a gradual increase in proliferation capability in cell

lines in the same order, which also aligned with increasing metastatic potential. This result was consistent

with a previous study (O’Connor et al., 2021) where the population of G0 cells was significantly associated

with less aggressive tumors. This held true in our study, except for the Huh7 cell line, which had a median

proliferation rate (G0: 0.19), but had the lowest metastatic potential. In summary, though higher cell pro-

liferation was associated with metastasis capacity, it was not exactly consistent with proliferation capability

across all cell lines, indicating other factors acting on metastasis.

Hypoxia clusters have a characteristic profile

Hypoxia is a common feature of most tumors and hypoxic cells are more aggressive and invasive with a

greater ability to metastasize (Muz et al., 2015). To explore the underlying link between hypoxia and met-

astatic potential, hypoxia-related genes in Hallmark gene sets (Liberzon et al., 2015) were analyzed in five

A B

C D

Figure 3. Identification of cell cycle phases in HCC cell lines

(A) Classification of cell cycle phases inferred from scRNA-seq data by K-means clustering. Four color-coded clusters

(C1-C4) of five HCC cell lines appeared in t-SNE plot and were further divided into four groups: C1, G0 phase; C2, G1-S

phase; C3, G2-M phase; C4, intermediate.

(B) Violin plot visualizing the cycle scores in each K-means cluster. Student’s t test was used to test the statistically

significant differences of cycle score between clusters of G0 phase (marked with red dotted line) and other clusters.

(C) t-SNE plot visualization of gene expression ofMKI67 in all cells. The red dotted line showed gene expression of cells in

the G0 phase.

(D) Proportional bar graphs showing distribution of the four cell cycle groups (G2-M, G1-S, intermediate, and G0) in each

cell line. See also Figure S3 and Table S5.
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Figure 4. Profiling of hypoxia clusters with metabolic, dormant, invasive, and malignant characteristics

(A) Average expression of hypoxia related genes originating from Hallmark gene sets in cells with metastatic ability (MHCC97L, MHCC97H, and SK-HEP-1)

and cells with no metastatic ability (HepG2 and Huh7). Wilcoxon rank-sum test was used to test the statistically significant differences.

(B) Heatmap depicting pairwise correlations of 29 clusters identified by unsupervised clustering. Three groups showed coherent gene expression patterns

across cell lines. Groups and related clusters were marked in red boxes.

(C) Functional enrichment analysis of highly expressed DEGs (log fold change (FC) > 0.25) in Group 2 highlighting hypoxia-related processes.

Hypergeometric test was used to test the statistically significant differences.

(D) Differences in glycolytic metabolism between hypoxia clusters and other cells. Violin plot depicting tricarboxylic acid (TCA) scores (light blue dots) and

glycolysis scores (pink dots) of hypoxia (HY) clusters compared to other cells in Huh7, MHCC97L, andMHCC97H clusters. Each box in the graphs showed the

median and IQR (IQR) of the group data, with the lower quartile (bottom) and upper quartile (top). The whiskers extended from the hinge to the smallest or

largest value within 1.5 times the IQR from the box boundaries; outliers outside the whiskers range were also presented. Wilcoxon rank-sum test was used to

test the statistically significant differences.

(E) t-SNE plot showing the distribution of cells from hypoxia clusters. These cells were shown in red and cells in G0_HY were marked by a blue dotted box.

Chi-Squared test was used to test the statistically significant differences.
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cell lines by dividing cells into two groups representing nonmetastatic ability (HepG2, Huh7) andmetastatic

ability (MHCC97L, MHCC97H, and SK-HEP-1) (Figure 4A). Hypoxia-related genes were expressed at higher

levels in cell lines with higher metastasis potential. Each cell line was separated into four to seven sub-

groups by an unsupervised clustering method using transcriptomic data, and a total of 29 clusters were

identified (Figures S4A–S4E). We next calculated pairwise correlation coefficients of shared differentially

expressed genes (DEGs) from 29 clusters and thereby identified three common subtypes among the cell

lines (Group 1–3) (Figure 4B; DEGs were compiled in Table S6; see STAR Methods). Applying functional

enrichment analysis, Group 1 was mainly enriched in mitosis (M phase) related pathways, and Group 3 in

interphase associated cell cycle related pathways (Figure S4F). Remarkably, we found a hypoxia group

(Group 2) was enriched in ‘‘Response to oxygen levels’’, ‘‘Response to hypoxia’’, and ‘‘Response to

decreased oxygen levels’’, indicating a hypoxia phenotype which included three hypoxia (HY) clusters

from three cell lines (Huh7, MHCC97L, and MHCC97H) (Figure 4C).

The Warburg effect fuels tumor metastasis and describes increased glycolysis in cancer cells despite the

availability of oxygen (Person, 1957; Warburg, 1925; Lu, 2019). Gene expression characteristic of hypoxia

in these clusters may originate frommetabolic reprogramming leading to theWarburg effect. We analyzed

expression of glycolysis and tricarboxylic acid (TCA) cycle related genes to compare the glycolytic capacity

of HY clusters with other cells in Huh7, MHCC97L, and MHCC97H (PathCards: https://pathcards.

genecards.org/) (Belinky et al., 2015) (Figure 4D, Table S2). Our analysis showed that HY clusters indeed

exhibited a higher glycolytic index indicating a higher glycolytic capacity. Accordingly, HY clusters were

considered to be a specific glycometabolic subpopulation with features of Warburg effect. The results sup-

ported metabolic heterogeneity within cancer cell lines which might enhance cancer cell survival when

encountering hypoxic environments.

To profile the cell cycle phase of cells in HY clusters, we projected them onto the cell cycle scatter diagram

showingenrichment of cells inG0 (p<2.2e-16) (Figure 4E).Wecompared theproportionofG0cells inHYclusters

and corresponding cell lines, which further confirmed enrichment in this cell cycle phase (Figure 4F). We then

merged all data fromHuh7, MHCC97L, and MHCC97H cell lines and divided them into three groups: G0 phase

of HY (G0_HY), G0 phase of Non-HY (G0_NonHY), andOthers. Expression of the classic apoptosis gene CASP8

was low,whereas the dormancygeneCDKN1B (Sosa et al., 2015; Fluegen et al., 2017) was upregulated inG0_HY

(Figure4G). This suggestedano-apoptotic anddormant stateofcells inG0_HY. Inaddition,wehighlightedEGFR

(Giannelli et al., 2008) (tumor-promoting) and VEGFA (Senger et al., 1983; Cao et al., 2004) (pro-angiogenesis),

both of which exhibited specific elevated expression in G0_HY (Figure 4G). The results revealed enhanced inva-

siveness and malignancy of cells in the G0_HY cluster.

In conclusion, we found rare HY clusters which had higher glycolytic capacity and exhibited significant

enrichment in the G0 phase. In addition, cells in G0_HY exhibited dormant, invasive, and malignant char-

acteristics. The specific metabolic pattern and characteristics are all associated with metastatic potential.

Hypoxia signature may provide a prognosis index in clinical studies

To better determine the hypoxia status of tumors, we derived a hypoxia signature from HY clusters based

on common gene expression features. DEGs (fold-change (FC) > 2) of the HY clusters intersected and 14

genes (CA9, ENO2, SLC6A8, BNIP3, FAM162A, BNIP3L, INSIG2, NDRG1, LDHA, PLOD2, ALDOC,

ANGPTL4, ZNF395, and HILPDA) were shared by HY cells across HCC cells lines (Figures 5A, S5A–S5C).

We calculated hypoxia scores based on the 14 genes using data from a previous study (Ye et al., 2019)

and found that the hypoxia score was increased with the hypoxic treatment time, confirming the robustness

of the 14-gene signature (Figure 5B).

To verify whether the signature we found in the cell lines could be applied to tissue samples, scRNA-seq

data from HCC clinical tissues (Sun et al., 2021) were utilized to analyze the presence of the hypoxia signa-

ture (Figure 5C). A small peak indicated a small set of cells which had a higher expression of 14-gene in Pa-

tient 10 (P10) and Patient 18 (P18), but not in Patient 09 (P09). This hinted that the 14-gene hypoxia signature

was able to profile characteristics of hypoxia in tissue samples. It also reflected differences in tissue samples

Figure 4. Continued

(F) Proportional bar graphs of G0 phase cells and cycling cells in hypoxia clusters (HY) and all cells in Huh7, MHCC97L, and MHCC97H.

(G) Violin plots indicating CASP8, CDKN1B, EGFR, and VEGFA gene expression in the three groups (G0_HY, G0_NonHY, and Others). Student’s t-test was

used to test the statistical differences of gene expression between G0_HY and G0_NonHY or Others. See also Figure S4 and Tables S2, S6.
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Figure 5. Identification and verification of 14-gene hypoxia signature

(A) Venn diagram showing intersection of DEGs (FC > 2) in hypoxia clusters.

(B) Hypoxia scores of three cancer cell lines (HepG2, MDA-MB231, and U87) under normoxic and hypoxic conditions. The treatment time of hypoxia was 4, 8,

and 12 h, respectively. Sample size for each condition was 3 and Student’s t-test was used to assess the statistical differences. Each box showed the median,

the lower quartile (bottom) and upper quartile (top) in different treatment time groups. The whiskers extended from the hinge to the smallest or largest value

within 1.5 times the IQR from the box boundaries.

(C) Density distribution diagram showing the average expression of 14 genes in HCC tissue samples using scRNA-seq data (Sun et al., 2021). Small peaks

indicated by red arrowheads represent a small set of cells with a higher expression of 14 genes.
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which may indicate that the signature is useful for analysis of patient-specific prognosis, and may allow

personalized treatment protocols to be developed. We further assessed the clinical relevance of the

14-gene signature. Survival analysis indicated that HCC patients in The Cancer Genome Atlas (TCGA)

dataset with high hypoxia scores had a worse prognosis (Figure 5D; see STAR Methods). Relapse-free

survival analysis indicated that HCC patients (Sun et al., 2021) with high hypoxia scores had a higher

recurrence rate (Figure 5E; see STAR Methods). These results confirmed that the 14-gene signature might

serve as a valuable prognosis index.

In short, a robust 14-gene panel serves as hypoxia signature, whichmay be useful for evaluating the hypoxia

status in clinical samples frompatients with HCC. The signaturemight work as a prognosis index andpredict

the likelihood of relapse in a clinical context. It might also aid targeted therapy aimed at the hypoxic state.

Establishing a metastasis assessment model and extracting a metastasis feature gene set

To better decipher the contributions of the feature factors above to examine HCCmetastatic potential, we

developed an assessment model using multiple linear regression as follows (Table 1; see STAR Methods).

Metastatic potential score = 0:3957 3 EM + 8:3690 3 P + 12:5696 3 H � 6:6205

Themodel considered the contribution of EMT capacity (EM), cell proliferation (P), and hypoxia status (H) to

metastatic potential. The predicted metastatic potential scores were consistent with the actual metastatic

potential of the five cell lines (Figure 6A). We performed survival analysis using HCC data from the TCGA,

which showed this model outperformed other models that only applied a single factor (Figures 6B and 6C).

These analyses verified the reliability of our model. Combined with the metastasis-related factors we

characterized, the model could be used for evaluating the likelihood of metastasis and may provide

referable insights into metastatic mechanisms. Further analysis, beyond the five cell lines used here for

model construction, could ultimately develop a more precise model.

We further extracted a gene set which was highly correlated with metastatic potential (see STARMethods).

114 geneswere found (Table S7) and survival analysis usingHCCdata from theTCGAdatasetwas carriedout

to verify the reliability (Figure 6D). Functional enrichment analysis showed the gene set was mainly enriched

in ‘‘MYC targets v1’’, ‘‘mTORC1 signaling’’, ‘‘Reactive oxygen species pathway’’, ‘‘Glycolysis’’, and ‘‘Epithe-

lial mesenchymal transition’’ gene sets (Figure 6F). These pathways were also mainly related to cell prolifer-

ation, hypoxia, and EMT, as we used to build the model. Though we had pointed out the important role of

EMT inmetastatic potential among five cell lines, we found that both the model and feature extraction indi-

cated EMT capacity had a relatively low weight. We speculated that the potential connections between E or

M states and metastatic potential might not be applicable to all cell lines. In summary, both the model and

feature extraction analysis assessed the contribution of EMT capacity, cell proliferation, and hypoxia to the

metastatic potential at a global level which might accelerate the research for tumor mechanisms.

DISCUSSION

HCC cells exhibit extensive heterogeneity in terms of a variety of molecular and phenotypic features. In this

study, we generated a multiomics single-cell resource of five liver cancer cell lines with different metastatic

potential. Molecular heterogeneity was observed among cell lines and associated with phenotypic hetero-

geneity including EMT capacity, cell proliferation, and hypoxia status. We performed a comprehensive

Figure 5. Continued

(D) Kaplan-Meier analysis showing the survival probability of HCC patients from The Cancer Genome Atlas (TCGA) dataset. The numbers of patients and the

classification are indicated in the figure. Log rank test was used to test the statistically significant differences.

(E) Relapse-free survival curve of HCC patients using published data (Sun et al., 2021). The numbers of patients and the classification are indicated in the

figure. Log rank test was used to test the statistically significant differences. See also Figure S5.

Table 1. Coefficients and p values of the metastasis assessment model

Model EMT capacity Cell proliferation Hypoxia Intercept

p value 1.8e-05 0.31244 0.00917 0.00205 0.00018

Coefficients N/A 0.3957 8.3690 12.5696 �6.6205

Student’s t-test was used to test the statistically significant differences.

Related to Figure 6.
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assessment of how heterogeneous phenotypes track with HCC metastatic potential using this multiomics

single-cell resource. At the single-cell resolution, we found that LCSC markers characterize E or M state in

HCC, and also identified specific HY clusters. In addition, we uncovered a robust gene panel that repre-

sented a hypoxia signature, validated this in published clinical data, and found that this hypoxia signature

was associated with HCC prognosis. Our data provide a valuable resource, facilitate a deeper understand-

ing of metastatic mechanisms, and provide clinical evidence that may be a basis for personalized treatment

depending on the presence of the hypoxia signature.

The nonbinary process of EMT was also profiled at the molecular level. Prominent E or M state was respon-

sible for EMT heterogeneity in each cell line and corresponded with metastatic potential. Furthermore, in

cell populations with a hybrid EMT state, a prominent M state was an important factor for metastatic

potential. As for proliferation capacity, it gradually increased in cell lines consistent with metastatic

potential in the following order: HepG2, MHCC97L, MHCC97H, and SK-HEP-1. MHCC97L and MHCC97H

are two cell lines with a very similar genetic background but different metastatic potential. In these cells,

proliferation seems to play a major role in metastatic differences. However, Huh7 had a relationship

between proliferation capacity and metastatic potential that was inconsistent with that seen in the other

HCC cell lines. This result suggests that cell proliferation is not a factor that is essential to metastatic

A

C D E

B

Figure 6. Verification of the metastatic assessment model and extraction of metastasis feature gene set

(A) Histogram showing metastatic potential scores of one-fifth of cells for each cell line to verify reliability of the model.

(B) Survival analysis using EMT capacity, hypoxia status, and cell proliferation as indicators, respectively. The numbers of patients and the classification are

indicated in the figure. Log rank test was used to perform significance differences.

(C) Survival analysis using metastatic potential score as indicator. The numbers of patients and the classification are indicated in the figure. Log rank test was

used to perform significance differences.

(D) Survival analysis using the metastasis feature gene set as indicator. The numbers of patients and the classification are indicated in the figure. Log rank test

was used to test the statistically significant differences.

(E) Functional enrichment analysis of metastasis feature gene set referring to Hallmark gene set. Permutation test was used to test the statistically significant

differences. See also Table S7.
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potential for Huh7. HY clusters had a higher glycolytic capacity. Cells in G0_HY exhibited dormancy, inva-

siveness, and malignance characteristics, which were linked to metastatic potential. Cells in the G0_HY

cluster might be specific to hypoxia-related promotion of metastasis. We calculated hypoxia scores based

on a 14-gene panel in HCC patients. Higher hypoxia scores, indicating a poorer prognosis and an increased

chance of relapse, might highlight the contribution of hypoxia to metastatic potential. Our metastasis

assessment model systematically depicted the contribution of three factors to metastatic potential and

confirmed the model built by combining three factors outperforms those based on a single factor. Metas-

tasis feature gene set further assessed the contribution of EMT capacity, cell proliferation, and hypoxia to

the metastatic potential at a global level from the data mining perspective, which made up for the

incomplete consideration of variable factors in model construction.

At present, liver transplantation and resection are effective therapeutic options at early stages of disease,

but only 20–30% of all HCC patients are eligible for these treatment methods (She and Chok, 2015).

Sorafenib (anti-AKT) and regorafenib (anti-MEK) are the only two FDA-approved drugs used for HCC treat-

ment, but it turns out they have limited benefits in terms of survival (Caruso et al., 2019; Forner et al., 2018).

One of the reasons for poor efficacy in HCC might be the heterogeneous expression profile of drug target

genes (Figure S6). For example, in HepG2 cluster 4, the FGFR4/FGF19 signaling genes, FGFR3 and FGFR4

were downregulated or even lacking compared to other HepG2 clusters. In contrast, MET and genes

encoding enzymes that removed histone modifications,HDAC1 andHDAC3,were specifically upregulated

in cluster 4 of HepG2. Therefore, some drug targets are expressed heterogeneously, reducing the broad

efficacy of small molecule inhibitors in treating HCC.

Our data indicate that MHCC97L and MHCC97H may be more sensitive to drugs such as PHA-665752 and

JUJ-38877605 for their high expression level of MET (Figure S6). TOP2A, involved in DNA replication and

AURKB, which regulates mitosis, were upregulated in cell cycle Groups 1 and 3, indicating that they may

be sensitive to Doxorubicin acting on DNA replication and Alisertib acting onmitosis. More effective drugs

that can target cells through the gene clusters we have uncovered may exist. Meanwhile, instead of target-

ing the cell cycle pathway, cells in the G0_HY cluster might be sensitive to drugs targeting EGFR (a tyrosine

kinase). These results suggest that HCC cells may have different drug responses depending on their intra-

tumoral vs. extratumoral location. We speculate that a multi-target drug combination will bemore effective

thanmonotherapy, andour study suggests the important role of personalizedmedicine in cancer treatment.

In summary, our results advance understanding of metastasis in HCC, and have practical implications for

the clinic. The data and analysis will hopefully provide a basis for clinical treatment and improve the

outcomes of cancer therapy.

Limitations of the study

In this work, we systematically assessed the pro-metastasis contributors in HCC cell lines involving EMT, cell

proliferation, and hypoxia. Nevertheless, it is hard to deny that metastasis is a very complex process that

encompasses multiple aspects, especially in vivo microenvironment. Because employed HCC cell lines

that were cultured in vitro, we paid more attention to the characteristics of HCC cells in metastasis rather

than the interaction between HCC cells and microenvironment which is crucial for metastasis. Collecting

more clinical samples will support further investigations. Besides, though we proved the reliability of the

metastatic assessment model, a larger sample size is required for large-scale use of the model. In

this context, combining multiple aspects analysis on large-scale sample size will allow for more thorough

integration and a more precise model.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE Mouse Anti-Human CD24 BD Cat# 555428; RRID: AB_395822

CD133/1 Antibody, Anti-human Miltenyi Biotec Cat# 130-113-668; RRID: AB_2726210

CD326 (EpCAM) Antibody, Anti-mouse Miltenyi Biotec Cat# 130-118-075; RRID: AB_2751452

PE-Cy7 Mouse Anti-Human CD90 BD Cat# 561558; RRID: AB_10714644

BB515 Mouse Anti-Human CD54 BD Cat# 564685; RRID: AB_2738892

APC Mouse Anti-Human CD44 BD Cat# 559942; RRID: AB_398683

Chemicals, peptides, and recombinant proteins

Dulbecco’s modified Eagle’s medium (DMEM) Gibco Cat# 11-995-040

Fetal bovine serum (FBS) Gibco Cat# 26010066

Penicillin-Streptomycin Gibco Cat# 15140122; CAS: 8025-06-7

Trypsin (0.25%) Gibco Cat# 25200056; CAS: 9002-07-

FcR Blocking Reagent Miltenyi Biotec Cat# 130-059-901; RRID: AB_2892112

AMPure XP Beckman Coulter Cat# A63882

Transposase BGI Cat# BGE005

Streptavidin kit Bio-Rad Cat# LNK163STR

EZ-link Sulpho-NHS S-S Biotin Thermo Fisher Scientific Cat# 21328

Tris-HCl pH7.5 Thermo Fisher Scientific Cat# 15567027

5 M NaCl Thermo Fisher Scientific Cat# AM9760G; CAS: 7647-14-5

1 M MgCl2 Thermo Fisher Scientific Cat# AM9530G; CAS: 7786-30-3

0.1% Tween-20 Sigma Cat# P9416; CAS: 9005-64-5

0.1% NP-40 Roche Cat# 11754599001; CAS: 123359-41-1

0.01% Digitonin Sigma Cat# D141-100MG; CAS: 59033-71-5

1% bovine serum albumin (BSA) BBI Cat# A600332-0005; CAS: 9048-46-8

Deposited data

Raw and analyzed data This paper CNSA: CNP0001350

Expression profiling of hypoxic HepG2 hepatoma,

U87 glioma, and MDA-MB231 breast cancer cells

Ye et al. (2019) GEO: GSE18494

Single-cell RNA-seq data from HCC clinical tissues Sun et al. (2021) CNSA: CNP0000650

Expression profiling of HCC patients TCGA TCGA-LIHC

Experimental models: Cell lines

HepG2 BGI technology services center RRID: CVCL_0027

MHCC97H BeNa Culture Collection RRID: CVCL_4972

Huh7 Zhongshan Hospital,

Fudan University

RRID: CVCL_0336

MHCC97L Zhongshan Hospital,

Fudan University

RRID: CVCL_4973

SK-HEP-1 ATCC RRID: CVCL_0027

NIH/3T3 ATCC RRID: CVCL_0594

Oligonucleotides

Oligonucleotides for CITE-seq This paper Table S8

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Liang Wu (wuliang@genomics.cn).

Materials availability

This study did not generate new unique reagents

Data and code availability

d Single-cell sequencing data have been deposited at the CNGB Sequence Archive (CNSA) (Guo et al.,

2020) of the China National GeneBank DataBase (CNGBdb) (Chen et al., 2020) with accession number:

CNP0001350.

d All original code has been deposited at Github and is publicly available as of the date of publication

(GitHub: https://github.com/xuanxuanzou/Hepatoma-cell-line).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Liver cancer cell lines and NIH/3T3 culture

This study was approved by the Institutional Review Board on Ethics Committee of BGI (permit no. BGI-

IRB20200811003). Cell lines including HepG2 (BGI technology services center, China), Huh7, MHCC97L,

MHCC97H (BeNa Culture Collection, China), SK-HEP-1 (ATCC, USA), and NIH/3T3 (ATCC, USA) were

employed in the experiment. Huh7 and MHCC97L were kindly provided by Zhongshan Hospital, Fudan

University. Cells were cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM, Gibco,

USA) containing 10% fetal bovine serum (FBS, Gibco, USA) and 1% Penicillin-Streptomycin (Gibco, USA).

Trypsin (0.25%) (Gibco, USA) was used to dissociate cells which were then resuspended in DMEM cell

culture medium. All cell lines are male. HepG2 was authenticated by short tandem repeats (STR). The

remaining cell lines were not authenticated.

METHOD DETAILS

Single-cell preparation and cellular indexing of transcriptomes and epitopes by sequencing

(CITE-seq)

Oligonucleotides with a 50aminemodification were synthesized (see Table S8 for oligonucleotides informa-

tion). Antibodies used included CD24, CD44, CD54, and CD90 from BD (USA) and CD133, EPCAM from

Miltenyi Biotec (Germany). To exclude nonspecific antibody binding, we spiked 5% NIH/3T3 into HCC cells

as a negative control before cell staining. Species-specific mouse cells are easily distinguished from HCC

cells and can be used to calibrate background noise. Oligonucleotides were biotinylated with EZ-link

Sulpho-NHS S-S Biotin (Thermo Fisher Scientific, USA) and antibodies were linked to oligonucleotides us-

ing streptavidin kit (Bio-Rad, USA). Pooled cells from NIH/3T3 and each cell line were incubated with FcR

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Seurat (version 3.1) Stuart et al. (2019) RRID: SCR 016341; https://github.com/satijalab/seurat

ArchR (version 0.9.5) Granja et al. (2021) RRID: SCR_020982; https://github.com/GreenleafLab/ArchR

clusterProfiler (v3.16.0) Yu et al. (2012) RRID: SCR_016884; https://github.com/YuLab-SMU/

clusterProfiler

PISA (version 0.3) N/A https://github.com/shiquan/PISA

STAR (version 2.5) Dobin et al. (2012) RRID: SCR_004463; https://github.com/alexdobin/STAR

GSEA Mootha et al. (2003);

Subramanian et al. (2005)

RRID: SCR_003199; http://www.gsea-msigdb.org/

gsea/index.jsp
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Blocking Reagent (Miltenyi Biotec, Germany) for 10 min at 4�C and then incubated with antibody-oligo

complexes for 30 min at 4�C. We followed manufacturer’s instructions (Countstar, China) to count cells

and their viability. All cells employed in the experiment had a viability >91%. We then resuspended cells

in cell resuspension buffer at a concentration of 1,000 cells/mL and DNBelab C Series Single-cell System

helped construct the single-cell library (Liu et al., 2019). Antibody derived tags (ADT) and cDNA were sepa-

rated using AMPure XP (Beckman Coulter, USA) and libraries were constructed. The final sequencing library

comprised 10% ADT and 90% cDNA library and was sequenced using a BGISEQ500 sequencer with the

paired-end (PE) model. Reads 1 and reads 2 included 100-bp cDNA sequences and 41-bp barcode/unique

molecular identifier (UMI) sequences respectively.

Single-nucleus preparation and single-cell assay for transposase-accessible chromatin

sequencing (scATAC-seq)

Cells were collected in 1.5 mL centrifuge tube and added lysis buffer which consisted of 10 mM Tris-HCl

pH7.5 (Thermo Fisher Scientific, USA), 10 mM NaCl (Thermo Fisher Scientific, USA), 3 mM MgCl2 (Thermo

Fisher Scientific, USA), 0.1% Tween-20 (Sigma, USA), 0.1% NP-40 (Roche, Switzerland), 0.01% Digitonin

(Sigma, USA), and 1% bovine serum albumin (BSA, BBI, UK). Then the lysates were centrifuged at 500 g

for 5 min at 4�C and the supernatant was discarded. The obtained nuclei were then washed three times

with ATAC wash buffer (10 mM Tris-HCl pH7.5 (Thermo Fisher Scientific, USA), 10 mMNaCl (Thermo Fisher

Scientific, USA), 3 mM MgCl2 (Thermo Fisher Scientific, USA), 0.1% Tween-20 (Sigma, USA), 1% bovine

serum albumin (BSA, BBI, UK)). Nuclei were then transposed using transposase (BGI, China) and were

resuspended in nuclear resuspension buffer. Transposed single-nucleus suspensions were converted to

barcoded scATAC-seq libraries, through procedures including droplet encapsulation, pre-amplification,

emulsion breakage, capture beads collection, DNA amplification and purification. The libraries were

sequenced on the ultra-high-throughput DIPSEQ T1 sequencer with PE 50-bp read length.

CITE-seq data processing and filtering

For human-mouse mixed data, raw scRNA-seq reads were aligned to the human reference genome

(GRCh38) and mouse genome (mm10) using STAR (version 2.5) (Dobin et al., 2012). We removed cells

with less than 500 UMI mapping to the human or mouse genome. For the reads with same cell barcode,

if more than 90% of UMI counts were aligned to human genome, cell corresponding to the reads was

determined from human. If it was less than 10% of UMI counts were aligned to human genome, cell corre-

sponding to the reads was determined from mouse. Cells with reads in between 10% UMI counts and 90%

UMI counts mapped to human genome were considered mixed species and were removed. Cell versus

gene UMI count matrix was generated with PISA (version 0.3): https://github.com/shiquan/PISA.

CITE-seq ADT data processing and filtering

CITE-seq ADT data included the protein expression of six surface markers. Antibody barcodes and cell

barcodes were directly extracted from the reads in the sequencing data files. ADT was assigned to individ-

ual cell according to cell barcodes and assigned to antibodies according to antibody barcodes. Cells with

less than 10 ADT UMI counts were removed from the subsequent analysis. Cell versus ADT UMI count

matrix was generated with PISA (version 0.3): https://github.com/shiquan/PISA. The six dimensions ADT

count data were normalized and applied the centered log ratio (CLR) transformation (Stoeckius et al.,

2017). Then we defined the species-independent cutoff using the median of normalized ADT counts

from mouse cells. The value of each ADT in HCC cells was calculated by subtracting the median value in

mouse cells.

Single-cell RNA sequencing (scRNA-seq) cell clustering and differential gene expression

analysis

Clustering analysis of the cell lines dataset was performed using Seurat (version 3.1) (Stuart et al., 2019) in

the R program. Parameters used in each function weremanually curated to portray the optimal clustering of

cells. In preprocessing, the data of cell lines was treated separately. Cells were filtered based on the criteria

of expressing a minimum of 200 genes and less than 5%mitochondrial UMI. Data per gene were expressed

using a minimum of 3 cells. Filtered data were ln (counts per million (CPM)/100 + 1) transformed.

In the process of clustering with each cell line, top 2000 highly variable genes were chosen according to

their average expression and dispersion. Each gene was scaled using the default option. Dimension
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reduction analysis started with principal component analysis (PCA), and the number of principal compo-

nents used for UMAP depended on the importance of embeddings. The Louvain method was then used

to detect subgroups of cells. Top 16 principal components (PCs) were used to build the K-NN graph by

setting the number of neighbors K as 20. Clusters were identified using a resolution of 0.5. Differentially

expressed gene (DEGs) analysis in each cell line was performed using the FindAllMarkers function of the

Seurat package (version 3.1).

In the process of clustering with five merged cell lines, filtered data in each cell line were used and then the

procedures of merged data were identical to those for a single cell line, except that the top 15 PCs were

used to build the K-NN graph and clusters were identified using a resolution of 0.7.

ScATAC-seq data processing and clustering

Raw sequencing reads from DIPSEQ-T1 were filtered and demultiplexed using PISA (version 0.3): https://

github.com/shiquan/PISA. Cells with a low fragment (<1000) and transcription start site (TSS) proportion

(<0.1) were removed. The filtered data were imported into R and dimensionality was reduced by latent

semantic indexing. We analyzed scATAC-seq data using ArchR (version 0.9.5) (Granja et al., 2021). Peak

calling was performed using MACS2 (version 2.1.2) (Feng et al., 2012) with options set to -f BAM -B -q

0.01 –nomodel. The cell versus peak reads count matrix was generated using a custom script. The gene

activity score matrix was calculated by ArchR.

Integrating analysis of scATAC-seq and scRNA-seq datasets

FindTransferAnchors function was used to get the anchors between scATAC-seq and scRNA-seq datasets

in Seurat, and then all data were co-embedded by the TransferData function of Seurat. Top 30 PCs were

used in RunUMAP function for obtaining cluster coordinates.

Epithelial and mesenchymal analysis

We examined epithelial (E) and mesenchymal (M) related gene expression programs in five HCC cell lines

by calculating the E score and M score based on scRNA-seq data. The E score and M score of each cell was

calculated with gsva() in the R package GSVA (Gene Set Variation Analysis) using E and M gene sets

collected from previous research (Table S2) (Huang et al., 2013; Aiello et al., 2018). Position of cells were

decided according to the two scores on EMT scatter diagram and cell lines’ information was projected

on the plot. At the pseudo-bulk level, the average scores of E and M in each cell line were plotted on

the scatter diagram. Density distribution was displayed for each cell line based on E score and M score.

In data consistency analysis, we aggregated single-cell level counts/gene activity score into ‘‘pseudo-bulk’’

data at the level of cell line in scRNA-seq or scATAC-seq, then normalized the ‘‘pseudo-bulk’’ data. Data

consistency between the two omics in terms of EMT were assessed using Pearson correlation coefficient

analysis referring to the E and M gene set (Table S2).

In the relevance analysis of LCSC markers with the EMT program, the protein expression of CD24, EPCAM,

CD44, and CD54 was projected on the scatter diagram of E andM states where all cells weremerged based

on scRNA-seq data.

Pearson correlation coefficient analysis was used to assess the correlation of LCSC markers with E or M

state. The protein expression of CD24, EPCAM, CD44, and CD54 was used to calculate the correlation

with E or M score. Those who satisfied with the conditions of | r | > 0.1 and p < 0.05 on both the E and

M scales were considered to be correlated.

In intercellular EMT state heterogeneity analysis, the protein expression of each cell line of CD24, EPCAM,

CD44, and CD54 was projected on the scatter diagram of E and M states (cell lines were not merged). First,

all cells were divided into 3 categories according to protein expression. Those greater than the upper quar-

tile were defined as ‘‘High’’, then those lower than the lower quartile were defined as ‘‘Low’’, and others

were defined as ‘‘Medium’’.

In Huh7, Wilcoxon rank-sum test was used to assess statistically significant differences in E or M score be-

tween "High" and the remaining cells.
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Cell cycle phase confirmation in five cell lines

Gene sets reflecting five phases of the HeLa cell cycle (G1/S, S, G2/M, M, and M/G1) were taken from

previous studies (Whitfield et al., 2002; Macosko et al., 2015). We removed the influence of genes that

were previously detected in HeLa cells but did not appear in HCC cell lines data. Genes that were highly

correlated (Spearman’s rank correlation coefficient, r > 0.3) with the average signature of the respective

cell cycle phase (before excluding genes) were used to define cell cycle signatures (Table S5). The cell

cycle score of each cell was defined as mean gene expression of the five cell cycle phase genes. Five

cell cycle signature scores were generated for each cell, using averaged normalized expression levels (ln

(CPM/100 + 1)) of genes in each set. Based on five cell cycle signatures, we first constructed a low dimen-

sional embedding by t-SNE method, then inferred the cell cycle pattern of each cell based the t-SNE

embedding by K-means clustering (with K = 4) (Wagstaff et al., 2001). Student’s t-test was used to assess

statistically significant differences in this section.

Cluster correlation and functional enrichment analysis

In cluster correlation analysis, we identified theDEGs in each cluster relative to the other 28 clusters. DEGs that

were shared by two clusters were used to calculate pairwise correlations which were defined as the value of the

intersection of DEGs divided by the union of DEGs. Functional enrichment analysis using highly expressed

DEGs (log FC > 0.25 and shared in at least two clusters) was performed in clusterProfiler (v3.16.0) (Yu et al.,

2012) package referring to gene ontology (GO) term enrichment analysis of biological process (BP).

In metastasis feature gene set analysis, we performed the enrichment analysis of 114 genes on theGene Set

Enrichment Analysis (GSEA): http://www.gsea-msigdb.org/gsea/index.jsp (Mootha et al., 2003; Subrama-

nian et al., 2005) using the Hallmark gene set.

Establishment and verification of metastasis assessment model

E andMgene sets in Table S2 were used and the average gene expression of E andMgenes was calculated.

Then the ratios of M/E were chosen to represent EMT capacity, and the average expression of G2/M gene

set in Table S5 was used to represent cell proliferation capacity of cell lines. The average gene expression of

Hallmark hypoxia genes was used to represent the hypoxia status of cell lines. According to the actual met-

astatic potential of cell lines, 1, 2, and 3 were set as the initial value of three levels of metastatic potential.

ScRNA-seq data in each cell line were randomly divided into five equal parts. Four parts of the data were

used to establish the metastasis assessment model by multiple linear regression with lm() function in R,

and the last part was used for subsequent model verification by evaluating the Pearson correlation coeffi-

cients betweenmetastasis potential score and initial value ofmetastasis potential score of five cell lines. Stu-

dent’s t-test was used to test the statistically significant differences. We verified the result through five-fold

crossover, and then selected the model with the highest correlation as the final version.

The Cancer Genome Atlas (TCGA) data of HCC patients were used to further assess the reliability of the

model in a Kaplan-Meier survival analysis. We performed survival analysis for EMT capacity, cell prolifera-

tion capacity, hypoxia status, and metastasis score respectively. p values were used to confirm the best

indicator.

Metastasis feature gene set analysis

The initial metastatic potential value of each cell was set as 1, 2, and 3 according to the actual metastatic

potential of cell lines, then we calculated the Pearson correlation coefficients between the value and gene

expression in each cell. Those genes with r > 0.5 and p < 0.05 were further verified using univariate Cox

hazard analysis, and the genes (log rank p < 0.05) were retained as the candidate genes.

Survival analysis

The mean gene expression of 14 genes was used to define the hypoxia score. In survival analysis using

TCGA data, the median value was chosen as a cutoff to classify HCC patients into two groups according

to hypoxia score. The Kaplan-Meier survival analysis was performed to assess the difference in overall sur-

vival (OS) between the high hypoxia score group and low hypoxia score group. In a relapse-free survival

analysis, samples were divided into high hypoxia score and low hypoxia score groups based on the hypoxia

score as determined using the R function surv_cutpoint. Kaplan-Meier survival analysis was carried out to

assess the difference in relapse-free survival ratios between the high-score and low-score group.
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To verify the reliability of the model, the median values of the metastasis score, EMT capacity, cell prolif-

eration capacity, and hypoxia status were used as the cutoff to classify patients into two groups respec-

tively. Kaplan-Meier survival analysis was carried out to assess the difference in OS between the high-score

and low-score group.

To verify the reliability of the metastasis feature gene set, the average expression of 114 genes was

calculated and the median value was used as the cutoff to classify patients into two groups. Kaplan-Meier

survival analysis was carried out to assess the difference in OS between the high-risk and low-risk group.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed on the R 3.6.0 framework. In the analysis of violin plot depicting expression

level of CD24, EPCAM, CD44, and CD54 in triple-omics, E or M score assessment between "High" and

the remaining cells in Huh7, hypoxia related genes (Hallmark gene sets) expression levels in cells with

metastatic ability or none metastatic ability, and tricarboxylic acid (TCA) scores and glycolysis scores be-

tween hypoxia (HY) clusters and other cells, Wilcoxon rank-sum test was used to test the statistically signif-

icant differences. In the analysis of cell cycle phases scores among clusters, genes (CASP8, CDKN1B,

VEGFA, and EGFR) expression levels among groups, metastasis assessment model establishing, and hyp-

oxia score among different treatment time groups, Student’s t-test was used to assess the statistical differ-

ences. In the enrichment analysis of HY clusters’ cells in G0 phase, Chi-Squared test was used to test the

statistically significant differences. In the survival analysis and metastasis feature gene set analysis, log

rank test was used to assess the statistical differences. In the functional enrichment analysis of Group 1-

3, hypergeometric test was used to test the statistically significant differences. In the functional enrichment

analysis of metastasis feature gene set, permutation test was used to test the statistically significant

differences.

In the analysis of correlation between LCSC markers and E or M state, metastasis assessment model

choosing, and metastasis feature gene set extracting, Pearson correlation coefficient was used to evaluate

the correlation. In the filtering analysis of cell cycle related genes, Spearman’s rank correlation coefficient

was used to evaluate the correlation.
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