@'PLOS ‘ ONE

®

CrossMark

dlick for updates

E OPEN ACCESS

Citation: Savage CR, Arnold WK, Gjevre-Nail A,
Koestler BJ, Bruger EL, Barker JR, et al. (2015)
Intracellular Concentrations of Borrelia burgdorferi
Cyclic Di-AMP Are Not Changed by Altered
Expression of the CdaA Synthase. PLoS ONE 10(4):
€0125440. doi:10.1371/journal.pone.0125440

Academic Editor: Yung-Fu Chang, Cornell
University, UNITED STATES

Received: December 12, 2014
Accepted: March 12, 2015
Published: April 23,2015

Copyright: © 2015 Savage et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: Funded by an exploratory grant from the
University of Kentucky College of Medicine to B.
Stevenson, and National Science Foundation grant
MCB1253684 to CMW. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: BS is an Academic Editor of
PLoS One. The authors declare that no other
competing interests exist.

Intracellular Concentrations of Borrelia
burgdorferi Cyclic Di-AMP Are Not Changed
by Altered Expression of the CdaA Synthase

Christina R. Savage', William K. Arnold’, Alexandra Gjevre-Nail', Benjamin J. Koestler?,
Eric L. Bruger?, Jeffrey R. Barker®, Christopher M. Waters?, Brian Stevenson'*

1 Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of
Medicine, Lexington, Kentucky, United States of America, 2 Department of Microbiology and Molecular
Genetics, Michigan State University, East Lansing, Michigan, United States of America, 3 Department of
Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University, Durham, North
Carolina, United States of America

* brian.stevenson @uky.edu

Abstract

The second messenger nucleotide cyclic diadenylate monophosphate (c-di-AMP) has
been identified in several species of Gram positive bacteria and Chlamydia trachomatis.
This molecule has been associated with bacterial cell division, cell wall biosynthesis and
phosphate metabolism, and with induction of type | interferon responses by host cells. We
demonstrate that B. burgdorferi produces a c-di-AMP synthase, which we designated
CdaA. Both CdaA and c-di-AMP levels are very low in cultured B. burgdorferi, and no con-
ditions were identified under which cdaA mRNA was differentially expressed. A mutant B.
burgdorferi was produced that expresses high levels of CdaA, yet steady state borrelial c-
di-AMP levels did not change, apparently due to degradation by the native DhhP phospho-
diesterase. The function(s) of c-di-AMP in the Lyme disease spirochete remains enigmatic.

Introduction

Several different compounds are produced by bacteria that serve as internal signals to control
global gene expression and other functions. These include modified nucleotides such as cyclic-
AMP and cyclic-di-GMP [1]. Fairly recently, a distinct cyclic molecule that consists of two
AMP moieties, cyclic diadenylate monophosphate (c-di-AMP), was identified in some firmi-
cute, actinomycete, and Chlamydia species [1-7]. This signaling molecule can significantly af-
fect expression of numerous genes, and impact cell division, cell wall formation, and virulence
[8-21]. In addition, bacterial c-di-AMP can invoke strong innate immune responses by eukary-
otic hosts [2,5,22-26].

Borrelia burgdorferi, the Lyme disease spirochete, encounters numerous microenviron-
ments during its vector-host infectious cycle. Efficient survival and transmission requires that
the spirochete produces optimal levels of specific proteins and other components necessary
for each step of the cycle. Upon sequencing the B. burgdorferi genome, it was surprising that
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this microbe encodes only two 2-component sensory/regulatory systems, two alternative
sigma factors and very few other recognizable regulatory proteins [27]. However, in the inter-
vening years, several previously-unknown types of regulatory proteins and messenger mole-
cules have been discovered in Lyme disease spirochetes, and there may yet more to be
uncovered [28,29]. Current understanding of B. burgdorferi regulatory pathways is far more
complex than initially envisioned, with multiple interacting factors that cooperate or compete
with each other to fine-tune borrelial protein expression patterns.

Herein, we describe that the B. burgdorferi genome contains a previously-unannotated
open reading frame which encodes a protein with a “DAC” motif (di-adenlylate cyclase), a
domain that contains conserved residues which are involved with synthesis of c-di-AMP. We
now demonstrate that the encoded protein possesses the hypothesized enzymatic activity. As
discussed in greater detail in the results section, the protein has been designated CdaA (cyclic
di-AMP synthase), and that nomenclature will be used through the remainder of this report.

While this work was in progress, another research group also demonstrated that B. burgdor-
feri can produce c-di-AMP, although they did not identify the responsible enzyme [30]. Adding
turther significance to our characterization of B. burgdorferi c-di-AMP synthesis, those authors
reported that the borrelial DhhP phosphodiesterase can degrade c-di-AMP. Inactivation of
DhhP led to accumulation of c-di-AMP and altered expression levels of the alternative sigma
factor RpoS and the virulence-associated OspC membrane protein [30].

We now show that, although expression of CdaA in the heterologous host Escherichia coli re-
sulted in high level production of c-di-AMP, increased expression of CdaA in B. burgdorferi did
not significantly impact the intracellular concentration of c-di-AMP. We conclude that changes
to c-di-AMP levels in B. burgdorferi are not primarily driven by changing expression of CdaA.

Materials and Methods
In silico proteomic analyses

B. burgdorferi genome databases were analyzed by BLAST-P (http://www.ncbi.nlm.nih.gov/
BLAST), restricting searches to the genus Borrelia. The C. trachomatis LGV-L2 c-di-AMP
synthase (GenBank locus number YP_007715533) [5] was used as the query. Using Clustal X
[31], the predicted sequence of B. burgdorferi CdaA was compared with sequences of other pre-
viously-defined c-di-AMP synthases: Bacillus subtilis CdaA (formerly YbbP, GenBank locus
BAA19509), Listeria monocytogenes DacA (GenBank locus BN389_21520), Staphylococcus au-
reus (GenBank locus SAV2163), C. trachomatis DacA (GenBank locus YP_007715533).

Genomes of Treponema and Leptospira species were queried by BLAST-P using B. burgdor-
feri CdaA sequence as input, with output limited to those genera.

Sequenced B. burgdorferi genomes were also examined by BLAST-P for presence of homologs
of the following c-di-AMP binding proteins that have been identified in other bacterial species:
M. smegmatis DarR, GenBank locus ABK70852 [15]; Streptococcus pneumoniae CabP, GenBank
locus SPD_0076 [16]; Staphylococcus aureus KtrA, GenBank locus SAUSA300_0988 [32]; Staphy-
lococcus aureus CpaA, GenBank locus SAUSA300_0911 [32]; Staphylococcus aureus KdpD, Gen-
Bank locus AFH70306 [32]; and Staphylococcus aureus PstA, GenBank locus AFH69624 [32].

Bacteria and plasmids

The cdaA gene was cloned from strain B31-MI-16, a derivative of the B. burgdorferi type
strain [27,33]. Strain B31-e2, which lacks the wild-type restriction endonucleases, was used
for all studies of transformed borreliae [34]. Control strain KS50 was derived from B31-e2 by
transformation with the empty vector pSZW53-4 [35]. Borreliae were cultured in BSK-II
broth at 35°C [36].
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The cdaA open reading frame was PCR amplified using oligonucleotide primers CDAA-1
and CDAA-2 (Table 1). Primer CDAA-1 introduces a strong AGGAGG ribosome-binding site
upstream of the cdaA initiation codon. The resultant amplicon was cloned in pCR2.1 (Invitro-
gen, Carlsbad, CA), and transformed into E. coli DH50.. The insert of the resultant plasmid
was sequenced on both strands to confirm that mutations were not introduced during cloning
methods, and that the cdaA ORF was oriented such that transcription could be driven by the
vector’s lac promoter. This E. coli strain was designated CRS-0. Transcription of cdaA was in-
duced in mid-exponential cultures of CRS-0 by addition of isopropyl-thiogalactoside (IPTG)
to a final concentration of 60 pg/ml.

The cdaA ORF was then PCR amplified using primers CDAA-11 and CDAA-12 (Table 1).
The B. burgdorferi-E. coli shuttle vector pSZW53-4 [35] was PCR amplified using primers
CDAA-13 and CDAA-14. The two amplicons were annealed together by isothermal assembly
[37], and E. coli DH50. was transformed with the assembly reaction mixture. The resultant
plasmid, pAG1, was purified and the insert sequenced to confirm that no mutation had been
introduced, and that the cdaA ORF was in the correct orientation. That construct was intro-
duced into B. burgdorferi B31-e2, and transformant strain AG1 was selected by addition of
kanamycin to 200 pg/ml [38].

For studies of the effects of cdaA hyperexpression, mid-exponential phase cultures (approxi-
mately 107 bacteria/ml) of AG1 were equally divided into two tubes. Transcription of cdaA was
induced by addition of 0.5 ug/ml (final concentration) anhydrotetracycline (ATc) to one tube,

Table 1. Oligonucleotide primers used in these studies.

Name

CDAA-1
CDAA-2
CDAA-11
CDAA-12
CDAA-13
CDAA-14
cdaA-F
cdaA-R
gFlaB1
gFlaB2
recA-F
recA-R
ospC-F
ospC-R
rpoS-F
rpoS-R
rpoN-F
rpoN-R
bosR-F
bosR-R
csrA-F
csrA-R
dhhP-F
dhhP-R

Sequence (5’ to 3°)

TTGAGGAGGATCCTAATGATAGACATAAATG

Purpose

Cloning B. burgdorferi cdaA for expression in E. coli

TTCGGTACCTTACTCTATTAGCTCTAG Cloning B. burgdorferi cdaA for expression in E. coli
CCTATCAGTGATAGTGAAAAAGGAGGATCCTAATGATAGACATAAATG PCR of cdaA for cloning into pSZW53-4
CACAAGAGGCGACAGACTGCAGGTACCTTACTCTATTAGCTCTAG PCR of cdaA for cloning into pSZW53-4
CTAGAGCTAATAGAGTAAGGTACCTGCAGTCTGTCGCCTCTTGTG PCR of pSZW53-4 for cloning cdaA
CATTTATGTCTATCATTAGGATCCTCCTTTTTCACTATCACTGATAGG PCR of pSZW53-4 for cloning cdaA
CTCTTCACGATGGAGCTGTAAT Q-RT-PCR analysis of B. burgdorferi cdaA
GTCCTGCTCTATGTCTTGTTCC Q-RT-PCR analysis of B. burgdorferi cdaA
GGAGCAAACCAAGATGAAGC Q-RT-PCR analysis of B. burgdorferi flaB
TCCTGTTGAACACCCTCTTG Q-RT-PCR analysis of B. burgdorferi flaB
GCCGCTACAGAATCAACTACA Q-RT-PCR analysis of B. burgdorferi recA
GTTGCAGAACTTTGGCTTAGTC Q-RT-PCR analysis of B. burgdorferi recA
CTTGCTGTGAAAGAGGTTGAAG Q-RT-PCR analysis of B. burgdorferi ospC
CTCCCGCTAACAATGATCCA Q-RT-PCR analysis of B. burgdorferi ospC
TTTGGGACTATTGTCCAGGTTAT Q-RT-PCR analysis of B. burgdorferi rpoS
CCCTTGAACAAGATTCAACTCTAAA Q-RT-PCR analysis of B. burgdorferi rpoS
GGCCAATGAACTTGAGCATTT Q-RT-PCR analysis of B. burgdorferi rooN
GCTCCACCAACAGAGCTAAA Q-RT-PCR analysis of B. burgdorferi rooN
TGCAATGCCCTGAGTAAATGA Q-RT-PCR analysis of B. burgdorferi bosR
TGCAATCAAGTCCACCCTATTC Q-RT-PCR analysis of B. burgdorferi bosR
ATGCTAGTATTGTCAAGAAA Q-RT-PCR analysis of B. burgdorferi csrA
TGCTTATATTGTGTTTGTCT Q-RT-PCR analysis of B. burgdorferi csrA
CTTCTTCTAGCTCTGGCAAAGA Q-RT-PCR analysis of B. burgdorferi dhhP
CCCAACTATAATCGAACCATCCT Q-RT-PCR analysis of B. burgdorferi dhhP

doi:10.1371/journal.pone.0125440.1001
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and both were incubated for 24h at 35°C. For each pair of induced/uninduced AG1 bacteria,
equivalent aliquots were processed for total protein, RNA, and/or cytoplasmic extracts.

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and
immunoblotting

Bacterial protein contents were assessed by electrophoresis in SDS-PAGE and staining with
Coomassie brilliant blue.

For immunoblot analyses, equal loading of B. burgdorferi cell extracts was assessed by im-
munoblot against the constitutively-expressed FlaB subunit of the flagella, using monoclonal
antibody H9724 [39]. Rabbit polyclonal antisera directed against CdaA was obtained from
NeoBioLab (Woburn, MA), who used as antigen a polypeptide consisting of CdaA residues
193-205, NVDSISKAFGTRH, using their standard protocol. Bound antibodies were detected
using appropriate horseradish peroxidase-conjugated secondary antibodies and SuperSignal
West Pico chemiluminescence reagent (Thermo Scientific).

Analyses of c-di-AMP

E. colilacks a native c-di-AMP synthetase, and is therefore a useful tool to determine whether
or not a protein can produce c-di-AMP [5,9,13]. Thus, cytoplasmic extracts of IPTG-induced
E. coli CRS-0 were produced to assess production of c-di-AMP by CdaA. Cytoplasmic extracts
were also produced from induced and uninduced B. burgdorferi AG1. For all such analyses,
equal volumes of cultures with equivalent concentrations of bacteria were harvested by centri-
fugation. Bacterial pellets were resuspended in equal volumes of extraction buffer (40:40:20
mixture of methanol, acetonitrile, and 0.1 N formic acid [by volume]), and incubated at -20°C
for 30 min. Cellular debris was pelleted by centrifugation, supernatant decanted into a fresh
tube, then stored at -80°C. c-di-AMP was quantified by ultra performance liquid chromatogra-
phy—tandem mass spectrometry (UPLC-MS/MS) of equal volumes of each bacterial extract,
as previously described [5,40].

Quantitative reverse-transcription PCR (g-RT-PCR)

Total RNA was extracted from each set of induced and uninduced bacteria, and cDNA pre-
pared according to previously described methods [41]. For each RNA sample, controls lacking
reverse transcriptase were included to confirm absence of contaminating genomic DNA. Each
strain and culture condition was independently replicated three times.

Oligonucleotide primer pairs were designed to specifically amplify the B. burgdorferi cdaA,
ospC, rpoS, rpoN, bosR, csrA, dhhP, flaB and recA transcripts (Table 1). The specificity of each
primer pair was tested by PCR of B. burgdorferi B31-MI total genomic DNA, and subsequent
agarose gel electrophoresis and ethidium bromide staining. The borrelial flaB is generally con-
sidered to be constitutively expressed, and is commonly used as an internal standard against
which expression levels of other transcripts are determined [41-44]. Ye et al. used an alterna-
tive internal standard, recA, for their analyses of the transcription effects of DhhP levels [30].
Both flaB and recA were used in the current study, in part to compare validity of the two targets
as internal standards.

Levels of each target mRNA were assessed by Q-RT-PCR from each sample condition, and
performed in duplicate. Transcript fold changes between uninduced and induced cultures of
KS50 and AG1 were determined by the AACt method [45], using both flaB and recA as the
standard. Multiple t tests between each transcript fold-changes were performed to determine
significance, which were presented graphically (GraphPad Prism version 6.0 for Mac OS X,
GraphPad Software, San Diego CA, www.graphpad.com).
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Results
B. burgdorferi CdaA synthesizes c-di-AMP

The GenBank bacterial genome database was analyzed by BLAST-P, using the C. trachomatis
LGV-L2 c-di-AMP synthase as query. Only one potential homolog was identified in B. burg-
dorferi type strain B31, ORF BB0008, with an E value of 2 x 10™°. Significantly, the borrelial
protein contains a consensus DAC domain (Fig 1). Alignment of the predicted borrelial gene
product demonstrated extensive homology with other bacterial c-di-AMP synthases (Fig 1).

E. coli does not naturally carry a gene for c-di-AMP synthase, so expression of an exogenous
protein in E. coli is a simple means to determine that protein’s ability to produce c-di-AMP
[5,9]. To that end, the identified borrelial ORF was cloned into E. coli vector pCR2.1, such that
its transcription is directed by the vector’s lac promoter. The resultant plasmid was introduced
into E. coli DH5aq,, producing strain CRS-0. Cytoplasmic extracts were prepared from induced
CRS-0, then analyzed for presence of c-di-AMP by liquid chromatography coupled with tan-
dem mass spectrometry. E. coli expressing the borrelial gene produced readily detectable levels
of c-di-AMP (Fig 2).

Thus, it can be concluded that the B. burgdorferi gene encodes a c-di-AMP synthase. A re-
cent proposal has been put forth that DAC domain proteins similar to the borrelial enzyme be
named DacA [9]. However, that designation had long ago been given to bacterial D-alanyl-D-
alanine carboxypeptidase [46], and B. burgdorferi possesses a gene for that enzyme (ORF
BB0605) [27]. We decided not to unnecessarily confuse matters by giving the same name to

Bb MI--DINDLNQIKDTFSRILDLSLISILVYYIYKNVINSYSTNLLKGMLIIISVGIISYYLNLYTISWLLN
Bs MAFE----DIPFLOYLGNAVDILLVWYVIYELIMVIRGTEKAVQLLEKGIVVIVLVRMASQYLGLSTLOQWLMD
ILm MDFS----NMSILHYLANIVDILVVWFVIYKVIMLIRGTKAVQLLKGIFIIIAVKLLSGFFGLQTVEWITD
Sa MDFSNFFONLSTLEKIVITSILDLLIVWYVLYLLITVFEGTEKAIQLLEGILVIVIGQQISMILNLTATSKLFD
Ct MDD —————————— LVFGLLSFLCLFVLAEKLHLPVIRNLML

* : H. ceee oFT K o2, [ T S S
Bb YIANILPIAIVILFNQEIKKIIMQIGNFNLAFKLSN--KKEETLKVISEILKAVKHLSENKSGSLICIEKK
Bs QAITWGFLAIIIIFQPELRRALEQLGRGRFFSRSGT-PVEEAQQKTIEAITKAINYMAKRRIGALLTIERD
ILm OQMLTWGFLAIIIIFQPELRRALETLGRGNIFTRYGS-RIEREQHHLIESIEKSTQYMAKRRIGALISVARD
Sa IVIQWGVLALIVIFQPEIRRALEQLGRGSFLEKRYTSNTYSKDEEEKLIQSVSKAVQYMAKRRIGALIVFEKE
Ct HVVNIAAIVVFIIFQPEIRLALSRIR--—-—- LRRGK-FVINMQDEFIDHLTACIYRMAERQIGALIVLENE

ssksokes . * s, skaks

Bb IQLEQIINK-GTKIDALISSELLISLFERETPLHDGAVIIISKNKLKYAGSFLPLS-NVDSISKAF
Bs TGMGDYIET-GIPLNAKVSSELLINIFIPNTPLHDGAVIMKNNEIAAAACYLPLS-ESPFISKELGTRHR
ILm TGMDDYIET-GIPLNAKISSQLLINIFIPNTPLHDGAVIIKGNEIASAASYLPLS-DSPFLSKELGTRHRA

Sa TGLODYIET-GIAMDSNISQELLINVFIPNTPLHDG. IQGTKIAAAASYLPLS-DSPKISKSLGTRHRA
Ct RLLNDLLNLSAVKINADFSEELLEAIFEPSSHLHDGAVLMRGETISYARVILPLAHDTTQLSRSMGIRHRA
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Lm ALGISEVTDSITIVVSEETGGISLTKGGELFRDVSEEELHKILLKELVTVTAKKPSIFSKWKGGKSE
Sa AVGISEVSDAFTVIVSEETGDISVTFDGKLRRDISNEIFEELLAEHWFGTRFQKKGVK

Ct ALGASQRTDALVIVVSEETGAVSLARDGILTRGVKMDRFKAILRSILTRNERKTNPIISWMRKK
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Fig 1. Alignment of the predicted amino acid sequences of B. burgdorferi CdaA and closely-related ci-di-AMP synthases of other bacteria. The two
regions of conserved residues that constitute the DAC domain are boxed in blue. Residues found in all 5 proteins are indicated by an asterisk (*), residues in
4 proteins by a colon (:), and those in 3 proteins by a period (.). Enzyme sequences are identified as: Bb, B. burgdorferi CdaA; Bs, Bacillus subtilis CdaA
(formerly YbbP); Lm, Listeria monocytogenes CdaA/DacA; Sa, Staphylococcus aureus DacA; and Ct, C. trachomatis DacA.

doi:10.1371/journal.pone.0125440.g001
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Fig 2. B. burgdorferi CdaA synthesizes c-di-AMP. Representative mass spectrometric analysis of
cytoplasmic extract from IPTG-induced E. coli strain CRS-0, which expresses B. burgdorferi CdaA from a
chimeric plasmid. The identity of the peak at 3.35 min was not determined.

doi:10.1371/journal.pone.0125440.g002

two unrelated genes/proteins. Among the bacterial proteins with extensive similarities to the
borrelial c-di-AMP synthase is the Bacillus subtilis CdaA (formerly YbbP) (Fig 1) [13]. A recent
structural analysis of the L. interrogans c-di-AMP synthase also used the name CdaA [7]. We
adopted that unambiguous name for the borrelial homolog.

CdaA over-expression in B. burgdorferi

Mass spectrometric analyses of wild-type B. burgdorferi cytoplasmic extracts indicated that cul-
tured borreliae produce very low levels of c-di-AMP, which were barely above the threshold of
detection (Fig 3A). Similarly low concentrations of cytoplasmic c-di-AMP were also observed
by another research group [30]. Consistent with those observations, CdaA protein levels in cul-
tured B. burgdorferi were found to be below the threshold of immunoblot detection (Fig 3B).
Examination of published transcript array data of B. burgdorferi cultured under various condi-
tions, or of regulatory mutants, failed to identify a condition or mutation that significantly al-
tered cdaA expression [e.g., [47-52]]. Analyses of our published and unpublished data from
RNA sequencing studies of additional B. burgdorferi mutants also did not identify significant
regulation of cdaA expression [53] and unpublished results].

Production of c-di-AMP is essential for the survival of previously-studied bacterial species
[13,14]. Noting also the low cellular levels of CdaA and c-di-AMP in cultured B. burgdorferi
and our demonstration that increased production of CdaA in E. coli resulted in high-level
synthesis of c-di-AMP, we examined the effects of hyperexpression of CdaA on B. burgdorferi.
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Fig 3. Effects of hyper-expressing CdaA in B. burgdorferi. A. Measurements of B. burgdorferi cytoplasmic c-di-AMP levels in samples of uninduced and
induced AG1. Bacteria were cultured to mid-exponential phase (approximately 107 bacteria/ml), divided equally divided into two tubes, then cdaA
transcription was induced by addition of 0.5 pg/ml (final concentration) anhydrotetracycline (ATc) to one tube, and both were incubated for 24h at 35°C. Equal
volumes of borrelial cell extracts were analyzed. B. Immunoblot analyses of KS50 and AG1, without and with inclusion of 0.5 pg/ml anhydrotetracycline (ATc)
inducer (- and +, respectively). Membranes were probed with antibodies directed against CdaA or the constitutively-expressed FlaB subunit of the flagella.
Wild-type and uninduced AG1 bacteria produced substantially less CdaA than did induced AG1, and the immunoblot signal was not detectable for those
strains/conditions at the illustrated exposure. Analyses of MRNA levels also indicated that cdaA is expressed at low levels by uninduced AG1 (data not
shown). C and D. Q-RT-PCR analyses of the effects of CdaA hyperexpression on transcription of select B. burgdorferi mMRNAs. Transcript fold changes are
shown as the difference between uninduced and induced cultures for both strains KS50 and AG1, relative to control flaB or recA, respectively [30]. Multiple t
tests were performed for each strain and examined transcript. Only the differences in levels of cdaA transcripts in induced cultures of AG1 were significant
(indicated by **, p = 0.0012 when compared with flaB, and p = 0.0023 when compared with recA).

doi:10.1371/journal.pone.0125440.9003

Depletion of the DhhP phosphodiesterase blocks borrelial growth [30], so we avoided use of a
dhhP mutant for these studies. To that end, strain AG1 was produced, in which cdaA tran-
scription is under control of the TetR-regulated hybrid Post promoter [35,54]. Q-RT-PCR
analysis indicated that induction of cdaA in AG1 increased its mRNA levels by 6-fold, and
immunoblot analysis confirmed greatly enhanced production of the CdaA protein (Fig 3B,
3C and 3D). However, analyses of cytoplasmic extracts from induced AG1 indicated wild-
type levels of c-di-AMP (Fig 3A). The insert of the cdaA-expression plasmid was purified
from AG1, re-sequenced, and found to be identical to the native cdaA gene, indicating that
the continued low levels of c-di-AMP were not due to a mutation in the introduced enzyme.
Hyperexpression of CdaA did not produce any detectable effects of borrelial growth rate, cell
size or survival (data not shown). There were also no significant effects on mRNA levels of
dhhP, ospC or the regulatory factors rpoS, rpoN, bosR or csrA (Fig 3C and 3D).
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Discussion

Bacterial production of c-di-AMP has been detected in some firmicute species, the actinomy-
cetes Mycobacterium tuberculosis and smegmatis, the chlamydian C. trachomatis, and the spi-
rochete B. burgdorferi. DAC motif-containing CdaA homologs are found throughout the
spirochete phylum, including the syphilis agent Treponema pallidum and other members of
that genus (e.g., T. pallidum Nichols ORF TP0826), and Leptospira interrogans and other lepto-
spires (e.g., L. interrogans Copenhageni ORF LIC10844 and L. biflexa Patoc 1 ORF LEP-
BI_10735) [55-57]. It is not obvious why production of this modified nucleotide is restricted to
only a few phyla, but absent from proteobacteria and so many others [6].

Since expression of CdaA in E. coli led to significant accumulation of c-di-AMP by that
bacterium, we hypothesized that enhanced CdaA levels in B. burgdorferi would similarly
lead to increased c-di-AMP production. However, increased levels of the CdaA enzyme in B.
burgdorferi did not measurably affect steady-state cytoplasmic c-di-AMP levels. In contrast,
depletion of the B. burgdorferi DhhP phosphodiesterase led to increased cytoplasmic levels
of c-di-AMP [30]. Those data suggest that DhhP and/or some other enzymatic activity is re-
sponsible for maintaining the constant, low levels of c-di-AMP in both wild-type and in-
duced AG1 borreliae.

The results of these studies and those of Ye et al. [30] raise an important question about the
function of c-di-AMP in B. burgdorferi: why is this molecule, which uses up 2 ATP molecules,
produced by CdaA but then destroyed? To date, no signal has been identified that affects expres-
sion levels of CdaA. B. burgdorferi does control expression of dhhP [30]. However, conditional de-
pletion of DhhP led to an approximately 40-fold increase in c-di-AMP concentration, along with
a cessation of growth, while ectopic modulation of DhhP that yielded a 5-fold increase in c-di-
AMP levels did not have any noticeable effects on growth or cell division [30]. Thus, there is an
apparently broad window of c-di-AMP levels that can be tolerated by B. burgdorferi without
having a detectable impact on the bacteria. Whether c-di-AMP directly controls B. burgdorferi
growth, division, and/or regulatory factors remains to be determined, since the observed pheno-
types may be indirect responses to stresses induced by disruption of another bacterial function(s).
It is also possible that the DhhP phosphodiesterase acts on substrates other than c-di-AMP,
which may be responsible for the growth defects when DhhP is depleted.

The field of bacterial c-di-AMP signaling is still in its infancy, and is not well understood in
any species. Of the c-di-AMP-binding proteins that have been identified in other bacteria, ho-
mologs of the following are present in B. burgdorferi: ORF BB0724 is orthologous to Streptococ-
cus pneumoniae CabP (E = 6x107%7), BB0725 to Staphylococcus aureus KtrA (E = 7x1072%), and
both ORFs BB0216 and BB217 to Staphylococcus aureus PstA (E = 7x10', and E = 7x10"%', re-
spectively) [16,27,32,58-60]. Those streptococcal and staphylococcal proteins are all involved
with potassium transport, so the similarities with borrelial proteins may simply be due to that
function. Nonetheless, examination of interactions between c-di-AMP and B. burgdorferi phos-
phate transport proteins, and the significance of any such binding, may be a fruitful venue for
future studies.

Riboswitches dependent upon c-di-AMP have been identified in some bacterial species,
which may affect gene expression [61-64]. To the best of our knowledge, the possibility of
riboswitches being present in B. burgdorferi has yet to be explored. The oral spirochete Trepo-
nema denticola contains a thymidine pyrophosphate-dependent riboswitch [65], suggesting
that such regulatory mechanisms may exist in other spirochetes.

Another potential role for CdaA and DhhP is production and degradation of di-AMP
(pApA), which is the initial c-di-AMP breakdown product. That dinucleotide may serve as a
nanoRNA, which could have wide-ranging impacts upon transcription initiation [66-68]. We
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note also that many different nanoRNAs are produced and degraded in other bacterial species
by DHH-motif enzymes, supporting the possibility that B. burgdorferi DhhP might degrade a
broader variety of nucleic acids than just c-di-AMP [66-71].

Borrelial c-di-AMP may have impacts beyond the bacterium itself. c-di-AMP produced by
L. monocytogenes and C. trachomatis activates a type I interferon response by host cells
[2,5,22-25]. Although those bacteria invade host cells, while B. burgdorferi is an extracellular
pathogen, it is possible that a portion of the observed type I interferon responses observed dur-
ing B. burgdorferi infection might be linked to the spirochete’s c-di-AMP [29,72-74].

In summation, these studies demonstrated that B. burgdorferi produces an enzyme, CdaA,
that synthesizes c-di-AMP. Homologs of CdaA are found throughout the spirochete phylum.
We hypothesize that this modified nucleotide is rapidly broken down by the DhhP phosphodi-
esterase. Thus, regulation of CdaA did not significantly affect cytoplasmic levels of c-di-AMP,
and we predict that other mechanisms, such as factors that control the activity of CdaA or al-
tered expression of DhhP, are the major drivers of altering c-di-AMP levels.
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