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Abstract

Ecotypes are groups within a species with different ecological adaptations than their con-

specifics. Eastern North Pacific (ENP) killer whale (Orcinus orca) ecotypes differ in their

diet, behavior, and morphology, but the same is not known for this species in the eastern

Canadian Arctic (ECA) and Northwest Atlantic (NWA). Using compound-specific stable iso-

tope analysis (CSIA) of amino acids (AAs), we compared δ15N patterns of the primary tro-

phic and source AA pair, glutamic acid/glutamine (Glx) and phenylalanine (Phe), in dentine

collagen of (1) sympatric ENP killer whale ecotypes with well-characterized diet differences

and (2) ECA/NWA killer whales with unknown diets. δ15NGlx-Phe was significantly higher in

the ENP fish-eating (FE) than mammal-eating (ME) ecotype (19.2 ± 0.4‰ vs. 13.5 ± 0.7‰,

respectively). Similar bimodal variation in δ15NGlx-Phe indicated analogous dietary divisions

among ECA/NWA killer whales, with two killer whales having higher δ15NGlx-Phe (16.5 ±
0.0‰) than the others (13.5 ± 0.6‰). Inferences of dietary divisions between these killer

whales were supported by parallel differences in threonine δ15N (–33.5 ± 1.6‰ and –40.4 ±
1.1‰, respectively), given the negative correlation between δ15NThr and TP across a range

of marine consumers. CSIA-AA results for ECA/NWA whales, coupled with differences in

tooth wear (a correlate for diet), are consistent with ecotype characteristics reported in ENP

and other killer whale populations, thus adding to documented ecological divergence in this

species worldwide.

Introduction

Ecotypes are individuals or groups within a species with unique ecological adaptations, with

accompanying differences in behavior, morphology, or physiology [1,2]. Killer whale (Orcinus
orca) ecotypes were first identified in the eastern North Pacific (ENP) [3], where a fish-eating

(FE) ecotype known as ‘residents’, which forage almost exclusively on salmon, is sympatric

with a mammal-eating (ME) ecotype known as ‘transients’ or Bigg’s killer whales [4–6]. A sec-

ond fish-eating ecotype termed ‘offshores’, whose diet includes sharks and bony fishes, has

also been identified [7,8]. Killer whale ecotypes exert different top-down impacts on
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community structure (e.g., [9]) and are subject to different bottom-up constraints on popula-

tion demographics [10,11], while their unique foraging adaptations have driven cultural and

reproductive isolation that has been defined as incipient speciation [12,13].

Killer whale populations with dietary and morphological differences consistent with eco-

types have now been identified in the Southern Ocean [14–16], the Northwest Pacific [17–19],

and the Northeast Atlantic, where generalist (Type 1) and specialist (Type 2) types occur [20–

22]. Comparatively little is known about ecological divergence among killer whales in the

northwest Atlantic (NWA), where killer whales off the coast of Newfoundland and Labrador

have been observed pursuing or feeding on marine mammals and fish, including odontocetes,

mysticetes, and seals, as well as herring and tuna [23,24]. Further north, killer whales have

been observed hunting only marine mammals during their seasonal occupancy of the Eastern

Canadian Arctic (ECA) [25,26], although some killer whales forage on fish off neighboring

western Greenland [27].

Despite their broad reported prey base, Matthews and Ferguson [28] inferred individual

dietary specialization among ECA/NWA killer whales using compound specific stable isotope

analysis (CSIA) of amino acids (AA). Application of CSIA-AA in trophic studies is predicated

upon the differential 15N fractionation of trophic AAs, which undergo trophic 15N enrichment,

and source AAs, which are assumed to retain basal food web δ15N values. Empirical studies

measuring 15N enrichment of multiple AAs with trophic transfer in food webs comprising

algae, zooplankton, and fish [29–31] showed glutamic acid (Glx; see Methods) exhibited the

most consistent and highest 15N enrichment with each trophic transfer (~8‰), while phenylal-

anine (Phe) underwent only a slight increase of ~0.4‰ with each trophic transfer. The relative

difference in δ15N between these trophic and source AAs (δ15NGlx-Phe) thus allows for calibra-

tion of consumer trophic position (TP; [30,31]). Matthews and Ferguson [28] therefore inter-

preted two of the 13 sampled ECA/NWA whales with higher δ15NGlx-Phe as having foraged at a

higher TP, in line with conventions established from earlier CSIA-AA studies that demon-

strated a positive correlation between δ15NGlx-Phe and TP [29–31]. They further speculated

these two killer whales may have fed primarily on sharks, given they had pronounced apical

tooth wear that has been associated with shark diets in other killer whale populations [8].

Controlled diet studies [32–35] and meta-analyses [36,37] of a broad range of marine fish,

birds, and mammals, including cetaceans [38], have since highlighted considerable variation

in δ15NGlx-Phe that is unrelated to TP. Variation in δ15NGlx-Phe has been attributed to mecha-

nisms affecting trophic 15N enrichment of glutamic acid, including the mode of nitrogen

excretion and protein quantity and composition [32,33,35,36]. A small number of studies have

also reported variation in trophic 15N enrichment of Phe, potentially reflecting its catabolism

as an energy source vs. direct routing to growth [39]. Recent studies have also shown that δ15N

of threonine, which is unique among AAs in its progressive 15N depletion with TP [32,36,40–

42], is more strongly correlated with TP than any other AA [36]. δ15NThr alone may be appro-

priate for TP reconstructions [43].

Here we re-visit assumptions made by Matthews and Ferguson [28] with expanded sam-

pling and re-analysis, including addition of genetically assigned fish-eating (FE) and mammal-

eating (ME) killer whale ecotypes from the eastern North Pacific (ENP), along with threonine

δ15N data from the ECA/NWA killer whales. We hypothesized that broad dietary differences

between killer whale ecotypes would lead to measurable δ15NGlx-Phe differences that could

serve as a diagnostic framework with which the ECA/NWA population(s) could be re-assessed.

Similar bimodal variation in δ15NGlx-Phe observed between the known ENP ecotypes was also

observed among ECA/NWA killer whales, indicating a similar degree of ecological divergence

within this understudied population(s). Parallel differences in δ15NThr among the ECA/NWA
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whales support this interpretation, underscoring the utility of CSIA-AA as a new approach for

characterizing killer whale ecotypes.

Methods

Sample collection

Teeth from genetically assigned FE (n = 3) and ME killer whale ecotypes (n = 4) that stranded

around Vancouver Island and the lower British Columbia mainland (n = 7), and from killer

whales that stranded at various locations in the ECA (n = 5) and NWA (n = 6) (Fig 1), were

acquired for destructive sampling from museum and government collections (Table 1). The

distinct fish and mammal diets of the ENP ecotypes have been characterized through decades

of field observations [4–6] and various chemical diet proxies, including stable isotopes, fatty

acids, and contaminants [44–46]. Sex and morphometric data (e.g., body length) were

Fig 1. Locations of stranded killer whales in the eastern Canadian Arctic (ECA) and Northwest Atlantic (NWA) included in this study (specimen ID

numbers match those presented in Table 1).

https://doi.org/10.1371/journal.pone.0249641.g001
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available for a limited number of specimens (Table 1). Animal use protocol approval was not

required, as all specimens were from archived natural history collections.

‘Whole-tooth’ dentine samples were micromilled from longitudinal midline sections along

paths that traversed all annual growth layers beyond the third GLG, as previous studies of both

ENP and ECA/NWA killer whale teeth showed little within-tooth SI variation after weaning

by age 3 [28,46]. Collagen was isolated from dentine powder using several 12-hr washes in 0.25

N HCl at 4˚C followed by repeated rinses with distilled water, and then freeze-dried with no

additional processing prior to analysis [28,46]. Atomic C:N (mean ± SD = 3.26 ± 0.01;

range = 3.24 to 3.28) was within the range of unaltered collagen [47].

Table 1. Stranding location and other data (estimated age, sex, and body length) of killer whale (Orcinus orca) ecotypes from the eastern North Pacific (ENP) and

killer whales from the eastern Canadian Arctic (ECA) and Northwest Atlantic (NWA) included in this study.

Specimen ID Institution collection Stranding location and year Sex Age (yr) Length (cm)

Fish-eating (FE) ENP Ecotype (residents) 16814 Royal British Columbia

Museum

Vancouver Island, BC, 1989 M 15–16 610

16006 Royal British Columbia

Museum

Vancouver Island, BC, 1986 F adult 630

8386 Royal British Columbia

Museum

Vancouver Island, BC, 1973 M adult 488

Mammal-eating (ME) ENP Ecotype

(transients)

10001 Royal British Columbia

Museum

Lower mainland, BC, 1979 M adult 699

10674 Royal British Columbia

Museum

Vancouver Island, BC, 2013 U adult 550

10402 Royal British Columbia

Museum

Vancouver Island, BC, 1981 M immature 450

F76-31 3 Royal British Columbia

Museum

Vancouver Island, BC, 1976 M adult 681

ECA ECA-AB-1948 Manitoba Museum Arctic Bay, NU, 1948 U 31� not

measured

ECA-CS-1977-2 Fisheries and Oceans Canada Cumberland Sound, NU, 1977 U 18� not

measured

ECA-BL-1978 Fisheries and Oceans Canada Baker Lake, NU, 1978 M 17� not

measured

ECA-CH-2011 Fisheries and Oceans Canada Coral Harbour, NU, 2011 M 35� not

measured

ECA-RB-2009� Fisheries and Oceans Canada Naujaat (Repluse Bay), NU,

2009

F 28� 570

NWA NWA-SC-1975-

2

Canadian Museum of Nature Ship Cove, NL, 1975 M 23� 610

NWA-SC-1975-

1

Canadian Museum of Nature Ship Cove, NL, 1975 M 20� 742

NWA-CB-1971-

1

Canadian Museum of Nature Conception Bay, NL, 1971 M 31� 755

NWA-CB-1971-

2

Canadian Museum of Nature Conception Bay, NL, 1971 F 29� 618

NWA-SI-1977 Nova Scotia Museum Sable Island, NS, 1977 U 13� not

measured

NWA-BP-1998� Fisheries and Oceans Canada Burin Peninsula, NL, 1998 F 5� not

measured

�estimated from counts of annual growth layer groups (GLGs) [28].

ENP ecotypes were genetically assigned (G. Hanke, Royal British Columbia Museum, Personal Communication), and ECA/NWA data were originally presented in

Matthews and Ferguson [28].

https://doi.org/10.1371/journal.pone.0249641.t001
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Compound specific stable isotope analysis of amino acids (CSIA-AA)

The ECA/NWA samples analysed previously using a different protocol [28] were re-analysed

along with the ENP samples using the same protocol for consistency. Approximately 3 mg of

each dentine collagen sample was acid hydrolysed in 6M HCl for 70 min at 150˚C under a N2

headspace, and derivatized using methoxycarbonylation esterification following Walsh et al.

[48] and Yarnes and Herszage [49]. While pH-dependent fractionation during methoxycarbo-

nylation esterification can produce two Glu derivatives with different δ15N values, all analyses

were conducted under pH conditions (<< 1) that produce a single derivative (pyroglutamic

acid) that retains the δ15N of the original parent Glu [48,49]. We use the IUPAC-accepted ter-

minology Glx (Glu + glutamine) for the AA mixture that results from the conversion of gluta-

mine to Glu during derivatization.

δ15N of derivatized AAs was measured using a Trace Ultra gas chromatograph with a DB-

23 column (30 m length, 0.25 mm outer diameter, 0.25 mm film; Agilent Technologies) cou-

pled to a Thermo Delta V Plus via a GC IsoLink. Following Yarnes and Herszage [49], two AA

mixtures previously calibrated to atmospheric N2 were used in calibration and scale-normali-

zation procedures, while a third AA mixture served as the primary quality control reference

material. Standard deviations of replicate measurements of co-measured reference compounds

not used in calibrations (baleen, n = 12; fish muscle, n = 12) were 0.81‰ for δ15NPhe and

0.76‰ for δ15NGlx, and those based on duplicate measures of each sample ranged from 0.06 to

1.38‰ for δ15NPhe and from 0.02 to 1.10‰ for δ15NGlx.

Threonine δ15N values are reported for only the ECA/NWA killer whale samples, previ-

ously unpublished but available from their prior analysis using acetylation-esterification deriv-

atization [28]. The methoxycarbonylation esterification method used in this study results in

the co-elution of threonine with aspartic acid without full resolution, which precluded threo-

nine δ15N measurement in the known ENP ecotypes. δ15NThr of the ECA/NWA whales is

reported with a precision <0.88 ‰.

Bulk collagen stable isotope analysis

Bulk dentine collagen δ15N and δ13C of the ENP ecotypes were measured to provide additional

information to assist interpretations of CSIA-AA results, primarily via comparison with pub-

lished values of potential marine mammal prey in the ENP (see Discussion). Samples were

analysed using continuous flow isotope ratio mass spectrometry (CF-IRMS) at the University

of California-Davis Stable Isotope Facility (bulk SI values of the ECA/NWA killer whale sam-

ples were analysed previously using similar standard protocols; see Matthews and Ferguson

[28]). δ15N and δ13C, defined as (Rsample—Rstandard)/Rstandard)�1,000, where R is the ratio of the

abundance of the heavy to light isotope, were measured in approximately 1 mg samples and

normalized to atmospheric nitrogen (Air) and Vienna Pee Dee Belemnite carbonate, respec-

tively, using four laboratory reference materials of known isotopic composition (δ15N range: –

6.80 to 41.13‰; δ13C range: –27.76 to –16.65‰). Standard deviations of repeated measures of

reference materials (bovine liver, n = 2; enriched alanine, n = 8; glutamic acid, n = 3; and

nylon 6, n = 21) ranged from 0.02 to 0.12‰ for δ15N and 0.02 to 0.08‰ for δ13C.

Data analysis

Data normality could not be assessed due to small sample sizes, so the nonparametric Kruskal-

Wallis rank sum test was used to assess δ15NGlx-Phe differences between ecotypes and among

ECA/NWA killer whales with purported dietary differences. All analyses were conducted

using R software [50].
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Results

Known ENP ecotypes

δ15NGlx-Phe values were higher in FE (19.2 ± 0.4‰) than ME (13.5 ± 0.7‰) killer whales (Fig 2,

Table 2; Kruskal-Wallis rank sum test, chi-squared = 4.5, df = 1, p< 0.05).

Bulk dentine collagen δ15N values of the three FE killer whales ranged from 17.6 to 17.9‰.

Those of the four ME killer whales ranged from 15.6 to 20.5‰, or from 19.8 to 20.5‰ exclud-

ing the lowest value (Table 2). Bulk dentine collagen δ13C values of the three FE killer whales

ranged from –12.6 to –11.4‰, and those of the three ME with similar δ15N values ranged from

–13.1 to –11.3‰. The ME killer whale with the lowest bulk δ15N also had the lowest δ13C value

(–15.7‰; Table 2).

Fig 2. δ15NPhe (circles) and δ15NGlx (squares) of eastern North Pacific (ENP) killer whale ecotypes (fish-eating residents and

mammal-eating transients) and eastern Canadian Arctic/Northwest Atlantic (ECA/NWA) killer whales with tooth wear and no

tooth wear (error bars = standard deviation). Similar relative differences in δ15NGlx-Phe among the ECA/NWA groups as the ENP

ecotypes suggest similar dietary divisions.

https://doi.org/10.1371/journal.pone.0249641.g002
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ECA/NWA killer whales

Bimodal variation in δ15NGlx-Phe was also observed among the ECA/NWA killer whales (Fig

2). δ15NGlx-Phe values of two ECA/NWA killer whales (both 16.5‰) were higher than those of

the other ECA/NWA killer whales (13.5 ± 0.6‰) (Table 2) (Kruskal-Wallis rank sum test, chi-

squared = 4.5, df = 1, p< 0.05). The two killer whales with the higher δ15NGlx-Phe had higher

δ15NThr values (–33.5 ± 1.6‰) than those with lower δ15NGlx-Phe (–40.4 ± 1.1‰; Table 2)

(Kruskal-Wallis rank sum test, chi-squared = 4.5, df = 1, p< 0.05).

Discussion

Ecological divergence of the two ENP killer whale ecotypes was discernable using CSIA-AA,

albeit with results that challenge conventions established from previous CSIA-AA studies of

marine consumers (discussed in detail in Matthews et al. [38]). Conventional interpretation of

the lower δ15NGlx-Phe values of the ME ecotype would have them feeding at a lower TP than the

FE ecotype, which we consider implausible. Decades of observational studies indicate baleen

whales, the only marine mammals that generally occupy a lower TP than the salmon (Oncor-
hynchus spp.) prey of FE killer whales [51,52], are not the primary prey of ME killer whales in

the ENP [4,5,45]. Although consumption of gray whale (Eschrichtius robustus) calves and year-

lings and minke whales (Balaenoptera acutorostrata) is seasonally important off Alaska

[45,53], the vast majority of successful kills (89 to 100%) over 20 years of study off British

Columbia, Washington, and Alaska involved pinnipeds and porpoises [4,5,54]. Moreover,

Table 2. Bulk δ15N and δ13C values and phenylalanine (Phe), glutamic acid/glutamine (Glx), and threonine (Thr) δ15N values (‰) measured in dentine collagen of

killer whale (Orcinus orca) ecotypes from the eastern North Pacific (ENP), and killer whales from the eastern Canadian Arctic (ECA) and Northwest Atlantic

(NWA) with unknown diets.

Whale ID Bulk δ15N Bulk δ13C δ15NPhe δ15NGlx δ15NGlx-Phe δ15NThr

Fish-eating (FE) ENP Ecotype (residents) 16814 17.85 –12.17 10.66 ± 1.0 30.17 ± 0.3 19.50 not measured

16006 17.63 –11.43 10.74 ± 0.2 29.45 ± 0.5 18.71 not measured

8386 17.57 –12.59 10.05 ± 0.1 29.46 ± 0.9 19.40 not measured

Mean ± SD 10.48 ± 0.38 29.69 ± 0.41 19.21 ± 0.43 not measured

Mammal-eating (ME) ENP Ecotype (transients) 10001 19.77 –11.41 15.20 ± 0.1 28.56 ± 0.8 13.36 not measured

10674 15.59 –15.17 11.96 ± 0.2 25.90 ± 0.9 13.95 not measured

10402 20.46 –13.08 15.84 ± 0.4 28.35 ± 1.0 12.51 not measured

F76-31 3 19.91 –11.26 14.24 ± 0.6 28.27 ± 0.5 14.03 not measured

Mean ± SD 14.31 ± 1.70 27.77 ± 1.25 13.46 ± 0.70 not measured

ECA ECA-AB-1948 17.8 ± 0.6 –13.4 ± 0.3 13.87 ± 1.4 28.63 ± 0.0 14.76 –41.12 ± 0.6

ECA-CS-1977-2 18.3 ± 0.3 –14.4 ± 0.4 13.79 ± 0.1 26.64 ± 0.2 12.85 –39.12 ± 0.9

ECA-BL-1978 17.9 ± 0.6 –14.1 ± 1.4 12.77 ± 0.5 26.02 ± 1.0 13.25 –39.16 ± 0.4

ECA-CH-2011 18.1 ± 0.6 –14.4 ± 0.2 13.35 ± 0.1 26.93 ± 1.0 13.58 –41.19 ± 0.3

ECA-RB-2009� 15.1 ± 0.8 –15.1 ± 0.4 9.14 ± 1.3 25.66 ± 0.5 16.52 –35.12 ± 0.3

NWA NWA-SC-1975-2 17.2 ± 0.6 –13.9 ± 0.4 13.04 ± 1.3 26.03 ± 0.3 12.99 –40.99 ± 0.4

NWA-SC-1975-1 17.3 ± 0.7 –13.8 ± 0.4 12.90 ± 0.7 26.80 ± 0.8 13.91 –40.91 ± 0.7

NWA-CB-1971-1 16.5 ± 0.5 –13.7 ± 0.2 12.24 ± 1.0 25.62 ± 0.9 13.39 –38.46 ± 0.4

NWA-CB-1971-2 16.6 ± 0.5 –14.0 ± 0.3 12.28 ± 0.2 26.32 ± 1.1 14.04 –40.28 ± 0.7

NWA-SI-1977 17.1 ± 0.3 –14.4 ± 0.3 13.45 ± 0.4 26.60 ± 0.6 13.15 –42.09 ± 0.6

NWA-BP-1998� 13.7 ± 0.5 –15.3 ± 0.3 7.10 ± 0.5 23.63 ± 0.3 16.53 –31.89 ± 0.4

�suspected shark-eater based on tooth wear [28].

Bulk δ15N and δ13C values of the ECA and NWA whales are averages (± SD) of individual dentine growth layer groups [28]. All δ15NGlx and δ15NPhe values are averages

(± SD) of duplicate measurements, while δ15NThr are averages (± SD) of triplicate measurements. δ15NGlx-Phe is considered a relative trophic index.

https://doi.org/10.1371/journal.pone.0249641.t002
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killer whales are known to consume relatively small proportions (e.g., the tongue and ventral

skin) of baleen whale kills [55,56].

Bulk SI values corroborate long-term observational studies that ME killer whales in the

ENP feed primarily on pinnipeds and porpoises, not baleen whales. Continual dentine deposi-

tion [57] in whole-tooth samples analysed here integrates long-term diet that would attenuate

isotopic signals related to seasonal consumption of prey. After adjustment for collagen-specific

trophic enrichment (~3‰; [58]) to allow for direct, tissue-specific comparison with potential

prey, the three ME killer whales with the highest adjusted values (16.8 to 17.5‰) are consider-

ably higher than bulk bone collagen δ15N values of both gray and minke whales in the ENP

(14.2 ± 0.7 and 14.4 ± 0.8‰, respectively; [46,58], but fall within the range of bone collagen

and dentine δ15N of ENP pinniped (15.7 to 18.6‰; [59–61] and harbor porpoise

(15.7 ± 0.7‰; [62]).

The adjusted bulk δ15N value (~12.6‰) of the fourth (outlier) ME killer whale falls well

below the δ15N values of potential marine mammal prey in the ENP, including baleen whales.

This, along with its lower bulk δ13C values, suggests it fed primarily within a different, isotopi-

cally distinct, region of the ENP. This interpretation is supported by the fact that both its

δ15NPhe and δ15NGlx values were offset by the same relative amounts as the other three ME

killer whales, indicating it foraged at a similar TP, but within a region characterized by lower

baseline isotope values. Temporal isotopic variation over the decades separating specimen col-

lection (see Table 1) could likewise lead to different bulk but similar relative AA-specific SI dif-

ferences among individuals, although regional baseline δ15N has been relatively stable over

that timeframe [61]. Genetics analysis confirmed this whale possessed the AT1 haplotype

(Lance Barrett-Lennard, Vancouver Aquarium, Personal Communication), which is present

in transient-type killer whales as far west as Russia [63]. Marine (bulk) δ15N and δ13C values

decrease along an east to west gradient in the Bering Sea [64], and pinniped bone collagen

δ15N and δ13C are lower (by ~2–4‰ and 2–3‰, respectively) off the outer Aleutians than the

Gulf of Alaska and coasts of British Columbia and California [61,65]. Long distance move-

ments spanning thousands of kilometers have been documented in ENP transients [66]; a

more northwestern distribution could therefore possibly account for this killer whale’s lower

bulk isotope values.

Our comparison of genetically-identified fish and mammal-eating ENP killer whale eco-

types thus yielded results that are inconsistent with previous CSIA-AA studies, the details of

which are discussed in Matthews et al. [38]. Nevertheless, what is relevant to the objectives of

the present study is that the AA-specific δ15N differences between the ecotypes were consis-

tent, thereby providing a diagnostic framework with which to interpret similar bimodal differ-

ences in δ15NGlx-Phe among ECA/NWA killer whales. Like the FE ecotype, two ECA/NWA

killer whales had significantly higher δ15NGlx-Phe values than the other ECA/NWA killer

whales. Matthews and Ferguson [28] hypothesized these two whales may have fed primarily on

sharks owing to their pronounced tooth wear similar to that of the offshore killer whale eco-

type in the ENP [8], and the typically high TPs of sharks [67] is consistent with studies showing

a positive correlation between δ15NGlx-Phe and TP (e.g., [29–31]).

In light of the results from the present study, however, we conclude that these killer whales

most likely fed at a lower TP than the others. Severe tooth wear has also been attributed to suc-

tion feeding on forage fish such as herring (Clupea harengus) or mackerel (Scomber scombrus)
by killer whales in the northeast Atlantic [20]. Killer whales have been observed in association

with other predators feeding on herring off Newfoundland [24]. Given recent evidence that

δ15NGlx-Phe broadly reflects feeding guild [36,38], it is also possible that the intermediate

δ15NGlx-Phe values of the two ECA/NWA whales (both 16.5‰) relative to the FE and ME ENP

ecotypes (19.2 ± 0.4‰ and 13.5 ± 0.7‰, respectively) reflects a mixed diet comprising both
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fish and mammals. Primarily herring-eating killer whales from other populations in the North

Atlantic consume variable proportions of grey seals Halichoerus grypus [20,22], as well as sea-

sonally available Arctic marine mammals off southeast Greenland [68]. Unfortunately, samples

from the offshore ENP ecotype, which would have allowed for comparison of δ15NGlx-Phe

resulting from a purported shark diet, were unavailable for this study.

The similar δ15NGlx-Phe values of the remaining ECA/NWA killer whales (13.5 ± 0.6‰) and

the ME ecotype (13.5 ± 0.7‰) suggests they also foraged primarily on marine mammals. This

interpretation is consistent with observations in the ECA, where the majority of killer whale

attacks are focused on narwhals (Monodon monoceros) and belugas (Delphinapterus leucas;
[26]) and phocid seals [69]. Killer whales prey on a range of marine mammal species off the

coast of Newfoundland [23,24], although, unlike in the ENP, minke whales appear to be their

predominant prey [24]. Minke whales in the North Atlantic commonly feed on forage fish

such as herring, capelin (Mallotus villosus), or mackerel [70,71], so killer whales feeding mainly

on minke whales would occupy a higher TP than herring specialists. However, we note that

remains of both minke whales and seals have been recovered from stomachs of killer whales

off Newfoundland [23], and that seasonally-biased observations of predation [72] may not

describe the full dietary breadth of killer whales. This is certain for killer whales observed in

the Arctic during the relatively short open-water season, as the distributions of their Arctic

marine mammal prey do not extend to the more southern limits of their range (see [73,74].

Parallel δ15NGlx-Phe results between the ENP ecotypes and ECA/NWA killer whales suggest

analogous dietary divisions, an interpretation that is supported, at least in general terms, by

threonine δ15N differences among the ECA/NWA whales. Although the underlying biochemi-

cal mechanism for threonine’s progressive 15N depletion with TP is not well-understood [43],

a review of over 47 marine teleost species spanning 2.5 TPs found δ15NThr displayed the most

significant linear (negative) correlation with TP of any AA examined [36]. Given consistent
15N depletion of threonine on the order of 6‰ or higher with each trophic transfer [41,42],

the approximately 7‰ higher mean δ15NThr of the two killer whales with higher δ15NGlx-Phe is

consistent with their having fed at a lower TP (by approximately one position, if the magnitude

of 15N depletion is linear across all TPs/taxa). Unfortunately, corroboration with the known

ENP ecotypes is not possible, as δ15NThr cannot be quantified using the methoxycarbonylation

esterification derivatization method with which they were analysed (see Methods).

While dietary differences are a defining characteristic of killer whale ecotypes, ecotype des-

ignation requires additional assessment of movements, morphology, and genetics [2].

Although these requisite data are lacking for most whales in our sample, the Arctic killer whale

with higher δ15NGlx-Phe and δ15NThr and pronounced tooth wear (ECA-RB-2009) measured

570 cm (the other whale, NWA-BP-1998, was immature; Table 1). Populations of relatively

small (< 6.5 m), piscivorous killer whales have been identified globally, including the ENP off-

shore ecotype [75], the Antarctic Type C killer whale [15], and the North Atlantic Type 1 killer

whale [20,21]. Single morphologically similar specimens (~6 m long, with teeth worn to the

gums) have also been reported off South Africa [76] and the Caribbean [77]. In contrast, three

of the four killer whales with lower δ15NGlx-Phe and δ15NThr with available length measure-

ments (NWA-SC-1975-1, NWA-CB-1971-1, NWA-CB-1971-2) were larger than their respec-

tive sexes of piscivorous types described globally (the fourth, NWA-SC-1975-2, was an adult

male aged 23 yr and measuring 610 cm; Table 1).

CSIA-AA has revealed similar bimodal variation between known ENP killer whale ecotypes

and among killer whales from the ECA/NWA, adding to documented ecological divergence in

this species worldwide. While limited morphological and genetics data warrant further study,

amino acid-specific isotope results, coupled with morphological differences in tooth wear and

available data on body size, are consistent with ecotype characteristics described in other
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populations. Our study of this relatively understudied population therefore contributes to

ongoing discussions about ecological divergence in this species [2], while providing regionally

relevant information for assessing the ecological influence of killer whales in both the ECA

and NWA, where increasing numbers and range expansions have been documented over

recent decades [78,79].
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