
sensors

Article

Solving the SSVEP Paradigm Using the Nonlinear Canonical
Correlation Analysis Approach

Danni Rodrigo De la Cruz-Guevara 1,2,* , Wilfredo Alfonso-Morales 2 and Eduardo Caicedo-Bravo 2

����������
�������

Citation: De la Cruz, D.R.;

Alfonso-Morales, W.; Caicedo-Bravo,

E. Solving the SSVEP Paradigm Using

the Nonlinear Canonical Correlation

Analysis Approach. Sensors 2021, 21,

5308. https://doi.org/10.3390/

s21165308

Academic Editor: Filippo Zappasodi

Received: 7 June 2021

Accepted: 1 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical, Electronics and Telecommunications Engineering,
Universidad de las Fuerzas Armadas, Sangolqui 171103, Ecuador

2 School of Electrical and Electronics Engineering, Faculty of Engineering, Universidad del Valle,
Calle 13 #100-00, Cali 760032, Colombia; wilfredo.alfonso@correounivalle.edu.co (W.A.-M.);
eduardo.caicedo@correounivalle.edu.co (E.C.-B.)

* Correspondence: drde@espe.edu.ec

Abstract: This paper presents the implementation of nonlinear canonical correlation analysis (NL-
CCA) approach to detect steady-state visual evoked potentials (SSVEP) quickly. The need for the
fast recognition of proper stimulus to help end an SSVEP task in a BCI system is justified due to
the flickering external stimulus exposure that causes users to start to feel fatigued. Measuring the
accuracy and exposure time can be carried out through the information transfer rate—ITR, which
is defined as a relationship between the precision, the number of stimuli, and the required time to
obtain a result. NLCCA performance was evaluated by comparing it with two other approaches—the
well-known canonical correlation analysis (CCA) and the least absolute reduction and selection
operator (LASSO), both commonly used to solve the SSVEP paradigm. First, the best average ITR
value was found from a dataset comprising ten healthy users with an average age of 28, where an
exposure time of one second was obtained. In addition, the time sliding window responses were
observed immediately after and around 200 ms after the flickering exposure to obtain the phase
effects through the coefficient of variation (CV), where NLCCA obtained the lowest value. Finally, in
order to obtain statistical significance to demonstrate that all approaches differ, the accuracy and ITR
from the time sliding window responses was compared using a statistical analysis of variance per
approach to identify differences between them using Tukey’s test.

Keywords: information transfer rate; canonical correlation analysis; nonlinear canonical correlation
analysis; steady-state visual evoked potentials; deep learning

1. Introduction

Electroencephalography (EEG) signals are nonlinear, i.e., they present unstable char-
acteristics and often vary in quality between user-to-user trials or even trials of the same
user, posing significant challenges to build brain–computer interfaces (BCIs). The human
brain is a complex nonlinear system, where the biosignals among these brain activities are
‘3N’: nonstationary, nonlinear, and noisy [1]; although, at small time windows of less than
4 s, the signal can be considered quasi-stationary [2], and the registering or discarding of
these 3N characteristics can significantly influence the results. This is why a better analysis
of EEG signals for steady-state visual evoked potentials (SSVEP) requires unconventional
analyses and methods to address the nonlinear and nonstationary nature of these [3].
Additionally, a better analysis is also justified as a blinking visual stimulus and becomes
weaker in EEG signals as the frequency of the stimuli increases [4], which results in a range
of limited frequencies.

For almost a century, EEG signal acquisitions have demanded strict experimental
conditions that include rigorous experimental protocols [5]. Improvements through the
processing of signals, data analysis, and statistical modeling of the collected information
from multiple electrodes to remove artifacts in time, frequency, or phase domains by
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proposing filters or pipelines as PREP [6], HAPPE [7], Automagic [8], or MADE [9] are
being studied. However, for the SSVEP paradigm, the artifact-removal techniques are
considered unnecessary due to the short period required to collect a trial.

The SSVEP paradigm is a natural response to visual stimuli with specific frequencies.
The brain generates a response with the same spectrum coming from the retina stimulated
by a flickering exogenous input [10]. The response generally occurs in the occipital and
parietal lobes of the brain, where it is possible to collect multiple trials quickly. These
stimuli produce steady-stable and small-amplitude visual evoked potentials if the eyes
face the same exogenous input [11,12] and its frequency is greater than 2 Hz; otherwise,
it produces a transient VEP. However, the stimulus achieves a periodic response called
SSVEP when the frequency is higher (>6 Hz) [13]. The VEP responses also undergo an
early transitional stage before entering SSVEP (see Figure 1, figure adapted from [14]).
The VEP response initially has three components or waves: the P100 is a positive wave
that appears 100 ms after the stimulus and is rounded by the other two minor, harmful
waves N75 and N135, which appear 75-ms and 135-ms later than the stimulus, respectively.
N135’s waveform depends on the contour process and changes in contrast when binocular
interactions occur [15].

Figure 1. Stimulation of the inverted pattern of the SSVEP signal [14].

BCI systems based on SSVEP will achieve a better performance only when the re-
sponses overcome the transitional stage. Taking Figure 1, a displacement longer than
195 ms after the stimulus (P195) was observed as an effective starting point since the stabil-
ity of the response for feature extraction is guaranteed. The time-frequency decomposition
analysis showed a stable SSVEP result that started 250 ms after stimulus presentation at
each fundamental frequency and its harmonic components [16]. Another relevant task is
defining the minimal time windows to be analyzed. The time window is chosen in the
first instance by the system developer and represents a trade-off between accuracy and
classification speed [17]. A frequency greater than 6 Hz is necessary to define a steady-state
into VEP responses. Therefore, the studies should collect at least three wavelengths to
analyze the EEG signals more effectively [18], e.g., a 6 Hz stimulus requires a time window
of 500 ms.

On the other hand, the amplitude and phase of SSVEP responses are highly sensitive
to stimulus parameters such as repetition rate, color, luminance or modulation depth, and
spatial frequency [19,20]. However, the SSVEP paradigm stands out for its minimal training
capacity; robustness, high signal-to-noise ratio (SNR); and high information transfer rate
(ITR) [21,22]. Furthermore, for the analysis and design of BCI systems, it is necessary
to consider three fundamental aspects: the short processing time, the high information
transfer rate (ITR), and the fact that these should be as noninvasive as possible [23,24].
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SSVEP complies with all of these aspects since its records are minimally invasive, collects
multiple trials in a short period, and provides a high information transfer rate [25]. A
well-designed SSVEP-based BCI system would decrease ocular fatigue by reducing the
user’s exposure to the flickering exogenous inputs.

Following the above idea, many researchers have developed different feature extrac-
tion methods for the SSVEP paradigm, mainly focused on the well-known CCA approach,
since this has been proven to be efficient, stable, and simple to apply [26]. The most current
review about BCI mainly shows CCA-based methods and others for feature extraction [27]
such as the filter bank CCA, the multiset CCA, the individual template CCA, or the multi-
layer correlation maximization. The study also includes other linear approaches such as
task-related component analysis (TRCA), correlated component analysis (CORCA), and
least absolute shrinkage and selection operator (LASSO). However, as we mentioned before,
the EEG signals are nonlinear; so, approaches such as empirical and variational mode
decomposition (i.e., EMD and VMD as nonlinear) have had outstanding performances, as
mentioned in Labecki et al. [28], De la Cruz et al. [29].

Based on the above statement, this paper presents the nonlinear CCA (NLCCA)
implementation to classify EEG signals using the SSVEP paradigm. No reference to NLCCA
as a solution for SSVEP-based BCI systems was established, although the method has been
used since its beginnings in other applications, especially climatic ones, such as the work
of [30], and in more current ones such as [31]. Besides, we also compared its performance
with other approaches such as CCA and LASSO. The first method represents the basis
to show the treatment effects of the signals; the second is a simple approach that has
served to obtain better performance than CCA [32]. Thus, this paper presents the average
accuracy and ITR as comparison metrics using different time windows in two scenarios:
full-users and removing the worst user. First, the best time window base on the average
ITR value was defined. Next, an inspection of the phase effects during the time sliding
window was carried out by taking into account and discarding the transitional stage issue,
i.e., using EEG data when the stimuli appeared without shifting and 200 ms-later; here,
the coefficient of variation metric was used. Finally, a statistical analysis was conducted
to identify differences between the approaches using analysis of variance (ANOVA) and
post-Tukey’s test [33,34].

2. Materials and Methods

In this study, an externally provided database was used. This dataset corresponds to the
experiments developed at the Swartz Center for Computational Neuroscience, Institute for
Neural Computation, from the University of San Diego [35] (Dataset available in https://www.
kaggle.com/lzyuuu/ssvep-sandiego (accessed on 7 June 2021)). The dataset contains the
records of ten volunteers without any reported illnesses who observed twelve visual stimuli
while an EEG system captured their signals. The following subsections present a description
of the main characteristics of the dataset that are relevant to the study (Sections 2.1–2.3), the
implemented approaches (Section 2.4), and the used performance metrics (Section 2.5).

2.1. Experimental Setup and Volunteers

Ten healthy, right-handed volunteers (S1–S10) with standard or normal-corrected
vision participated in the experiments (nine men and one woman with an average age of
28 years). They sat in a comfortable chair positioned 60 cm in front of a 27 in LCD monitor
(60 Hz refresh rate, 1280× 800 screen resolution) in a low-illuminated room.

2.2. Experimental Protocol

Each volunteer completed 15 blocks, and each block consisted of 12 trials correspond-
ing to each stimulus (from 9.25 Hz to 14.75 Hz at 0.5 Hz intervals). In each trial, the user
had one second to fix his/her gaze to the target stimulus position, which was indicated by
a red square marker. Subsequently, all stimuli started to flicker simultaneously for 4 s on

https://www.kaggle.com/lzyuuu/ssvep-sandiego
https://www.kaggle.com/lzyuuu/ssvep-sandiego


Sensors 2021, 21, 5308 4 of 19

the monitor. It is important to note that the marker was randomly located for each new
trial until the volunteer ended a block [35]. Figure 2 shows the time of each trial.

Figure 2. Distribution of the capture time of the SSVEP signal.

2.3. EEG Signal Recordings and Preprocessing

The sampling frequency of EEG signal recordings was found to be 256 Hz. Eight
Ag/AgCl electrodes covered the occipital area using a BioSemi ActiveTwo EEG system
(Biosemi, Inc. Amsterdam, The Netherlands), as shown in Figure 3, corresponding to
electrodes O1, O2, Oz, PO7, PO3, POz, PO4, and PO8.

Figure 3. Electrode placement during experimentation.

The raw recordings were then filtered using a bandpass between 6 Hz and 80 Hz, with
an infinite impulse response (IIR) filter. Here, zero-phase forward and reverse IIR filtering
was implemented as suggested in [35].

2.4. SSVEP Pattern Recognition Approaches
2.4.1. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is a scattered regression model that offers high interpretable regression co-
efficients. Zhang et al. [36] proposed the implementation of the LASSO method for the
detection of SSVEP signals [36], and it did in fact prove to be useful and robust in the
feature extraction and selection of EEG signals into the SSVEP paradigm. LASSO’s main
purpose is to solve a standard linear regression model [37,38].

LASSO obtains an approximation of the gn term in the SSVEP model denoted in

yn = X f gn + en (1)

where yn represents the EEG signal, X f the SSVEP reference signal, and en is an additive
noise vector [39]. β̂ is defined as the LASSO estimator and is calculated using quadratic
programming, as given below [40]:

β̂ = arg min
β

(
‖y− Xβ‖2

2 + λ‖β‖1

)
, (2)
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where ‖·‖1 , ‖·‖2 denote the norm l1 and the norm l2, respectively; λ is a penalty parameter
that provides a sparse solution (i.e., it forces many entries to zero). Thus, the optimization
problem is to find the optimal β̂ vector—here, β̂ = [β1,1, . . . , β1,H , . . . , βF,1, . . . , βF,H ]

T ,
where H is the representation of the number of harmonics. Each element indicates the
level of contribution of the stimulus frequency f to the EEG signal. The largest LASSO
estimator is established by the target stimulus, which is the one that provides the highest
contribution and is defined as

ft = max
f

∑N
i=1 ∑H

h=1

∣∣∣βi
f ,h

∣∣∣
N

, f ∈ { f1, . . . , fF}, (3)

where N is the number of channels of the EEG signal. LASSO is considered a subject-
independent technique since the penalty parameter that influences the LASSO performance
is calculated offline by taking advantage of the SSVEP data from multiple subjects [41].
There has been recent research where the LASSO method was applied because of the ability
to perform multichannel analysis for identifying SSVEP signal frequencies (e.g., [32,42]).

2.4.2. Canonical Correlation Analysis (CCA)

CCA is a feature extraction method that is widely used to detect the frequency of EEG
signals through the underlying correlation between two multidimensional variables. The
idea of CCA for detection of the SSVEP paradigm is to take the EEG signal and relate it to a
set of frequencies that coincide with the frequencies of the target stimuli and establish the
highest multidimensional correlation [43].

The first multidimensional variable (x) indicates the multichannel EEG signals. The
second (y) refers to sinusoidal reference signals, which correspond to the primary and other
harmonics (usually the second and third) from the fundamental frequency of the observed
stimulus [44]. This is given by

y =


sin(2π fkt)
cos(2π fkt)

...
sin(2πNh fkt)
cos(2πNh fkt)

; t =
1
S

,
2
S

. . .. . .
T
S

, (4)

where fk is the stimulus frequency, Nh is the number of harmonics, T is the number of
sampling points, and S is the sampling rate.

Then, a pair of linear combinations u = xTWx and v = yTWy, called canonical
variates, are calculated by tuning the weight vectors Wx and Wy in order to ensure the
correlation between them achieves a maximum value. Notice that each stimulus will
have its weight vectors for frequency, so there is a need to calculate the canonical variates
from the multidimensional variables (i.e., EEG and reference signals). Subsequently, the
correlations between canonical variates (CCA coefficients) were calculated. The maximum
coefficient argument of these canonical variates per frequency should correspond to the
stimulus [45]. A summary of the above explanation is given by

k̂ = arg max
k

(ρk), k = 1, 2, . . . , K, (5)

where ρ are the CCA coefficients, K is the stimulus frequency number, and k̂ ∈ [1, K] is the
selected stimulus.

2.4.3. Nonlinear Canonical Correlation Analysis (NLCCA)

The NLCCA method follows the same approach as the CCA base technique. The
modification is found in the linear mappings of Equation (6), by nonlinear mapping
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functions with the use of neural networks (NNs). In Figure 4 found on the left, the
mappings from x to u and y to v are represented by the double-barreled NNs [46].

Figure 4. Neural Network Architecture for NLCCA [43].

Consider one dataset xi(t) with variables i and another dataset yj(t) with j variables,
where each dataset has t = 1, . . . , n samples. Variables xi(t) can be grouped together to
form vector x(t) and variables yj(t) can be grouped together to form vector y(t). As shown
previously, CCA obtains the linear combinations according to

u(t) = x(t)T ·Wx, v(t) = y(t)T ·Wy (6)

where Wx and Wy are weight vectors that represent correlated spatial patterns correspond-
ing to the fields of the EEG data. However, the NLCCA corresponds to u and v, and
u = f (ωx, x) and v = f (ωy, y) are functions where ωx and ωy are all neural network
parameters that require establishing. Therefore, a learning procedure such as the CCA
approach is required to maximize the correlation between u and v.

Based on Figure 4, the networks on the left assign nonlinearly x −→ u, y −→ v depending on

h(x) = tanh[xTW(x) + b(x)T
], u = w̃(x) · h(x)T

+ b̃(x)T

h(y) = tanh[yTW(y) + b(y)
T
], v = w̃(y) · h(y)T

+ b̃(y)
T (7)

where h(x) and h(y) are the output nodes of the hidden layer and tanh[·] is the hyperbolic
tangent function. The neural network parameters are W(x) and W(y) as the hidden layer
weight matrices, b(x) and b(y) as the hidden layer bias vectors, w̃(x) and w̃(y) as the weight
vectors of the output layer, and b̃(x) and b̃(y) as the bias vectors of the output layer.

Next, the Pearson correlation in the first stage of the architecture, cor(u, v), between
the canonical variables u and v should be maximized. The Pearson correlation is given by

r = cor(u, v) =
n ∑ uv−∑ u ∑ v√

n ∑ u2 − (∑ u)2
√

n ∑ v2 − (∑ v)2
(8)
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where n is the length of any vector u or v.
The neural network parameters were obtained by minimizing the cost function

C1 = −cor(u, v) + 〈u〉2 + 〈v〉2 +
(〈

u2
〉 1

2 − 1
)2

+

(〈
v2
〉 1

2 − 1
)2

+ P1

[
∑
ki

(
W(x)

ki

)2
+ ∑

l j

(
W(y)

l j

)2
] (9)

In the above expression, 〈g〉 denotes the sample or temporal mean, i.e., ∑ q
n . The

first term maximizes the correlation between the canonical variables u and v; the second
and third terms represent the sum of the squared samples; the fourth and fifth terms
are normalization constraints that force u and v to have a zero mean and unit variance.
The sixth term is a regularization term (L2-norm type) to avoid overfitting in the neural
networks, and its relative magnitude is controlled by P1. Larger P1 values lead to smaller
weights (fewer effective model parameters), resulting in a more linear model [46].

The right-hand side of the two neural networks, shown in Figure 4, represents the
inverse mappings for x̂ and ŷ with the computed canonical variables u and v.

h(u)k = tanh[(w(u)u + b(u))k], x̂ = W̃(u)h(u) + b̃(u)

h(v)l = tanh[(w(v)v + b(v))l ], ŷ = W̃(v)h(v) + b̃(v)
(10)

To find the bias and weight parameters of the two networks on the right, the cost
functions were minimized, as given by

C2 =
〈
‖x̂− x‖2

2

〉
+ P2 ∑

k

(
w(u)

k

)2

C3 =
〈
‖ŷ− y‖2

2

〉
+ P3 ∑

l

(
w(v)

l

)2
(11)

where ‖·‖2
2 is the square of L2-norm, with Lp-norm as in

Lp(e) = (‖e‖p)
1/p =

(
∑

i
|ei|p

)1/p

(12)

The mean square error (MSE) is given by the first term of C2 and C3 in Equation (11).
P2 and P3 correspond to penalty terms of the synaptic weights for the neural network.

However, in this study, the robust version of NLCCA was used, as presented by
Cannon and Hsieh in 2008, since the previous architecture presented by Hsieh in 2001
is sensitive to overfitting. This modified robust version involved two changes. First,
the section that calculates the MSE within the cost functions C2 and C3 are replaced by
the L1-norm in order to calculate the mean absolute error (MAE). Second, the biweight
midcorrelation (bicor) is used instead of the Pearson correlation on the C1 cost function to
measure the similarity between the canonical variables u and v, i.e., the cor(u, v) is replaced
by bicor(u, v).

The literature has shown the advantages of nonlinear CCA methods over linear CCA
methods in several applications (e.g., [47,48]). However, the nonlinear methods have not
been explored much, and therefore have few recent studies related to, most notably, BCI
systems (e.g., [49]), where the application areas are primarily found in forecasting and
climate studies [50]. In this study, the 2008 version mentioned above was used to apply
NLCCA in the feature extraction of EEG–SSVEP signals.

The procedure for calculating the biweight midcorrelation and Pearson’s correlation
coefficient is similar, with the exception that robust parameters replace the nonrobust
parameters (i.e., covariance, mean, and expected deviation). The bicor function forecasts
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u from v and vice-versa, as it was calculated in the standard NLCCA model presented in
Equation (17).

The biweight midcorrelation function for two vectors x and y (bicor(x, y)) is calculated,
first defined as the median of the vector x (med(x)) and the median absolute deviation
(mad(x)); then, ui and vi are determined as [51], where

ui =
xi −med(x)

9 mad(x)
,

vi =
yi −med(y)

9 mad(y)

(13)

where i is the number of items for each vector x and y.
The weights w(x)

i and w(y)
i are defined as

w(x)
i =

(
1− u2

i

)2
I(1− |ui|)

w(y)
i =

(
1− v2

i

)2
I(1− |vi|)

(14)

where I represents the identity function, where

I(x) =
{

1, if x > 0
0, otherwise.

(15)

Then, it is normalized to get a sum of the weights equal to one as follows:

x̃i =
(xi −med(x))w(x)

i√
∑m

j=1

[(
xj −med(x)

)
w(x)

j

]2

ỹi =
(yi −med(y))w(y)

i√
∑m

j=1

[(
yj −med(y)

)
w(y)

j

]2

(16)

The biweight midcorrelation function finally is determined as

δ = bicor(x, y) =
m

∑
i=1

x̃i ỹi (17)

The use of bicor and MAE functions in the robust NLCCA model leads to a more stable
algorithm, with improved performance and a decreasing sensitivity to overfitting [43].
These characteristics make robust NLCCA an excellent approach to analyze databases with
low signal-to-noise ratios such as electroencephalographic (EEG) signals.

The cost function C1 must be derived to implement the backpropagation algorithm;
however, it is possible to use numerical approximation methods to achieve it. In order
to obtain an effective tuning, the next stage is transitioned to by following an interactive
process where the goal is to guarantee that all functions achieve minimum values. By
inspection, C1 should see a value near −1, and C2 and C3 values near 0 are expected. The
derivative of bicor(x, y) is represented as follows:

∂

∂xi
(bicor(xi, yi)) =

ỹi(1− x̃i
2)
[
w(x)

i − 4u2
i (1− u2

i )I(1− |ui|)
]

√
∑m

j=1

[
(xj −med(x))w(x)

j

]2 (18)

Depending on which path (u or v), the first part of the network involves taking, from
which data is derived. Therefore, if the output v is constant, u is derived, and vice versa.
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Thus, the corresponding changes of the left-hand neural network parameters are taken to
later verify that the cost function achieves the minimal values.

Subsequently, each stimulus passes through the trained neural networks to obtain
both u and v vectors, where the bicor function is expected to obtain the highest correlation.
From the nonlinear point of view, one advantage is that by maximizing the correlation,
there is a more discriminating factor between those that belong to a specific stimulus and
those that do not. In CCA, the linear representation that is relatively coarse brings with
it differences between the incoming stimulus, resulting in little effective discrimination
concerning those found in the templates.

For each template, a neural representation is necessary as it becomes the element of
comparison concerning a new arrival of a stimulus, to then verify the bicor(u, v) through
its transformation, (N.B. an approximation given by û is provided). All templates have
a specific v that is to be compared with a new input signal that will generate a vector û,
where the highest correlation indicates the possible observed stimulus, as shown in the
following expression:

k̂ = arg max
k

(δk), k = 1, 2, . . . , K, (19)

where δk is the correlation coefficient between û and vk, as obtained from the NLCCA
approach, with k = 1, . . . , K trained templates.

2.5. Performance Metrics

The information transfer rate introduced by [52] as a performance measure for BCIs
has been preferred by researchers. The measures for calculating the ITR are related to
how the user performs the task quickly and effectively, the task speed time, the perfor-
mance time, the possibility of completing the task, and the selected time being involved in
efficiency measures.

For a BCI system with N targets and a general classification precision P, the ITR can
be defined as the amount of information reported per unit of time, which depends on both
the transmission speed and the precision. In BCIs, the bit rate per trial, B (bits/trials), is
expressed as

B = log2 N + P log2 P + (1− P) log2
1− P
N − 1

, (20)

where the transfer rate B can be translated into bits/minute, once it is multiplied by the
frequency of decisions per minute T, as permitted in the BCI system shown in expression (21).

ITR =
B
T

(21)

The performance of the BCI system can be determined by calculating the precision
(Acc—Accuracy), and is defined as

Acc =
TP + TN

TP + TN + FP + FN
× 100, (22)

where TP and TN represent the total number of correctly detected true positive events
and true negative events, respectively. FP and FN represent the total number of incorrect
positive events and incorrect negative events, respectively [53].

3. Analysis of Results

This section assesses the potential of the NLCCA approach. First, the accuracy and
ITR performance per user was verified by using different time windows in order to identify
the most appropriate. Later, all users were grouped together, and the worst was removed
(User 3) to show the average accuracy and ITR performance. This first analysis shows the
general performance of each approach. The following analysis seeks to verify the time
sliding window response using the best established time window. Following the flickering
exposure, here, two scenarios immediately after and around 200 ms were presented in
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order show the transient response in VEPs. The stationary responses to measure each
coefficient of variation were taken to define the robustness associated with phase shifting.
Finally, an analysis of variance (ANOVA) with a post- Tukey’s test was performed, where
the time sliding window for one second per approach was used to define the most suitable.

3.1. Accuracy and ITR Inspection per User

The recognition accuracy of each subject for 12 stimuli frequencies and the correspond-
ing ITR derived from the three approaches is shown in Figures 5 and 6. The red, blue, and
green lines represent the CCA, Lasso, and NLCCA approaches.
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Figure 5. Comparison of accuracy for each subject between CCA, LASSO, and NLCCA.

The results show a clear tendency for 9 of 10 subjects to show a higher performance for
the NLCCA method, followed by the CCA, and finally the LASSO method. User 3 shows
inferior performance for all approaches, which is not consistent with the other results,
suggesting that the user’s data contains possible errors. As a result, a decision was made
to exclude this user from the analysis.
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Figure 6. Comparison of ITR (information transfer rate) for each subject between CCA, LASSO,
and NLCCA.

Figure 7a,b present the average accuracy and ITR for 10 subjects, while Figure 8a,b
exclude user 3. These last two graphs show that the NLCCA method performs better
than the other two, especially within the first 2 s; further, later, it converges with the
CCA method. Based on these results, a good performance was evidenced to have been
obtained with smaller time windows using NLCCA. In addition, Figure 8a,b show that in
the second time window, the NLCCA approach achieves a recognition accuracy of 73%,
which is considerably higher than the 48.4% and 25.6% of CCA and LASSO, respectively.
Here, one second is determined to be sufficient for producing a suitable performance,
since the difference between the ITR results for one second and one and a half seconds are
undistinguished, as checked by their variances. Besides, a short time window to reduce
the fatigue is part of the objective, so one second as a reference value was chosen.
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Figure 7. Comparison of (a) average accuracy and (b) average ITR between CCA, LASSO, and NLCCA.
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Figure 8. Comparison of (a) average accuracy and (b) average ITR (excluding User 3) between CCA, LASSO, and NLCCA.

Table 1 illustrates the maximum ITR value per user, and the corresponding recognition
accuracy and time window. The last two rows show the average of all the results (excluding
user 3). In general, Table 1 reflects a better performance for the NLCCA approach against
the others, where NLCCA obtained the highest ITR values for 8 of the 9 users (1, 2, 4–7, 9,
and 10)—user 8 being the exception with only 1.1 (bit/min) below the CCA. In addition, the
time taken to obtain these highest ITR values was shorter than with the other approaches,
with an average of 1.28 s for NLCCA. In contrast, the time taken to obtain the highest ITR
values for the CCA and LASSO corresponded to 2.39 and 2.89 s, exceeding the NLCCA by
more than one second. The LASSO method obtained the lowest performance in all cases.
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Table 1. Maximum ITR value for each user related to each method, and the corresponding accuracy and time window values.

LASSO CCA NLCCA

Subject TW Acc ITR TW Acc ITR TW Acc ITR
(s) (%) (bit/min) (s) (%) (bit/min) (s) (%) (bit/min)

S1 3 34.17 5.72 4 60 14.76 1.5 57.5 27.14
S2 4 79.17 25.51 2.5 88.33 45.63 1 72.5 53.55
S3 0.5 5 0.48 4 77.5 24.45 3.5 25 2.38
S4 2.5 71.67 29.91 3 93.33 45.01 2 81.67 45.27
S5 3 90.83 42.39 2 97.5 66.6 1 90 83.1
S6 4 68.33 19.07 2 92.5 58.82 1 95.83 95.73
S7 2 81.67 45.27 2 98.33 68.1 1 86.67 76.72
S8 2 83.33 47.17 2 90 55.4 1.5 81.67 54.32
S9 2 99.17 69.73 1.5 99.167 83.68 1 95.83 95.73

S10 3.5 71.67 23.26 2.5 93.33 51.45 1.5 90 66.48

Avg. 2.65 68.50 30.85 2.55 88.99 51.39 1.5 77.67 60.04
Avg. (w/o S3) 2.89 75.56 34.23 2.39 90.28 54.38 1.28 83.52 66.45

3.2. Transient and Steady-State Responses by the Time Sliding Windows (Phase Effects)

The Accuracy and ITR data shown below were analyzed to determine any effect
when the phase is modified. Here, a one-second sliding window in steps of 3.9 ms was
taken (one for each sample), and its effects with and without transient response for the
average performance was taken for all users except User 3. Figures 9 and 10 show the
results obtained by including the transient response, i.e., taking data immediately after the
flickering exposure. Figures 11 and 12 show the results around 200 ms after the flickering,
when the steady-state response for the average performance with all users excluding User
3 was taken, respectively.

From Figures 9–12, the phase-shifting was observed to have produced nocive effects. It
can be observed that when using the full signal (Figures 9 and 10), the three methods show
a drop in performance during the first 500 ms when compared to the same performance
after 500 ms. However, the most affected method is identified as the CCA, since the drop
in its performance is considerably greater. However, when using the signal without the
first 200 ms, i.e., the transient (Figures 11 and 12), the initial performance drop in all three
methods is completely eliminated. Here, the initial performance is seen to remain in the
same range of variation as the rest of the signal.
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Figure 9. One-second sliding window for (a) Accuracy and (b) ITR.
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Figure 10. One-second sliding window for (a) Accuracy and (b) ITR removing User 3.

When comparing this behavior to previous studies, it is important to highlight the
need for achieving a steady-state in order to obtain the best performance in each approach.
However, the study also revealed that LASSO and NLCCA still offer some resistance to the
transient response, while CCA does not. Although both ITR results evidence no significant
change, NLCCA is much more suitable when the shifting immediately after the flickering
exposure is ignored.
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Figure 11. One–second sliding window (trimmed 50 first data—200 ms) of (a) Accuracy and (b) ITR.

On the other hand, considering the steady-state (around 200 ms later), the phase-
shifting effects are still observed. These effects produce variations in the accuracy and
ITR performances, which were analyzed using the coefficient of variation. In addition,
some slight differences that appear between NLCCA with and without transient responses
were observed, which other approaches do not have. These differences are due to different
neural networks being trained for each procedure, although the data quality facilitates
a better performance. Table 2 shows the mean, standard deviation, and coefficient of
variation data for each of the signals presented in Figures 11 and 12. It can be seen that
the mean of NLCCA is higher than the other two methods, both in precision (80–86) and
ITR (72–79), and the standard deviation is similar in all three methods. This results in the
coefficient of variation of NLCCA being the lowest in all cases (2.37 to 4.22), thus indicating
that this method is more robust.
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Figure 12. One–second sliding window (trimmed 50 first data–around 200 ms) of (a) Accuracy and (b) ITR removing User 3.

Table 2. Mean and standard deviation of the offset plot.

LASSO CCA NLCCA

Mean STD CV (%) Mean STD CV (%) Mean STD CV (%)

Accuracy 10 user 37.20 1.94 5.21 64.44 3.00 4.66 80.54 2.37 2.95
9 user 40.19 2.12 5.28 68.41 3.15 4.61 86.14 2.37 2.75

ITR 10 user 17.95 1.91 10.64 47.54 4.16 8.74 72.58 3.94 5.43
9 user 19.91 2.12 10.65 51.95 4.50 8.67 79.65 4.22 5.30

3.3. Identifying the Best Approach

Table 3 shows the analysis of variance performed on the obtained values, as shown in
Figures 11 and 12. The calculated F-value for all cases (from 44,000 onwards) was observed
and, concerning the reliability of 95%, this was found to consistently be more significant
than the F-value of 3. This result indicates that there are significant differences between the
three analyzed approaches.

Finally, to determine which approach these differences can be found in, and to identify
the best performance, the post-Tukey’s test was used, and Table 4 shows the results.
According to the table, all differences between each case exceed the DVS value, indicating
significant differences between all the methods. Therefore, the NLCCA (U1) is shown to
have the best performance, followed by CCA (U2), and finally LASSO (U3). In addition,
these results correspond to a one-second sliding window, where a suitable enough flickering
exposure to avoid fatigue was defined.

This paper presents a first analysis of the NLCCA performance compared to the CCA
and LASSO approaches. The NLCCA approach was found to be more effective than the
other two, especially in the first 2 s, where it reached higher ITR values, thus implying
that NLCCA can obtain an acceptable result in less time. On the other hand, due to the
nonlinear nature of brain signals, nonlinear methods would respond more appropriately
than linear methods, which is typical of EEG signals [28]. Therefore, this paper shows the
implementation of the NLCCA approach and the CCA approach, the latter being nonlinear
and the most widely used in this field.
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Table 3. Analysis of Variance (ANOVA).

Case Source GDL Sum Mean Fc F (95%)Variability Squares Squares

Accuracy (10 users)

Treatments 2 690,084.705 345,042.35 56,214.05 3
Error 2154 13,221.27 6.138
Total 2156 703,305.98

56,214.05 > 3

Accuracy (9 users)

Treatments 2 772,312.22 386,156.11 57,822.38 3
Error 2154 14,385.1 6.68
Total 2156 786,697.31

57,822.38 > 3

ITR (10 users)

Treatments 2 1,075,514.163 537,757.08 44,268.26 3
Error 2154 26,166.12 12.15
Total 2156 1,101,680.28

44,268.26 > 3

ITR (9 users)

Treatments 2 1,285,243.27 642,621.635 45,287.186 3
Error 2154 30,565.09 14.19
Total 2156 1,315,808.36

45,287.186 > 3

Table 4. Post-Tukey’s test for Accuracy performance.

Case Hypothesis |Xi − Xj|
Coefficient DVSc

Comparisonq (5%) 3,2154 q
√

CMd
n

Accuracy (10 users)
H0: U1 = U2 27.24

3.32 0.306
27.24 > 0.306

H0: U1 = U3 43.34 43.34 > 0.306
H0: U2 = U3 16.1 16.1 > 0.306

Accuracy (9 users)
H0: U1 = U2 28.22

3.32 0.32
28.22 > 0.32

H0: U1 = U3 45.95 45.95 > 0.32
H0: U2 = U3 17.73 17.73 > 0.32

ITR (10 users)
H0: U1 = U2 29.59

3.32 0.431
29.59 > 0.431

H0: U1 = U3 54.63 54.63 > 0.431
H0: U2 = U3 25.04 25.04 > 0.431

ITR (9 users)
H0: U1 = U2 32.04

3.32 0.466
32.04 > 0.466

H0: U1 = U3 59.74 59.74 > 0.466
H0: U2 = U3 27.7 27.7 > 0.466

The mean difference is greater than the DVSc value in all cases. Therefore, all null hypotheses are rejected.

The NLCCA, based on neural networks, is characterized by being adaptive and
representative of the CCA model in a nonlinear mode [46]. Its complex structure and the
use of nonrobust functions aid in the performing of an overfitting process, mainly when
manipulating noisy and short databases. The robust NLCCA solved these issues by using
robust cost functions, explicitly replacing the inverse mapping MSE network with MAE,
and changing the Pearson correlation by the biweight midcorrelation in the double barrier
network. The robust NLCCA is expected to be ideal for EEG signals due to the biosignals
generally being nonstationary, nonlinear, and noisy [1]. Indeed, the implementation
showed that NLCCA increases their stability when the data quality exclusively includes
the steady-state responses, showing an outstanding performance when the database is
limited in size.

4. Conclusions

The NLCCA approach for EEG signal treatment into the SSVEP paradigm shows its
potential as it offers outstanding performance, as evaluated using statistical analysis. All
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its results showed a better performance in terms of accuracy and ITR. Here, the average
behavior for the 12 stimuli per user was evaluated. Later, the average and standard
deviation in both scenarios (with and without User 3) was calculated, where NLCCA
obtained the shortest time windows in almost all subjects with the best ITR; the results
also showed that a one-second window was enough to obtain suitable performance. It is
crucial to reduce the time window with a high ITR since this reduces user fatigue during
the experimental stage.

A second experiment determined the phase effects using the time sliding window;
this experiment combined an additional interaction to include the transient response into
the analysis. Several studies have reported that the steady-state occurs approximately after
N135, while others indicated it occurred after 200 ms [54]. Figures 9 and 10 showed an initial
impairment for each one of the responses. The findings of this study showed that NLCCA
tries to keep a low variability as LASSO did also, but these findings are incomparable
due to the significant difference in performances. The CCA was also observed to not be
significantly affected by the transient response. In addition, in being able to identify the
time when the flickering exposure appears in a BCI development by taking the attendance
user, the different methods will show a good performance. However, with a lack of
attendance control, the NLCCA seems more appropriate based on ITR performance.

On the other hand, the NLCCA performance showed that the signals in steady-state
slightly improved due to the neural networks being newly trained. LASSO and CCA
approaches do not have this advantage since they are deterministic. Despite this, the
variations due to the phase effects are still evident with all approaches. Nonetheless, the
coefficients of variation to determine the best approach were verified, identifying the
NLCCA to have the lowest values when compared to the others.

Finally, the third experiment involved the one-second sliding window data to design
the analysis of variance to identify differences between the approaches. The scenarios
showed differences between them, so a post-Tukey’s test to define the statistical differ-
ences was used. The results helped to state that the NLCCA approach presented the
best performance.

Future studies could aim to investigate the behavior of the NLCCA approach when
under other operating scenarios, always focused on the objective frequency discrimination
stage. The analysis of new research studies will improve validation parameters such as
ITR, accuracy, and reduced time window to mitigate user fatigue as much as possible. One
way to explore these issues is to use preprocessing methods to improve the signal quality
before implementing NLCCA as the empirical or the variational mode decomposition.
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