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Abstract

Untargeted metabolomics analysis captures chemical reactions among small molecules. Common 

mass spectrometry-based metabolomics workflows first identify the small molecules significantly 

associated with the outcome of interest, then begin exploring their biochemical relationships to 

understand biological fate or impact. We suggest an alternative by which general chemical 

relationships including abiotic reactions can be directly retrieved through untargeted high-

resolution paired mass distance (PMD) analysis without a priori knowledge of the identities of 

participating compounds. PMDs calculated from the mass spectrometry data are linked to 

chemical reactions obtained via data mining of small molecule and reaction databases, i.e. ‘PMD-

based reactomics’. We demonstrate applications of PMD-based reactomics including PMD 

network analysis, source appointment of unknown compounds, and biomarker reaction discovery 

as complements to compound discovery analyses used in traditional untargeted workflows. An R 

implementation of reactomics analysis and the reaction/PMD databases is available as the pmd 

package.

Untargeted metabolomics or nontargeted analysis using high resolution mass spectrometry 

(HRMS) is one of the most popular analysis methods for unbiased measurement of organic 

compounds1,2. A typical metabolomics sample analysis workflow will follow a detection, 

annotation, MS/MS validation, and/or standards validation process, from which 
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interpretation of the relationships between these annotated or identified compounds can then 

be linked to biological pathways or disease development, for example. However, difficulty 

annotating or identifying unknown compounds always limits the interpretation of findings3. 

One practical solution to this is matching experimentally obtained fragment ions to a mass 

spectral database4, but many compounds remain unreported/absent, thereby preventing 

annotation. Rules or data mining-based prediction of in silico fragment ions is successful in 

many applications2,5, but these approaches are prone to overfitting the known compounds, 

leading to false positives. Ultimately such workflows require final validation with 

commercially available or synthetically generated analytical standards, which may not be 

available, for unequivocal identification.

Potential molecular structures could be discerned using biochemical knowledge, through the 

integration of known relationships between biochemical reactions (e.g., pathway analysis)3. 

Such methods are readily used to annotate compounds by chemical class. For example, the 

referenced Kendrick mass defect (RKMD) was able to predict lipid class using specific mass 

distances for lipids and heteroatoms6, and isotope patterns in combination with specific mass 

distances characteristic of halogenated compounds such as +Cl/−H, +Br/−H were used to 

screen halogenated chemical compounds in environmental samples7. For these examples, 

known relationships among compounds were used to annotate unknown compounds, as a 

complementary approach to obtaining compound identifications.

The most common relationships among compounds are chemical reactions. Substrate-

product pairs in a reaction form by exchanging functional groups or atoms. Almost all 

organic compounds originate from biochemical processes, such as carbon fixation8,9. Like 

base pairing in DNA10, organic compounds follow biochemical reaction rules, resulting in 

characteristic mass differences between the paired substrates and their products. Here, we 

build on our paired mass distance (PMD) concept11, that reflects such reaction rules by 

calculating the mass differences between two compounds or charged ions. By expanding the 

PMD framework, it can be used to extract biological inference without identifying unknown 

compounds.

Exploiting mass differences for compound identification is not new. Mass distances have 

been used to reveal isotopologue information when peaks show a PMD of 1 Da12, 

identifying adducts from the same compound11 such as PMD 22.98 Da between adducts [M

+Na]+ and [M+H]+, or adducts formed via complex in-source reactions13 from mass 

spectrometry data. Such between-compound information has also been used to make 

annotations of unknown compounds4,14, to classify compounds15, or to perform pathway-

independent metabolomic network analysis16. However, these calculations of PMD were 

used to identify the compounds or pathways and ultimately facilitate interpretations of the 

relationships between these predefined important compounds. Here, we propose that PMD 

can be used directly, skipping the step for annotation or identification of individual 

compounds, to aggregate information at the reaction level, called “PMD-based Reactomics”. 

Noticing “reactomics” has been used in previous studies based on chromatic patterns17 or 

NMR spectroscopy18, reactomics in this work will actually be PMD-based reactomics.
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HRMS can directly measure PMDs with the mass accuracy needed to provide reaction level 

specificity. Therefore, HRMS has the potential to be used as a reaction detector to enable 

reaction level study investigations. Here, we use multiple databases and experimental data to 

provide a proof-of-concept for using mass spectrometry in PMD-based reactomics. We also 

discuss potential applications such as PMD network analysis, biomarker reaction discovery, 

and source appointment of unknown compounds. We envision that these applications will 

reveal the measurable reaction level changes without the need to assign molecular structure 

to unknown compounds. Though the applications demonstrated here focused on biological 

processes, databases or reactions, abiotic reactions such as photochemical or pyrolysis 

reactions could also be studied using PMD-based reactomics as long as the compounds can 

be measured by HRMS.

Results and discussion

Definition of concepts in PMD-based reactomics, qualitative, and relative quantitative PMD 

analysis are provided in the “Methods” section.

PMD network analysis.

Using the proposed PMD network analysis (see “Methods” section and Supplementary 

Methods for details), we can identify metabolites associated with a known biomarker of 

interest. In fact, PMD network analysis can also be used in combination with classic 

identification techniques to enhance associated networks with targeted biomarkers. As a 

proof of concept, we re-analyzed data from a published study to detect the biological 

metabolites of exposure to Tetrabromobisphenol A (TBBPA) in pumpkin19,20 using a local, 

recursive search strategy (see Fig. 1). Using TBBPA as a target of interest, we searched for 

PMDs linked with the debromination process, glycosylation, malonylation, methylation, and 

hydroxylation, which are phase II reactions (e.g., primary metabolites) found in the original 

paper. Using this PMD network analysis, we identified 22 unique m/z ions of potential 

TBBPA metabolites, confirmed by the presence of brominated isotopologue mass spectral 

patterns (Supplementary Fig. 1). This total was 15 more than the seven unique ions that were 

described in the original publication. Such a network was built based on the experimental 

data and our local fast recursive search algorithms as shown in Supplementary Methods: 

PMD network analysis. As shown in Fig. 1, most of the potential metabolites of TBBPA 

were found as higher-generation TBBPA metabolites, which are too computationally 

intensive to be identified using in silico prediction and matching protocols21.

Similar applications and methodology have been reported for fourier transform mass 

spectrometry data to build a metabolic network in biological samples22,23. However, based 

on accuracy analysis (see Supplementary Results and Discussion: PMD requires HRMS), 

we show that quadrupole time-of-flight mass spectrometry also has the capability to perform 

such analysis for small molecules. In addition, our analysis considers the relationship among 

all paired ions to screen all of the possible metabolites of metabolites, while the previous 

study only considers the peaks correlated with the parent compounds22. Furthermore, PMD-

based reactomics as described here, can be implemented beyond biochemical analysis to 

explore abiotic reactions such as photochemical or pyrolysis reactions. Using the same 
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workflow, network analysis can be used to track the environmental/abiotic fate of chemical 

compounds as long as their corresponding PMDs show high frequency in the data (such a 

feature is also available in the pmd package).

Source appointment of unknown compounds.

When an unknown compound is identified as a potential biomarker, determining whether it 

is associated with endogenous biochemical pathways or exogenous exposures can provide 

important information toward identification. High frequency PMDs from Human 

Metabolome Database (HMDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

are dominated by reactions with carbon, hydrogen, and oxygen suggesting links to 

metabolism pathways (See Supplementary Tables 1, 2, and 3). Therefore, if an unknown 

biomarker is mapped using a PMD network, connection to these high frequency PMDs 

would suggest an endogenous link. However, separation from this network is expected for an 

exogenous biomarker in which the reactive enzyme is not in the database. The exogenous 

compound is secreted in the parent form, or can undergo changes in functional groups such 

as during phase I and phase II xenobiotic metabolism processes. In this case, endogenous 

and exogenous compounds should be separated by their PMD network in samples.

Topological differences in PMD networks for endogenous and exogenous compounds were 

explored using compounds from The Toxin and Toxin Target Database (T3DB)24. As shown 

in Fig. 2, the PMD network of compounds was generated based on the top ten high 

frequency PMDs of 255 endogenous compounds with 223 unique masses, and 705 

exogenous compounds with 394 unique masses and carcinogenic 1, 2A, or 2B 

classifications. Most endogenous compounds (Fig. 2, orange) were connected into a large 

network, while the exogenous compounds’ networks were much smaller (Fig. 2, blue). 

Interestingly, most carcinogenic compounds were not connected by high frequency PMDs. 

Expanding this beyond just carcinogenic compounds, we randomly sampled 255 exogenous 

compounds from a total of 2491 exogenous compounds available in T3DB, and built a PMD 

network with the top ten high frequency PMDs of those 510 compounds (255 exogenous 

compounds and 255 endogenous compounds). This step was repeated 1000 times, and the 

average degree of connection with other nodes was calculated as 4.5 (95% Confidence 

Interval, CI [4.3, 4.8]) for endogenous compounds and 1.7 (95% CI [1.2, 2.2]) for exogenous 

compounds.

Similar findings were observed for known compounds. For demonstration, we selected 

caffeine, glucose, bromophenol, and 5-cholestene as well characterized chemicals that are 

commonly observed with mass spectrometry, and paired them with other metabolites in the 

KEGG reaction database using the top ten high frequency PMDs from Supplementary Table 

1. As shown in Fig. 3, different topological properties (e.g., number of nodes, average 

distances, degree, communities, etc.) of compounds’ PMD network were observed for each 

selected target metabolite. Endogenous compounds such as glucose or 5-cholestene were 

highly connected (average degree of node is 3.4 and 3.2, respectively) while exogenous 

compounds such as caffeine and bromophenol have more simple networks (average degree 

of node is 2.2 and 2.4, respectively). Further, the average PMD edge numbers between all 

nodes (edges end-to-end) in glucose and 5-cholestene networks are 9.7 and 6.6, respectively, 
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while the average PMD edge numbers for caffeine and bromophenol are 3.3 and 1.8, 

respectively. Larger average PMD edge numbers mean a complex network structure with 

lots of nodes, while smaller average PMD edge numbers mean a simple network structure 

with a few nodes. Based on these estimates, we proposed that unknown metabolites with 

average network node degree more than three would be likely endogenous compounds. 

Similarly, if the unknown compound belongs to a network with longer average PMD edge 

numbers, such compounds might also be of endogenous origin. The R code to generate 

compound networks for any compound in the KEGG database is available in the 

Supplementary Methods.

Biomarker reactions.

PMD-based reactomics can be used to discover biomarker “reactions” instead of biomarker 

“compounds”. Unlike typical biomarkers that are a specific chemical compound, biomarker 

reactions contain all peaks within a fixed PMD relationship and correlation cutoff. Thus, 

relative quantitative PMD analysis (see “Methods” section for details) can be used to 

determine if there are differences between groups (e.g., control or treatment, exposed or not-

exposed) on a reaction level. Such differences are described as a biomarker “reaction”.

We used publicly available metabolomics data (MetaboLight ID: MTBLS28) collected on 

urine from a study on lung cancer in adults25. Four peaks out of 1807 features from 1005 

blood samples (469 cases and 536 controls) generated the quantitative responses of PMD 

2.02 Da. This biomarker reaction (e.g. +2H from our annotated database) was significantly 

decreased in case samples compared with the control group (t-test, p < 0.05, see Fig. 4). The 

original publication associated with this dataset did not report any molecular biomarker 

associated with this reaction25, or the metabolites linked with this reaction, suggesting that 

relative quantitative PMD analysis offers additional information on biological differences 

between the groups on the reaction level that may be lost when focused on analysis at the 

chemical level. PMD-level investigations directly reduce the high dimensional analysis 

typically performed on a peaks or features level into low dimensional analysis on the 

chemical reaction level with explainable elemental compositions. Furthermore, these results 

suggest that follow-up analysis in this population should include targeted analysis of 

proteins or enzymes linked with +2H changes.

In summary, we provide the theoretical basis and empirical evidence that high resolution 

mass spectrometry can be used as a reaction detector through calculation of high resolution 

paired mass distances and linkage to reaction databases such as KEGG. PMD-based 

reactomics, as a new concept in bioinformatics, can be used to find biomarker reactions or 

develop PMD networks. The major limitation of PMD-based reactomics analysis is that 

mass spectrometry software is designed for analysis of compounds instead of reactions. In 

this case, the uncertainty in PMD measurements can not be captured directly from the 

instrument, and instead are calculated after data acquisition. Furthermore, while PMD-based 

reactomics can be applied to analyze environmental samples, the absence of publicly 

available reaction databases for environmental processes currently limits PMD-based 

applications to the analysis of biological samples. Nevertheless, PMD-based reactomics 
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techniques provide information on biological changes for new biological inferences, that 

may not be observed through classic chemical biomarker discovery strategies.

Methods

Definitions.

We first define a reaction PMD (PMDR) using a theoretic framework. Then we demonstrate 

how a PMDR can be calculated using KEGG reaction R00025 as an example (see Eq. (1)). 

There are three KEGG reaction classes (RC00126, RC02541, and RC02759) associated with 

this reaction, which is catalyzed by enzyme 1.13.12.16.

Ethylnitronate+Oxygen + ReducedFMN = Acetaldehyde + Nitrite + FMN
+ Water (1)

In general, we define a chemical reaction (PMDR) as follows Eq. (2):

S1 + S2 + … + Sn = P1 + P2 + … + Pm(n ≥ 1, m ≥ 1), (2)

where S means substrates and P mean products, and n and m the number of substrates and 

products, respectively. A PMD matrix [3] for this reaction is generated:

S1 S2 … Sn
P1 |S1 − P1| |S2 − P2| … |Sn − P1|
P2 |S1 − P1| |S2 − P2| … |Sn − P2|
… … … … …
Pm |S1 − Pm| |S2 − Pm| … |Sn − Pm|

(3)

For each substrate, Sk, and each product, Pi, we calculate a PMD (|Sn − Pm|).

Assuming that the minimum PMD would have a similar structure or molecular framework 

between substrate and products, we select the minimum numeric PMD for each substrate as 

the substrate PMD (PMDSk) of the reaction (Eq. (4)).

PMDSk = min |Sk − P1|, |Sk − P2|, …, |Sk − Pm| (1 < = k < = n) (4)

Then, the PMDR, or overall reaction PMD, is defined as the set of substrates’ PMD(s) (Eq. 

(5)):

PMDR = PMDS1, PMDS2, …, PMDSn (5)

For KEGG reaction R00025, S1 is ethylnitronate, S2 is oxygen, S3 is reduced FMN, P1 is 

acetylaldehyde, P2 is nitrite, P3 is FMN, P4 is water, n = 4, and m = 3. A PMD matrix (6) for 

this reaction can be seen below (absolute value calculations indicated in italics, 

corresponding formula matrix can be found in Supplementary Note 1), where we define 

PMDEthylnitronate = 27.023 Da, PMDOxygen = 12.036 Da, and PMDReduced FMN = 2.016 Da.
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Ethylnitronate Oxygen Reduced FMN
Acetaldehyde 29.998Da 12.036Da 414.094Da

74.0242 − 44.0262 Da 31.9898 − 44.0262 Da 458.1202 − 44.0262 Da
Nitrite 27.024Da 15.011Da 411.120Da

74.0242 − 47.0007 Da 31.9898 − 47.0007 Da 458.1202 − 47.0007 Da
FMN 382.080Da 424.115Da 2.016Da

74.0242 − 456.1046 Da 31.9898 − 456.1046 Da 458.1202 − 456.1046 Da
H2O 56.014Da 13.979Da 440.110Da

74.0242 − 18.0105 Da 31.9898 − 18.0105 Da 458.1202 − 18.0105 Da

(6)

In our example, there are three PMDR calculated from three PMDS: PMDR is 27.023 Da, 

which is equivalent to the mass difference between two carbon atoms and three hydrogen 

atoms: PMDR is 12.036 Da for the additions of two carbon atoms and four hydrogen atoms 

and loss of one oxygen atom: and PMDR is 2.016 Da for the addition of two hydrogen 

atoms. However, other reactions may have multiple PMDS that generate the same PMDR 

value, such as certain combination reactions or replacement reactions. In this case, only one 

value will be kept as reaction PMD as long as it is the minimum PMD for all of the involved 

substrates. In addition, each PMDR has two notations. One is shown as an absolute mass 

difference of the substrate-product pairs’ exact masses or monoisotopic masses with unit Da. 

Another notation is using elemental compositions as the differences between two chemical 

formulas. Here, we describe it as an elemental composition instead of chemical formula, 

because it also describes the gain and loss of elements, and therefore the neat mass change. 

In our example reaction, the PMDR can also be written as +2C3H, +2C4H/−O, and +2H, 

respectively. This elemental composition can be linked to known chemical processes 

retrieved from a reaction database, i.e., KEGG. For example, +2H represents the elemental 

composition change of a reaction involving a double bond breaking such as KEGG example 

RC00126, and +2C3H indicates reaction with nitronate monooxygenase (EC:1.13.12.16) or 

reaction class RC02541. However, some elemental compositions, such as +2C4H/−H in our 

example, might not have a clear mechanism (e.g., no suggested KEGG reaction selection). 

By this definition, PMDR can be generated automatically in terms of elemental compositions 

or mass units in Da.

We used these definitions to establish reference databases of PMDs. We used KEGG as a 

“reaction database” representing common reactions in human endogenous pathways, and we 

used HMDB19 as the “compound database” representing common reactions between 

chemicals measured in human biofluids (see Supplementary Methods for data mining 

details).

Qualitative and relative quantitative PMD analysis.

PMD can be determined in biological or environmental samples from peaks observed in 

mass spectrometry. Mathematically, a PMD of uncharged compounds is equivalent to the 

PMD of their charged species observed with a mass spectrometer, as long as both 

compounds share the same adducts, neutral losses, and charges. In example reaction [1], 

reduced FMN has a monoisotopic mass of 458.1203 Da, while FMN has a monoisotopic 

mass of 456.1046 Da. Spectra from HMDB19 showed that common ions for reduced FMN 
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and FMN using liquid chromatography (LC)-HRMS in negative mode are typically [M–H]− 

with m/z 457.1124 and 455.0968, respectively. The mass distance of the monoisotopic 

masses is 2.016 Da and the mass distance of the observed adducts is also 2.016 Da. In cases 

such as this, mass spectrometry can be used to detect the PMD of paired compounds, but 

only for HRMS (see Supplementary Results and discussion: redundant peaks and fragments 

in PMD-based reactomics).

In addition to qualitative analysis, peaks that share the same PMD can be summed and used 

as a relative quantitative group measure of that specific “reaction” in the sample, thereby 

providing a description of chemical reaction level changes across samples without 

annotating individual compounds. We define two types of PMD across samples: static PMD 

in which intensity ratios between the pairs are stable across samples, and dynamic PMD in 

which the intensity ratios between pairs change across samples. Only static PMDs, those 

with similar instrument response, can be used for relative quantitative analysis (see 

Supplementary Table 4 for theoretical example). Similar to other nontargeted analysis20, a 

relative standard deviation (RSD) between quantitative pair ratios <30% and a high 

correlation between the paired peaks’ intensity (>0.6) are suggested to be considered a static 

PMD.

Data availability

All of the dataset (Supplementary Data 1 for HMDB, Supplementary Data 2 for KEGG, 

Supplementary Data 3 for T3DB and Supplementary Data 4 for MTBLS28) and 

reproducible R script (Supplementary Data 5) for all of the figures, tables and calculations 

are supplied in Supplementary Information.

Code availability

An R implementation of PMD-based reactomics analysis and the reaction/PMD databases is 

available as the pmd package (https://yufree.github.io/pmd/). The stable version of the pmd 

package can also be accessed from CRAN (https://cran.r-project.org/web/packages/pmd/

index.html).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Metabolites in pumpkin seedlings’ root samples following exposure to TBBPA.
Untargeted metabolomics data generated by Hou et al.19 was re-analyzed using recursive 

PMD network analysis. First, the original peak list was screened to retain all of the potential 

brominated peaks based on mass defect analysis. Then, metabolite nodes were connected 

based on PMD reactions identified in the original study including 77.91 Da for 

debromination, 162.05 Da for glycosylation, 86.00 Da for malonylation, 14.02 Da for 

methylation, and 15.99 Da for hydroxylation. Finally, edges between two nodes were 

defined by Pearson’s correlation coefficients > 0.6. Recursive PMD network analysis 

identified 23 metabolites, including the seven labeled metabolites of TBBPA previously 

reported19.
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Fig. 2. PMD network of endogenous and exogenous compounds from T3DB.
PMD analysis was performed on all 255 endogenous compounds (with 223 unique chemical 

formula) and 705 exogenous carcinogens (with 394 unique chemical formula) from the 

T3DB database. PMD network analysis was then performed using the top ten frequency 

PMDs from the 617 unique formulas. 235 compounds with unique chemical formulas did 

not have linkages, and were removed. The remaining 157 endogenous (orange squares and 

circles) and 95 exogenous compounds (blue squares and triangles) were used to generate the 

network.
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Fig. 3. PMD networks for selected compounds from the KEGG reaction database.
For each compound: glucose (a), 5-cholestene (b), caffeine (c), and bromophenol (d), 

networks were generated using the ten top frequency PMDs identified in KEGG. For each 

network, the selected compound is indicated with an orange node. The associated 

metabolites are indicated by a black node, with edges colored based on the PMD of the 

relationship between nodes. Double edges from the same pairs or self-looped edges indicate 

isomers-related relationships.
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Fig. 4. PMD differential analysis (t-test, p-value < 0.05) identifies PMD 2.02 Da as a potential 
biomarker reaction for lung cancer.
Data from the public MetaboLights repository (MTBLS28 dataset) were analyzed with 

relative quantitative PMD analysis. PMD pairs of 2.02 Da with consistent intensity ratios 

(RSD% < 30%) across all samples were selected. Then, the total intensity of ions with a 

PMD 2.02 Da was calculated in each sample and compared between cases and controls.
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