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Abstract: Digestate is characterized by high water content, and in the water and wastewater treatment
settings, necessitates both large storage capacities and a high cost of disposal. By seeding digestate
with four magnetic nanoparticles (MNPs), this study aimed to recover biogas and boost its methane
potential anaerobically. This was carried out via biochemical methane potential (BMP) tests with
five 1 L bioreactors, with a working volume of 80% and 20% head space. These were operated
under anaerobic conditions at a temperature 40 ◦C for a 30 d incubation period. The SEM/EDX
results revealed that the morphological surface area of the digestate with the MNPs increased as
compared to its raw state. Comparatively, the degree of degradation of the bioreactors with MNPs
resulted in over 75% decontamination (COD, color, and turbidity) as compared to the control system
result of 60% without MNPs. The highest biogas production (400 mL/day) and methane yield (100%
CH4) was attained with 2 g of Fe2O4-TiO2 MNPs as compared to the control biogas production
(350 mL/day) and methane yield (65% CH4). Economically, the highest energy balance achieved
was estimated as 320.49 ZAR/kWh, or 22.89 USD/kWh in annual energy savings for this same
system. These findings demonstrate that digestate seeded with MNPs has great potential to improve
decontamination efficiency, biogas production and circular economy in wastewater management.

Keywords: anaerobic digestion; biogas; digestate; magnetite; renewable energy; wastewater

1. Introduction

Bioenergy production has been seen as one of the most environmentally friendly
solutions available for the degradation of chemically complex digestates [1]. These include
wastewater treatment plant sludge, paper mill sludge, organic fraction of municipal solid
waste, industrial wastewater and waste streams from the food and pharmaceutical indus-
tries, which can undergo microbial metabolic pathways via anaerobic digestion (AD) to
produce biogas [2]. In addition, digestate is readily available and exceptionally rich in
macro- and micronutrients, propelling its usability for agricultural applications such as
NPK fertilizer. Also, ammonia and free phosphorus, which have been freed from their
biologically bound states in feedstock, have the potential to be recycled back into the food
chain for agricultural farming. However, AD has many reported setbacks [1–3], which war-
rants trace-element involvement in order to propel its complex reactions and mechanisms
in bioenergy production.

Recent complex sludge production from primary, secondary, and tertiary treatment in
wastewater treatment plants (WWTPs) has resulted in pressing concerns, as its treatment
cost accounts for 20–55% of the total operating costs of WWTPs. This necessitates the
possibility of considering an abatement technology for sewage sludge treatment given
such sensitive factors as the end product, energy generation, the environment and human
health impacts [4,5]. Sewage waste is becoming a major concern in South Africa (SA),
since the volume of solid waste produced is escalating daily. This is attributed to rapid
population growth and industrialization. In this case, the capability of AD facilities for
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processing municipal waste is being overused to reduce waste before it is disposed of in
landfills [6,7]. However, due to legal and budgetary constraints, landfill use is dwindling as
a conventional approach whereas dumpsites remain limited. In response to the substantial
risks involved with municipal solid waste management for final disposal, municipalities
are seeking a better option to mitigate these pressing concerns. Of note, several studies
on consistent AD operation in treating the organic components of sewage sludge are also
being undertaken [6,8].

Subsequently, using sludge as a bioenergy resource is reported to be eco-friendly,
with a high caloric value ranging from 21–23.5 MJ/m3, which will help ease the over
dependency on fossil fuels to generate bioenergy [3]. In this vein, biogas produced from
municipal waste can be used for electricity, fuel for vehicles and heat for cooking, and
can therefore offset the limitations that fossil fuels pose [1,3]. Generally, production of
biogas via AD involves four processes: (i) hydrolysis of complex organic compounds to
manageable soluble compounds; (ii) acidogenesis, which converts the soluble compound
to volatile fatty acids; (iii) the acetogenesis stage, where higher organic acids and alcohol
from the preceding stage are converted to acetic acids, CO2 and H2; and finally (iv) the
methanogenesis phase [3,6,7].

To develop AD technology and meet current energy and environmental concerns, it is
critical to research wastewater-based biogas production as an alternative option. The use of
nanotechnology in the wastewater settings, especially the magnetisation separation coupled
with AD process knowledge is still limited. Therefore, this study aimed to employ magnetic
nanomaterials (MNPs) as a biostimulant in the AD process for enrichment of the organic
fraction of municipal WWTP digestate into methane-rich biogas. The morphological and
elemental analysis of the digestate is highlighted. In addition, an existing kinetic model is
used to establish the degree of degradation and the biogas production.

2. Results and Discussions
2.1. Digestate Morphological Properties

SEM/EDX was used to investigate the compatibility and morphology of the digestate
before and after 30 days of incubation. The interfacial adhesion and dispersion of the
MNPs in the digestate is presented in Figure 1. At a micrograph scale of 5 µm, the digestate
surface profile was taken at a high magnification of 10k× with a width view size of 20.8 µm.
The raw sludge (Figure 1F) shows a porous structure with an irregular shape, revealing
the potential of active microbes for biodegradation. However, after 30 days of incubation,
the particle surface with Fe2O4-TiO2 (Figure 1A) was found to be much smoother than
the original digestate (Figure 1F). The micrograph indicates that the digestate with MNPs
(Figure 1A–D) consisted more of cluster cells, while that without (Figure 1B,C) consisted
more of filamentous clusters. Figure 1A,D also reveal that the micrograph images include
flower-like particles, with many apertures distributed along the surface. This suggest
the digestate, which consisted of Fe2O4-TiO2 and Chitosan- Fe2O4/TiO2 in bioreactors A
and D, may have increased the contact surface (Figure 1A,D), reactivity and degradation
efficiency in reducing contaminants as well as increasing biogas production [6,8].

The electron micrographs showing the spatial distribution of different elemental
composition in the sludges are illustrated in Figure 2. Quantitatively, the most predominant
elemental distribution on the surface of the digestate was found to be Al, Si, Na and Fe
(Figure 2). These elements, aside from the carbonate (C, O), influenced the adsorption
ability of the contaminants. Substrates rich in Al or Fe potentially stimulate inter-species
reactions that oxidize complex metals (S or P) and remove them via precipitation [6,8].
SEM/EDX (Figure 1) revealed that the mineralisation of the digestate had interactive
features which increased the methanogenic pathway of the organics. The EDX (Figure 2),
showed that the metabolic pathways were very sensitive to the microbial community, as
there was a reduction in their concentration level. The availability of the nutrient-rich trace
elements also increased methanogenic activity. The presence of MNPs amplified the strong
electrostatic contact between the core NPs and the pollutants present in the wastewater, as
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previously observed. Therefore, subsequent study also investigated the role of the MNPs
in the removal of specified contaminants from the wastewater.
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2.2. Decontamination of the Wastewater

In this study, AD was investigated as a medium to degrade high-strength organics
and generate biogas with rich methane potential, as well as to decontaminate pollutants to
meet the discharge limits of the South African Department of Environmental Affairs [9,10].
This is important due to many parameters in wastewater treatment being identified as
posing threats to human health and aquatic life when released in large quantities into the
environment [10,11]. Table 1 presents the water quality parameters including COD, colour,
and turbidity which were considered in this study to ascertain whether they are aligned
with their respective discharge limits [10]. It was found that over 70% of the pollutants
were removed by the bioreactors with the MNP additives as compared to that of the control
system. Among these bioreactors (A–E), bioreactor A was found to be more dominant
in terms of its treatment performance as compared to the others. This affirms other
studies where the presence of Fe2O4-TiO2 released trivalent ions as electron donors which
instigated the agglomeration and neutralisation of pollutants for their removal [12–16].

Table 1. Decontamination efficiency of the bioreactors (A–E).

Parameter Feed A B C D E Discharge Limit [10]

COD (mg/L) 3570 ± 79 181.5 ± 8 870 ± 12.5 354 ± 4.5 755 ± 5.6 1120 ± 7.6 75
COD removal (%) - 94.92 75.63 90.08 78.85 68.63 -

Color (Pt.Co) 1340 ± 55 421 ± 25 628 ± 26 520 ± 17 450 ± 23 653.75 ± 23 <15
Color removal (%) - 68.58 53.13 61.19 66.42 51.21 -
Turbidity (NTU) 200 ± 33 33.62 ± 27 58.35 ± 17 46.77 ± 5 39.77 ± 23 88.03 ± 23 <5

Turbidity removal (%) - 83.19 70.83 76.61 80.12 55.99 -
VS/TS ratio 0.72 0.49 0.46 0.47 0.46 0.62
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2.3. Digestate Degradation and Biogas Production

Biogas is constituted by methane, carbon dioxide and other trace gases as the prime
component of AD of waste or wastewater along with high-strength organics [1,3]. To
improve AD biogas output, the potential biochemical methane system was dosed with
different MNPs and their influence was monitored for 30 days. Figure 3 shows the amount
of TS compared with the biogas produced by bioreactors A–D charged with 2 g of Fe2O4-
TiO2; Cu-Fe2O4; Fe3O4 and Chitosan-Fe2O4/TiO2 MNPs, respectively, whereas bioreactor
E had no MNP additives. The considerable TS outputs achieved were as follows: A
(142.55 mg TS/L) < C (184.73 mg TS/L) < D (198.66 mg TS/L) < B (205.49 mg TS/L) <
E (241.31mg TS/L).
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Figure 3. Biogas yield and TS degradation of bioreactors A–D charged with 2 g of (A) Fe2O4-TiO2;
(B) Cu-Fe2O4; (C) Fe3O4; and (D) Chitosan-Fe2O4/TiO2 MNPs, whereas bioreactor E is a control: (E)
no MNPs.

Comparatively, bioreactor A was found with the lowest digestate at 142.55 mgTS/L,
corresponding to the highest biogas of 400 mL/d, whereas bioreactor E, being the con-
trol system, was found to be the lowest with biogas of 130 mL/day and biomass of
241.31 mg TS/L. Lower yield of the digestate was observed among the bioreactors charged
with the MNPs, suggesting that there was significant microbial activity which resulted
in the degradation of the organics during biogas production [2,17–20]. Conversely, for
bioreactor E (control), the difference in the digestate compared to the other reactors was
enormous, such that less microbial activity occurred [2,18].

Furthermore, the digestate can be used as a as a by-product for fertilizer or soil
amendment, depending on the application. This is associated with the quality of the
feedstock and the degree of degradation efficiency in the process, as well as the extent
to which the post-treatment process was carried out. Significantly, sludge treatment
contributes greatly to the total cost of wastewater treatment plants [4,5]. It was observed
that the addition of MNPs to the bioreactors were easily separated from the sludge by
an external magnet. This suggests that the bioreactors with MNP additives inducted the
sludge with its super-magnetic properties, which strengthened its degradability [19,21].
Therefore, the low sludge generated (Figure 3) suggests that biostimulation of wastewater
systems with magnetic separation processes can help mitigate the costs of treatment and
landfill complexity.

Figure 4 presents the cumulative biogas production yield collected over the incu-
bation period of 30 days. Slow or low biogas production was observed during the first
week, accompanied by rapid production from the 5th to the 25th day, followed by steady
production until the last week when the system was shut down. The slow production
observed is in agreement with other reported works which suggest the microbes need
to get acclimatised before they begin production [4,5,12]. The overall biogas production
was enhanced by the MNP additives to the bioreactors as compared to the control system
without any MNP additives. This resulted in an increase in bioreactor production efficiency
as follows: A (400 mL/day) > D (339 mL/day) > C (250 mL/day) > B (245 mL/day) >
E (130 mL/day). Significantly, the bioreactor charged with Fe2O4-TiO2 MNPs positively
impacted biogas production (p < 0.05) [18]. MNP additives released metal ions into the
substrate as nourishment, which stimulated microbial activity via long-term exposure [19].
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In addition, the high surface area of the MNPs facilitated agglomeration, which had a
great potential impact on the enzymatic activities of the methanogenesis microbes which
increased the biogas production [18,19].
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2.4. Biomethane Potential

Figure 5 shows the biogas composition as characterised after 30 days of incubation.
Here, the direct interspecies electron transfer by the MNPs played an important role in
facilitating methanogenesis activity during the digestion period [18,20]. This positively
resulted in over 75% degradation of the initial COD of 3570 ± 79 mg COD/L, which resulted
in an increase in the methane yield (Figure 5). This result affirms other reported works in
that the release of the electron carriers by the MNPs can regenerate into H2, which serves as
an electron donor and combines with CO2 to produce CH4 [1,2,18,19,21]; this was observed
in bioreactors A–D, which had an increase in methane yield. Additionally, the high surface
area of the Fe2O4-TiO2 MNPs had a positive effect on the AD process, which resulted
in both biogas enhancement and higher methane yield [18,22]. Evidently (Figure 5), a
reduction in COD increased the productivity of the volatile fatty acids, which were then
converted into the CH4 potential by the methanogens as recorded by each bioreactor: A
(100% CH4); B (90% CH4); C (100% CH4); D (100% CH4); and E (65% CH4). Similar results
were reported by other researchers, as MNPs influence biomethane potential [1,18,22,23].
This present study was no different, in that the addition of the MNPs had a significant
impact on COD reduction and methane yield.

2.5. Technoeconomic Analysis of the Potential Estimated Energy

To ascertain the effectiveness of this technology and its economic feasibility, the cost
of the energy produced was estimated based on the methane yield. Theoretically, the
biogas consists of about 60–65% CH4 and 35–40% CO2, and 80% of the energy produced is
converted into electricity [24,25]. Herein, the cost of energy was estimated based on the
volume of biogas produced by the bioreactors: A (400 mL/day) > D (339 mL/day) > C
(250 mL/day) > B (245 mL/day) > E (130 mL/day), with the results obtained presented
in Table 2. To compare the energy economy of each bioreactor to that of [23] study, an
assumed 80% methane potential (Figure 5) observed via the BMP test composition was
used. This was based on 0.3 L of sludge, which was used to inoculate the degradation of
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the wastewater via methanogenesis to produce the biogas, as well as subsequent character-
isation of the methane composition. The calorific values of the substrate as well as that of
the digestate were also considered for balancing the energy during the anaerobic digestion
process [18,26]. The estimated calorific energy required (EH) by the waterbath to maintain
the digester temperature is given by (1):

EH = Q × Cp × p (Ti − T0) (1)

where Q = substrate flowrate (m3/d), Cp= specific heat of feed (kJ/kg ◦C), Ti = the digester
temperature and T0 = the substrate temperature from its stock [23].
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Figure 5. COD measurement and methane yield of bioreactors A–D charged with 2 g of (A) Fe2O4-
TiO2; (B) Cu-Fe2O4; (C) Fe3O4; and (D) Chitosan-Fe2O4/TiO2 MNPs, whereas bioreactor E is a
control: (E) no MNPs.

The daily energy production by each bioreactor EA (kJ/d) corresponding to that
of the methane contained in the produced biogas is given by (2). In addition, the net
energy production EP (kJ/d) is the difference between the produced energy and the energy
consumed by the process (3).

EA = (Mp)× (L.H.V o f methane) (2)

EP = EA − EH (3)

where Mp = daily methane production rate (m3 CH4/d) and L.H.V = lower heating value
of 35.8 KJ/m3 CH4 [24].
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Table 2. Cost estimation for the energy produced from 0.3 L sludge.

Item No Item Unit A B C D E [23]

Type of sludge Activated wastewater sludge
1 Energy content of Methane m3/h 0.0036 0.00198 0.00225 0.00294 0.00077 73.29
2 Energy produced (EA) (80% CH4 to electricity) kW/h 0.00202 0.00113 0.00148 0.001283 0.00038 671
3 Energy (EH) used by the waterbath kW/h 0.00058 0.00032 0.00036 0.00047 0.00012 601.6
4 Net energy (EP) = EA − EH kW/h 0.0023 0.00127 0.00144 0.00188 0.00049 69.4

Daily net energy cost estimated
5 Energy cost (3.22 ZAR/kWh) ZAR 0.00742 0.00409 0.00464 0.00606 0.00158 223.47
6 Energy cost (0.23 USD/kWh) USD 0.00053 0.00029 0.00033 0.000432 0.00011 15.96

Annual net energy cost estimated
7 Energy cost (3.22 ZAR/kWh) ZAR 320.49 176.67 200.31 261.57 68.43
8 Energy cost (0.23 USD/kWh) USD 22.89 12.62 14.30 18.68 4.89

The main purpose of observing the energy balance in this experiment was to examine
the economics of the energy potential of wastewater in terms of sustainable circular econ-
omy. Among the bioreactors A–E (Table 2), bioreactor A, charged with 2 g of Fe2O4-TiO2,
was found to be the most economically viable system with an estimated net energy profit of
320.49 ZAR/kWh, or 22.89 USD/kWh. Evidently, as observed in Table 2, all the bioreactors
charged with the MNPs were found to be more economical than the control system which
had no MNPs. This validates the positive role the MNPs charged to the bioreactors played
in enhancing biogas production (Figure 4) as well as methanation efficiency (Figure 5). This
proves that the use of MNPs to enhance biogas yield will be cost effective and large-scale
production will be economically feasible [23,24].

3. Materials and Methods
3.1. Chemicals and Feedstock Collection
3.1.1. Synthesis and Characterisation of MNPs

All chemicals used, unless modified, were of analytical grade and obtained from
Sigma Aldrich, South Africa. These included sodium hydroxide pellets (NaOH), ferrous
sulphate heptahydrate (FeS04·7H2O), oleic acid (surfactant), ferrous chloride hexahydrates
(FeCl3·6H2O), titanium oxides, chitosan and ethanol (95%). The magnetised nanomate-
rials (Fe2O4-TiO2, Cu-Fe2O4, Fe3O4 and Chitosan-Fe2O4/TiO2) used in this study were
engineered via co-precipitation techniques [8] and characterised at the DUT, Chemical En-
gineering Research Lab, Durban, South Africa. The MNP SEM/EDX micrographs revealed
a high magnification of 10–50k× and landing energy capacity of 20 keV with a view size of
20.8 µm and width diameter of 4.5 mm to 6.5 mm.

3.1.2. Inoculum and Wastewater Distribution

The inoculum and wastewater samples were collected from an anaerobic digester oper-
ated by a local South Africa municipal wastewater treatment facility in the KwaZulu–Natal
province. Using the American Public Health Association (APHA) [27] protocol for wastew-
ater characterisation, the assay of the feedstock was found to constitute pH (6.3 ± 2.6),
chemical oxygen demand (3570 ± 78.6 mg COD/L), turbidity (200 ± 32.7 NTU), total solids
(554 mg TS/L), volatile solids (419 mg VS/L) and color (1340 ± 55.4 Pt.Co).

3.2. Biochemical Methane Potential (BMP) Test

With a reactor volume of 1 L, working volume of 80% and 20% head space, five biore-
actors (1 L Duran schott bottles) were experimentally set up as depicted in Figure 6. Each
bioreactor was initiated with homogenised 0.5 L wastewater and 0.3 L inoculum and la-
belled A–E. Subsequently, bioreactors A–D were charged with 2 g of Fe2O4-TiO2; Cu-Fe2O4;
Fe3O4 and Chitosan-Fe2O4/TiO2 MNPs, respectively, whereas bioreactor E had no MNP
additives. To enhance anaerobic conditions, each bioreactor was purged with nitrogen gas.
In order to avoid thermal shocks in bioreactors and promote acclimatisation of the microbes,
the system was left to stand for two days while adjusting the temperature from 27.5 ◦C to
the mesophilic temperature of 40 ◦C. By using the downward displacement technique [4],
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the biogas produced was collected and monitored daily along with intermittent shaking
of the bioreactors. After 30 days of incubation, each bioreactor supernatant sampled was
analysed and estimated for the degree of efficiency of contaminant removal (4).

% degree e f f iciency =
initial ( f eed)− f inal (a f ter digestion)

initial ( f eed)
× 100 (4)

Molecules 2021, 26, x FOR PEER REVIEW 11 of 14 
 

 

MNP additives. To enhance anaerobic conditions, each bioreactor was purged with nitro-
gen gas. In order to avoid thermal shocks in bioreactors and promote acclimatisation of 
the microbes, the system was left to stand for two days while adjusting the temperature 
from 27.5 °C to the mesophilic temperature of 40 °C. By using the downward displacement 
technique [4], the biogas produced was collected and monitored daily along with inter-
mittent shaking of the bioreactors. After 30 days of incubation, each bioreactor superna-
tant sampled was analysed and estimated for the degree of efficiency of contaminant re-
moval (4). % 𝑑𝑒𝑔𝑟𝑒𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑓𝑒𝑒𝑑) − 𝑓𝑖𝑛𝑎𝑙 (𝑎𝑓𝑡𝑒𝑟 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛) 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑓𝑒𝑒𝑑)  × 100 (4)

 
Figure 6. Schematic diagram of experimental procedure. 

3.3. Digestate Analysis 
The sludge was subjected to solids analysis before charging the bioreactors and after 

withdrawing the digestate from the bioreactors. Figure 7 represents the component bal-
ance of the influent and effluent water quality considered for characterisation using the 
standard protocols of analysing solids samples of APHA section 2540B [9]. Prior to know-
ing the mass of the crucibles used, they were first oven dried and allowed to cool in a 
desiccator. About 25 mL of the digestate was then weighed with the crucible and recorded 
as Q. At the temperature of 100 °C, the samples were then oven dried for 24 h. After dry-
ing, the sample was placed in a desiccator to cool, then immediately weighed with an 
analytical balance and recorded as R. The volatile solid content of the sample was deter-
mined using the furnace ignition at 550 °C for 1 h and the sample weighed and recorded 
as S. The estimated TS and VS were expressed with equations (5) and (6), respectively: 𝑇𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑖𝑑𝑠 (𝑇𝑆) =  𝑄 − 𝑅 × 1000𝑉ௌ  (5)

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑠𝑜𝑙𝑖𝑑𝑠 (𝑉𝑆) =  𝑅 − 𝑆 × 1000𝑉ௌ  (6)

where Q is the mass (g) of crucible and sample after drying in oven, R is the mass of the 
crucible (g), S is the mass of the sample and crucible after calcination (g) and VS is the 
volume of the sample (mL). 

Figure 6. Schematic diagram of experimental procedure.

3.3. Digestate Analysis

The sludge was subjected to solids analysis before charging the bioreactors and after
withdrawing the digestate from the bioreactors. Figure 7 represents the component balance
of the influent and effluent water quality considered for characterisation using the standard
protocols of analysing solids samples of APHA section 2540B [9]. Prior to knowing the
mass of the crucibles used, they were first oven dried and allowed to cool in a desiccator.
About 25 mL of the digestate was then weighed with the crucible and recorded as Q. At
the temperature of 100 ◦C, the samples were then oven dried for 24 h. After drying, the
sample was placed in a desiccator to cool, then immediately weighed with an analytical
balance and recorded as R. The volatile solid content of the sample was determined using
the furnace ignition at 550 ◦C for 1 h and the sample weighed and recorded as S. The
estimated TS and VS were expressed with Equations (5) and (6), respectively:

Total solids (TS) =
Q − R × 1000

VS
(5)

Volatile solids (VS) =
R − S × 1000

VS
(6)

where Q is the mass (g) of crucible and sample after drying in oven, R is the mass of the
crucible (g), S is the mass of the sample and crucible after calcination (g) and VS is the
volume of the sample (mL).
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3.4. Analytical Techniques

The pH was quantified with a Hannah pH–meter (HI98130, Hanna Instruments,
Woonsocket, RI, USA). A HACH 2100N turbidity meter (Hach Company, Colorado, CO, USA)
HACH DR 3900 within the wavelength of 455–635 nm (Hach Company, Colorado, CO, USA)
was used for the COD and TKN measurements. The sludge samples were characterized
using scanning electron microscopy and energy dispersive X-ray (SEM/EDX, FEI Nova
NanoSEM 450 coupled with EDT and TLD detector) equipment based at the University
of Cape Town, South Africa. The biogas composition analysis was carried out with a
Geotech Biogas 5000 Portable Biogas Analyser (ISO17025) supplied by Keison Products,
(Chelmsford Essex, UK).

4. Conclusions

In this study, the effects of magnetic nanoparticles (MNPs) on digestate for biogas pro-
duction and decontamination were compared to the conventional treatment of municipality
wastewater with no MNPs. This was carried out via biochemical methane potential (BMP)
tests for 30 days using five bioreactors, A–D, charged with 2 g of Fe2O4-TiO2, Cu-Fe2O4,
Fe3O4, and Chitosan-Fe2O4/TiO2 MNPs, respectively, while bioreactor E had no MNPs
added. SEM/EDX results confirmed the presence of trace elements (MNPs) in the digestate
matrix, with distinctive impacts and interactive features in the metabolic pathway via
microbial activity. Addition of MNPs to the bioreactors was demonstrated to be efficient for
the treatability of the wastewater, with over 75% of the COD, colour and turbidity removed.
Comparatively, bioreactor A, which was charged with Fe2O4-TiO2 MNPs, showed itself
as exceptionally viable in biostimulation of the AD process to increase biogas produc-
tion (400 mL/day) and methane yield (100% CH4). Analysis of energy balance and cost
were performed based on the influence of the MNPs in generating energy from biogas
production. The addition of the MNPs to bioreactors A–D showed a considerable annual
net energy profit gain of 170–320 ZAR/kWh, or 12–23 USD/kWh, as compared to the
control bioreactor E of 68 ZAR/kWh, or 4.89 USD/kWh. Conclusively, bioreactor A with
Fe2O4-TiO2 MNPs was estimated to have the highest energy profit (320.49 ZAR/kWh or
22.89 USD/kWh). Above all, the Fe2O4-TiO2 MNPs proved to be economically viable and
had good potential to improve circular economy in anaerobically managed wastewater
and waste management settings.
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