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Purpose: The purpose of this studywas to develop amodel, based on initial optic nerve
head (ONH) characteristics, predictive of long-term rapid retinal nerve fiber layer (RNFL)
thinning in patients with open-angle glaucoma (OAG).

Methods: This study evaluated 712 eyes with OAG that had been followed up for >5
yearswith annual evaluationof RNFL thickness. Baselineophthalmic featureswere incor-
porated into the machine learning models for prediction of faster RNFL thinning. The
model was trained and tested using a random forest (RF) method, and was interpreted
using Shapley additive explanations. Factors associatedwith faster rate of RNFL thinning
were statistically evaluated using a decision tree.

Results: The RF model showed that greater lamina cribrosa (LC) curvature, higher
intraocular pressure (IOP), visual field mean deviation converging towards −5 dB, and
thinner peripapillary choroid at baseline were the fourmost significant features predict-
ing faster RNFL thinning. Partial interaction between the features showed that larger LC
curvature was a strong factor for faster RNFL thinning when it exceeded approximately
12.0.When the LC curvaturewas≤12, higher initial IOP and thinner peripapillary choroid
played a role in the rapid RNFL thinning. Based on the decision tree, higher IOP (>26.5
mm Hg), greater laminar curvature (>13.95), and thinner peripapillary choroid (≤117.5
μm) were the 3 most important determinants affecting the rate of RNFL thinning.

Conclusions: Baseline ophthalmic data and ONH characteristics of patients with OAG
were predictive of eyes at risk of faster progression. Combinations of important charac-
teristics, such as IOP, LC curvature, and choroidal thickness, could stratify eyes into
groups with different rates of RNFL thinning.

Translational Relevance: This work lays the foundations for developing prediction
models to estimate glaucoma prognosis based on initial ONH characteristics.

Introduction

Glaucoma is a progressive optic neuropathy, with
phenotypes that vary widely among patients. Some
patients rapidly progress to significant visual impair-
ment despite extensive treatment, whereas others do
not progress or progress very slowly even without treat-
ment.

The pathogenic mechanism underlying glaucoma
is not fully understood. Because lowering intraoc-
ular pressure (IOP) is the only proven way to
slow the progression of glaucoma, current treat-
ments mainly involve reducing the IOP. The IOP
alone, however, cannot explain the mechanism of
glaucomatous damage. Thus, patients may experi-
ence disease progression despite treatments that reduce
IOP.
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Eyes that show rapid progression of glaucoma
despite treatment require treatment adjustment, either
intensification of IOP lowering medication or a switch
to surgical methods. This treatment would be exces-
sive, however, in patients with stable disease and may
negatively affect their quality of life. The ability to
predict glaucoma progression at baseline in individ-
ual patients may allow the determination of treat-
ment goals, optimizing both treatment and the patient’s
quality of life. In addition, identification of individ-
ual factors predictive of progressive disease may help
understand the mechanism of glaucomatous optic
neuropathy for individual eyes, enabling tailored treat-
ment of each eye. Even if a practical method to reduce
the rate of progression is unavailable, information
on disease prognosis may help in advising individual
patients about future progression and enable them to
seek other strategies.

Disease prediction models stratify patients based
on their probability of achieving certain outcomes,
thereby identifying patients at increased risk of an
event. Using various methodologies, efforts have been
made to develop glaucoma prediction models, with
these models showing promising results in their
ability to predict the occurrence of glaucoma1,2 and
the need for glaucoma surgery.3 Relatively little is
known, however, about the association of individual
ophthalmic features with faster or slower glaucoma
progression. In addition, despite increasing evidence
about the pathogenic importance of peripapillary
structures, such as the lamina cribrosa (LC) and
choroid, in glaucomatous optic neuropathy, the influ-
ence of the characteristics of these peripapillary struc-
tures has not been investigated.4–9

We hypothesized that machine learning models
trained with baseline ophthalmic data may be prognos-
tic in identifying patients at high risk of rapid glaucoma
progression. The purpose of this study was to estab-
lish a prediction model based on initial ophthalmic
characteristics for rapid, long-term glaucoma progres-
sion. Baseline ophthalmic characteristics, including
optic nerve head (ONH) characteristics, were incorpo-
rated into machine learning models to develop a model
predictive of rapid progressive retinal nerve fiber layer
(RNFL) thinning over 5 years.

Methods

The study included patients with primary open
angle glaucoma (POAG) who had been enrolled in
the Investigating Glaucoma Progression Study, an
ongoing prospective study of patients with glaucoma
at the Glaucoma Clinic of Seoul National Univer-

sity Bundang Hospital. All subjects provided written
informed consent to participate. The study proto-
col was approved by the Institutional Review Board
of Seoul National University Bundang Hospital and
adhered to the Declaration of Helsinki.

Inclusion and Exclusion Criteria

Patients were included if they had been diagnosed
with POAG between September 17, 2009, and Febru-
ary 11, 2014, were followed up in the glaucoma clinic
for >5 years, and had undergone annual spectral-
domain optical coherence tomography (OCT) exami-
nations to measure circumpapillary RNFL thickness
(RNFLT). Only eyes with a global average RNFLT
≥50 μm at baseline were included in the present study,
to avoid the floor effects of OCT measurements that
can result in a falsely slow rate of RNFL thinning in
eyes with extremely thin baseline RNFL.10,11

POAG was diagnosed based on open iridocorneal
angle on gonioscopy and signs of glaucomatous optic
nerve damage (i.e. neuroretinal rim thinning, notching,
or an RNFL defect) with consistent visual field (VF)
defect. Glaucomatous VF defect was defined by one
or more of the Anderson-Patella criteria: (1) glaucoma
hemifield test results outside normal limits, (2) clusters
of ≥3 non-edge points on a pattern deviation plot with
probabilities <5%, with one having a probability <1%,
and (3) <5% probability of pattern standard deviation
confirmed on two consecutive reliable tests (fixation
loss rate ≤20% and false-positive and false-negative
error rates ≤25%).

Eyes were excluded if they had a best-corrected
visual acuity worse than 20/40; a spherical equivalent
of <–8.0 diopters (D) or >+3.0 D; a cylinder correc-
tion of <–3.0 D or >+3.0 D; a history of intraocu-
lar surgery, except for uneventful cataract surgery; or
a history of retinal (e.g. diabetic retinopathy, retinal
vessel occlusion, or retinoschisis) or neurological (e.g.
pituitary tumor) disease. When both eyes were eligible,
one eye was randomly selected for this study.

Baseline Ophthalmic Examination

All participants underwent comprehensive
ophthalmic examinations, including assessments of
best corrected visual acuity, Goldmann applanation
tonometry, slit-lamp biomicroscopy, gonioscopy,
dilated stereoscopic examination of the optic disc, disc
photography, red-free fundus photography (EOS D60
digital camera; Canon, Utsunomiyashi, Tochigiken,
Japan), spectral-domain OCT scanning of the circum-
papillary RNFL and the ONH (Spectralis; Heidelberg
Engineering, Heidelberg, Germany), and standard
automated perimetry (Humphrey Field Analyzer II
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750; 24-2 Swedish interactive threshold algorithm,
Carl Zeiss Meditec). Other ophthalmic examina-
tions included measurements of corneal curvature
(KR-1800; Topcon, Tokyo, Japan), central corneal
thickness (CCT; Orbscan II; Bausch & Lomb Surgi-
cal, Rochester, NY, USA), and axial length (AXL;
IOLMaster version 5; Carl Zeiss Meditec, Dublin,
CA, USA).

Measurements of the Curvature of the
Lamina Cribrosa and Peripapillary Choroidal
Thickness

Features of the ONH were evaluated in two ways:
by measuring the LC curvature and peripapillary
choroidal thickness (CT), using the ONH volume
images obtained by enhanced depth-imaging (EDI)
OCT, and using the peripapillary circular scanning
centered on the Bruch’s membrane opening, respec-
tively. The corneal curvature of each eye was entered
into the Spectralis OCT system before performing the
OCT scanning to compensate for potential magnifica-
tion errors.

The LC curvature is an index of the degree of poste-
rior bowing or deformation of the LC, which is consid-
ered to represent the IOP-induced mechanical stress
on the ONH.8,12,13 The degree of LC deformation has
been shown to decrease after reducing IOP,14–16 with a
larger degree of LC deformation being associated with
rapid glaucoma progression.7,8,17

The LC curvature was evaluated using the LC curve
index (LCCI), defined as the degree of inflection of the
curve representing a section of the LC.13 The LCCI
was determined by measuring the width of the anterior
LC surface reference plane (W) and then by measur-
ing the LC curve depth (LCCD) within the anterior
LC surface plane in each B-scan, with LCCI calcu-
lated as (LCCD/W) × 100. Because the curvature was
normalized to the LC width, the LCCI is an indicator
of the shape of the LC independent of the actual size
of the ONH. Only the LCwithin theWwas considered
because the LC was often not clearly visible outside
this region. In eyes with LC defects, the LCCI was
measured using a presumed anterior LC surface that
best fit the curvature of the remaining part of the LC
or by excluding the area of the LC defect. A manual
caliper tool in the Heidelberg Eye Explorer (version
1.10.4.; Heidelberg, Germany) was used tomeasure the
W and LCCD in seven selected B-scan images spaced
equidistantly across the vertical optic disc diameter
in each eye, with the mean LCCI of each eye calcu-
lated using the measurements made from these seven
B-scans.

The peripapillary choroid is considered an impor-
tant vascular structure that perfuses the ONH. In

addition to the choroidal and ONH vasculatures
having the same origin (i.e. the short posterior ciliary
artery), the peripapillary choroid has been shown to
directly perfuseONH tissue.5,18 A thinner peripapillary
choroid has been regarded as indicative of decreased
perfusion of the ONH.19–21

Peripapillary CT was measured on the 360 degree
3.5-mm diameter peripapillary circle scan centered
on the Bruch’s membrane opening (BMO) using the
manual segmentation function built into the Heidel-
berg Eye Explorer software. The posterior edge of
the retinal pigment epithelium and the sclerochoroidal
interface, representing the inner and outer bound-
aries of the choroid, respectively, were manually delin-
eated. Using the circumpapillary RNFLT measure-
ment algorithm, the peripapillary CT in the global area
and in the six sectors based on the foveal–BMO axis
were automatically generated.

LCCI and peripapillary CT were measured by two
experienced observers (authors J.A.K. and S.H.L.) who
weremasked to the clinical information of participants.
The measurements by the two observers were averaged
for analyses. The interobserver agreements for measur-
ing the LCCI and peripapillary CT were assessed by
calculation of intraclass correlation coefficients (ICCs)
and 95% confidence intervals (CIs).

Input Variables

Data from the baseline examinations were incor-
porated into a machine learning modeling. Eleven
features were selected as input variables: age, sex,
highest IOP during the initial 6 months, glaucoma
surgery during the initial 6 months, mean LCCI, global
peripapillary CT, global RNFLT, VF mean deviation
(MD), VF pattern standard deviation (PSD), AXL,
and CCT.

Not all participants had measurements of pretreat-
ment IOP, thus the highest IOP recorded during the
initial 6 months (highest IOP during the initial 6
months) was defined as the initial IOP, and used for the
analysis. To exclude any potential effect of IOP lower-
ing therapy on the morphology of the LC14–16 and the
CT,22,23 LCCI and CT were measured on OCT scans
obtained >6 months after starting IOP-lowering treat-
ment or 6 months after glaucoma surgery if surgery
was performed during the initial 6 months.

Output Variable

The rate of glaucoma progression was defined as the
output variable and was assessed by calculating the rate
of change of RNFL thickness relative to the baseline
thickness per year, expressed as percent per year. The
change of global average RNFL thickness over time
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was subjected to linear regression analysis to determine
the rate of change for each subject.

Machine Learning Prediction Models and
Training Protocols

The machine learning model used for fitting and
prediction was a random forest (RF) model.24 Train-
ing data were used to train the model, and test
data for prediction. When fitting the training data,
hyperparameters were tuned using the five-fold cross-
validation method to prevent overfitting of the RF
model. Because machine learning models are difficult
to interpret due to their complexity, the results of
the RF model in this study were interpreted using
the Shapley additive explanations (SHAP) method,25
a type of explainable artificial intelligence method.

Training and Test Sets
The data were randomly separated so that both eyes

of the subjects belonged to only one of the test or train-
ing sets. The number of observations in the training
and test data were 356 each.

Random Forest
RF is an ensemble learning method for classifica-

tion and regression that operates by constructingmulti-
ple decision trees in the learning phase. Although RF
has been shown to outperform the predictive perfor-
mance of other machine learningmethods, it is difficult
to interpret the predicted results of the RF method, a
disadvantage similar to that of other machine learning
methods. The number of decision trees for RF learn-
ing was set at 200, with 5-fold cross-validation showing
that the optimal number of features for each node
was 3.

Shapley Additive Explanation
The SHAP method was developed to explain

the output of any machine learning model. After
constructing a model with several features, the SHAP
value was obtained by determining the average change
relative to the presence or absence of any individual
feature. The SHAPvalue for each featurewas an indica-
tor of how strongly that feature affects the prediction
of the model in a positive or negative direction, with a
larger absolute SHAP value indicating that the feature
had a greater impact on prediction by the model.
Feature importance and partial dependence plots were
obtained using the SHAP values. Interactions between
features were visualized by partial interaction plots.

Regression and Decision Tree Model

Univariate and multivariable regression analyses
were performed to identify the factors associated with
the rate of RNFL thinning, with the multivariable
model including variables with P < 0.10 on univari-
ate analyses. A decision tree model was used to
stratify patients with faster or slower OCT RNFL
thinning, based on factors influencing the rate of
RNFL thinning. All possible splits of this type were
considered, with the cutoff that best separated the data
into groups being chosen. The end points of this tree
were the rate of OCT RNFL thinning (micrometers
per year). Factors found to be associated with the rate
of OCT RNFL thinning on multivariable regression
analyses were regarded as possible risk factors in the
decision tree model. Insignificant splits were removed
by 10-fold cross validation.

Data Analysis

Except where stated otherwise, data are presented as
mean± standard deviation. All statistical and machine
learning analyses were performed using Python version
3.8.5, with the scikit-learn package version 1.0 used
for regression analysis and decision tree construc-
tion and the SHAP package version 0.39.0 used
for SHAP analysis. Linear regression analyses were
performed using Statistical Package for the Social
Sciences software (version 22.0; SPSS, Chicago, IL),
withP values< 0.05 considered statistically significant.
Model performance was assessed by calculating mean
absolute error (MAE) and mean squared error (MSE).

Results

Table 1 shows the baseline characteristics of the 712
participants. Data from 357 and 355 eyes were desig-
nated as the training and test sets, respectively, to build
the final model. The MAEs for the RF, regression,
and decision tree models were 0.075, 0.115, and 0.128,
respectively, and the MSEs were 0.023, 0.031, and
0.076, respectively. There were excellent interobserver
agreements in measurements of LCCI and peripapil-
lary CT, with ICCs of 0.996 (95% CI = 0.994–0.998),
and 0.960 (95% CI = 0.940–0.974), respectively.

SHAP was used to determine the features that
provide high predictive power. The four features with
the highest mean absolute SHAP values were mean
LCCI, initial IOP, VF MD, and peripapillary CT
(Fig. 1A). The SHAP plot revealed that larger mean
LCCI, higher initial IOP, VF damage of moderate
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Table 1. Baseline Characteristics or Participants (n = 712)

Variables Mean ± SD Range

Age, y 54.1 ± 14.5 18, 87
Sex, n (male : female) 355 : 361 n/a
Follow-up duration, y 9.6 ± 1.4 5.3, 11.5
Rate of RNFL thinning, μm/y −0.84 ± 0.78 −4.72, 0.82
Highest IOP during the initial 6 mo, mm Hg 17.9 ± 5.7 9, 52
Glaucoma surgery during the initial 6 mo, n (%) 125 (17.5) n/a
Mean LCCI 9.7 ± 2.9 1.8, 17.1
Global CT, μm 177.4 ± 52.4 78, 387
Global RNFLT, μm 78.7 ± 15.8 51, 136
VF MD, dB −5.00 ± 6.11 −30.74, 3.95
VF PSD, dB 5.35 ± 4.28 0.00, 16.32
AXL, mm 24.42 ± 1.54 20.50, 29.18
CCT, μm 549.7 ± 38.0 385, 658

SD, standard deviation; IOP, intraocular pressure; LCCI, lamina cribrosa curve index; CT, choroidal thickness; RNFLT, retinal
nerve fiber layer thickness; VF, visual field; MD,mean deviation; PSD, pattern standard deviation; AXL, axial length; CCT, central
corneal thickness; na, not applicable.

Figure 1. Interpretation of the final model based on baseline patient variables. (A) Feature importance plot based on mean SHAP values.
(B) Interpretation of the importance of features using the SHAP plot. The red and blue colors indicate feature values of high and low levels,
respectively. For example, a larger mean LCCI had a strong and negative impact on the rate of RNFL thinning (i.e. faster RNFL thinning). LCCI,
lamina cribrosa curve index; IOP, intraocular pressure; VF, visual field; MD, mean deviation; CT, choroidal thickness; AXL, axial length; PSD,
pattern standard deviation.

degree (VFMD close to−3 dB), and thinner global CT
were associated with faster RNFL thinning (Fig. 1B).

Figure 2 illustrates partial dependence plots
showing the influence of these four variables on
SHAP values. There were approximate tipping points
where SHAP values started to rapidly decrease for
the initial IOP, mean LCCI, and global CT: when the
highest IOP reached above 30 mmHg, the mean LCCI
reached above 13, and the global CT reached below
200 μm, the rate of RNFL thinning as determined by
SHAP values appeared to be accelerated. On the other
hand, the SHAP values rapidly decreased when the
VF MD were converged to −5 dB. When the VF MD
was under −5 dB, the rate of RNFL thinning became

faster with increasing VF MD until it reached −5 dB,
whereas it became slower when the VF MD was over
−5 dB.

Figure 3 shows partial interactions of initial IOP,
global CT, and mean LCCI. VF MD was not included
in the analysis of interactions, because its nonlinear
influence on the rate of RNFL thinning resulted in a
complicated interactions with other variables. Larger
mean LCCI and larger initial IOP (see Fig. 3A) and
larger mean LCCI and smaller global CT (see Fig. 3B)
were found to contribute to faster rates of RNFL
thinning. Large LCCI was a main contributor for
faster RNFL thinning when it was larger than 12 (see
Figs. 3A, 3B). When the LCCI was smaller than 12, the



Predictive Model of Long-Term Glaucoma Progression TVST | October 2022 | Vol. 11 | No. 10 | Article 24 | 6

Figure2. Partial dependenceplots showingSHAPvalues versus feature values for the fourmost important variables. (A) Highest IOPduring
initial 6 months, (B) mean LCCI, (C) VF MD, and (D) global CT. IOP, intraocular pressure; LCCI, lamina cribrosa curve index; VF, visual field; MD,
mean deviation; CT, choroidal thickness.

Figure 3. Partial interaction plots showing interactions between (A) initial IOP and mean LCCI and (B) global CT and mean LCCI. Overall,
largermean LCCI and larger initial IOPA, and largermean LCCI and smaller global CTB together contributed to faster rates of RNFL thinning.
However, in the region where mean LCCI was >12, the rate of RNFL thinning was mainly dependent on the mean LCCI, whereas higher IOP
A and thinner global CT Bweremain contributors when themean LCCI was<12. IOP, intraocular pressure; LCCI, lamina cribrosa curve index;
CT, choroidal thickness.

rate of RNFL thinning was affected more by higher
initial IOP (see Fig. 3A), or smaller global CT (see
Fig. 3B).

Table 2 shows the results of linear regression
analyses of factors significantly associated with the
rate of RNFL thinning. Univariate analysis showed
that larger initial IOP, glaucoma surgery during the
initial 6 months, and larger mean LCCI were signif-
icantly associated with faster RNFL thinning (all

P ≤ 0.001). Multivariable analysis revealed that larger
initial IOP, larger mean LCCI, and smaller global
CT were independently associated with rapid RNFL
thinning. Scatter plots showing the relationship among
the four variables and the rate of RNFL thinning are
shown in the Supplementary Figure. Nonlinear corre-
lations assessed using polynomial regression showed
significant or marginally significant superiority than
linear correlations for all four variables.
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Table 2. Variables Associated With a Faster Rate of Retinal Nerve Fiber Layer Thinning

Univariable Analysis Multivariable Analysis

Beta 95% CI P-Value Beta 95% CI P-Value

Age, per 1 y older 0.003 −0.001, 0.008 0.170
Female sex −0.064 −0.204, 0.075 0.364
Highest IOP during the initial 6 mo,
per 1 mm Hg higher

−0.057 −0.068, −0.045 <0.001 −0.050 −0.063, −0.037 <0.001

Glaucoma surgery during the initial 6 mo −0.445 −0.626, −0.265 <0.001 −0.005 −0.198, 0.188 0.957
Mean LCCI, per 1 unit larger −0.060 −0.084, −0.037 <0.001 −0.043 −0.065, −0.020 <0.001
Global CT, per 1 μm thicker 0.001 0.000, 0.003 0.061 0.001 0.000, 0.003 0.018
VF MD, per 1 dB higher −0.004 −0.015, 0.008 0.545
VF PSD, per 1 dB higher 0.009 −0.008, 0.025 0.300
AXL, per 1 mm longer −0.010 −0.056, 0.035 0.653
CCT, per 1 μm thicker −0.002 −0.004, 0.001 0.060 0.000 −0.002, 0.001 0.674

CI, confidence interval; IOP, intraocular pressure; LCCI, lamina cribrosa curve index; CT, choroidal thickness; VF, visual field;
MD, mean deviation; PSD, pattern standard deviation; AXL, axial length; CCT, central corneal thickness.

Significant P values are in bold.

Figure 4. Decision tree model stratifying groups with faster or slower glaucoma progression based on factors best explaining the rate of
RNFL thinning. IOP, intraocular pressure; LCCI, lamina cribrosa curve index; CT, choroidal thickness.

The three common significant variables (initial IOP,
mean LCCI, and global CT) were included in a
decision tree model, which identified four groups of
eyes with different rates of RNFL thinning (Fig. 4).
The strongest discriminating variable was initial IOP.
Eyes with initial IOP >26.5 mm Hg showed the fastest
rate of RNFL thinning (−1.76%/year, n = 52), with
no further splitting being necessary. In eyes with initial
IOP ≤26.5 mm Hg, the next discriminating variable
was mean LCCI; eyes with a mean LCCI >13.95 had a
faster rate of RNFL thinning (−1.41%/year, n = 53)
than eyes with a mean LCCI ≤13.95 (−0.86%/year,
n = 607). Global CT was the third splitting variable
for eyes with lower initial IOP (≤26.5 mm Hg) and
smaller mean LCCI (≤13.95), with eyes having a global
CT ≤117.5 μm having a faster rate of RNFL thinning

(−1.13%/year, n = 75) than those with a global CT
>117.5 μm (−0.85%/year, n = 532).

Discussion

The model described in this study identified
ophthalmic factors that could predict the future rate
of RNFL thinning for over 5 years in patients with
OAG. The model incorporated key features of the
ONH that have recently been shown to be represen-
tative of the two essential mechanisms of glaucoma.
In addition to previously established variables, such as
IOP, ONH features were found to be strong predictors
of the rate of RNFL thinning. The strongest features in
the prediction model were also identified as significant
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factors in the multivariable regression analysis, validat-
ing the accuracy of the prediction model.

Conventional regression models assume that all
relationships are linear, which is not true in real-world
applications. The strength of machine learning models
is that they consider all potential nonlinear relation-
ships and interactions among features, enabling the
development of more realistic prediction models. The
RF is recognized as one of the powerful machine learn-
ing methods in the development of disease prediction
models.3,26–29 Strength of the RF over neural network
models is that less hyperparameters are selected during
training, reducing the chance of overfitting, which
makes it easier to establish a model. The major limita-
tion of the RF has been its high complexity, limit-
ing its interpretation. However, the recent develop-
ment of explainable artificial intelligence (i.e. SHAP)
has facilitated the interpretation of the RF. It has
been shown that SHAP performs well in explaining
machine learning models even when the data is of a
moderate size.2,30 Using SHAP, the present study could
successfully explain the prediction model, along with
the importance and dependence of each feature. The
interactions between features could be readily illus-
trated by partial interaction plots.

In the present study, a decision tree model was also
used for the analysis. A decision tree model itself can
illustrate groups having similar characteristic features
thatmay have interactions together affecting the depen-
dent variable. Using the decision tree, we could stratify
patients having differed rates of RNFL thinning with
different dominant features that may co-contribute to
the rate of progressive RNFL thinning.

Larger mean LCCI and higher IOP were the two
most important predictors of rapid RNFL thinning.
These two variables were previously shown to be
risk factors for glaucoma progression.8,17,33–35 Poste-
rior deformation of the LC is the principal event
that induces axonal damage in glaucoma.4 LCCI is
regarded as a reliable indicator of LC deformation, as
it can be used to estimate the degree of mechanical
strain on the LC.13,17 The partial interaction between
mean LCCI and IOP showed that an LCCI larger than
a certain degree (>12) was significantly associated with
faster RNFL thinning at any level of IOP, whereas
influence of IOP was predominant when the LCCI was
smaller than 12.

VF MD was the third important feature, having
nonlinear relationship with the rate of RNFL thinning.
When the VF damage was within earlier stage (i.e.
VF MD >−5dB), the rate of RNFL thinning became
faster with worsening of VFMD, whereas the opposite
was true when the VF was moderately or severely
damaged (i.e. VF MD < −5dB). This may be

attributable to the curvilinear relationship between
structure and function in the glaucoma continuum,36
where the rate of structural damage accelerates until
functional damage reaches a certain degree, and
then decelerates with functional deterioration going
further.37–39 Because of this nonlinear relationship
between structure and function, the influence of VF
MD could only be revealed by an RF model, not by
a conventional regression model.

Smaller peripapillary global CT was the fourth
predictor of faster RNFL thinning. Both partial inter-
action plots and the decision tree revealed that global
CT was particularly important when the LCCI was
smaller. The peripapillary choroid and the ONH have
the same vascular origin, with the peripapillary choroid
considered an important vascular structure for perfu-
sion of the ONH.5,18 A thinner peripapillary choroid
was found to be associated with localized dropout of
the choroidal microvessels at the location of glauco-
matous damage,20 which has been shown as a signifi-
cant indicator of future glaucoma progression.8,9,40,41
These findings suggest that decreased CT is associated
with decreased ONH perfusion.19,20 The thinner CT
plus a smaller LCCI predicting rapid progression may
indicate that ischemia plays amore important role than
mechanical stress in the pathogenesis of glaucoma in
certain eyes.

The SHAP values for initial IOP, LCCI, and CT
in our model rapidly decreased when these parame-
ters were above or below certain levels. These findings
indicate that cutoff levels for these parameters are
associated with accelerated axonal damage. On the
other hand, partial interaction plots showed some
exceptions depending on the interactions between
variables. Global CT appeared to be more influen-
tial than mean LCCI when the latter was below a
certain level (approximately 12 in the present study).
This finding may indicate the importance of a thin
choroid in eyes with smaller LCCI, suggesting that
the development and progression of glaucoma in eyes
with smaller LCCI could be mainly attributed to a thin
choroid (i.e. vascular incompetency). Among glauco-
matous eyes with small LCCI, vascular incompetency
may be worse in those with smaller LCCI, leading to a
more rapid rate of progression.

The features that can be influenced by a change
in IOP, such as LC and CT, were evaluated after the
initiation of medical treatment or after surgical treat-
ment when surgery was performed during the initial
6 months. Measurements at these time points avoided
the immediate effect of IOP lowering that might affect
baseline features. Determining the baseline features
in treatment naïve patients could allow the model to
predict the natural course of glaucoma from the time
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before initiation of treatment. However, this may be
less feasible in a real-world clinical setting.

This model had several limitations. First, the predic-
tion model was based on initial features. Glaucoma
is a dynamic disease influenced by various factors.
Any event during the follow-up, such as IOP fluctua-
tion or change in treatment, could affect the rate of
RNFL thinning. Therefore, it may not be practically
possible to develop a highly accurate prediction model
based only on initial features. Second, ONH param-
eters were measured manually by methods that are
time-consuming and subject to variability. Develop-
ment of a reliable algorithm that enables automated
segmentation and analysis of imaging data could
enhance the usefulness of the prediction model in
patients diagnosedwith glaucoma. There are numerous
variables that can possibly change the rate of RNFL
thinning during the follow-up.

In conclusion, a machine learning approach to
developing a prediction model enabled the identifi-
cation and interpretation of important ophthalmic
features suggestive of future glaucoma progression.
These features also allowed patients with glaucoma
to be classified by risk of disease progression. Predic-
tive modeling may facilitate automated risk prediction,
whichmay help in determiningmechanisms underlying
the pathogenesis of glaucoma and establishing long-
term treatment strategies more efficiently in individual
patients with glaucoma.
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