
REVIEW
published: 23 July 2020

doi: 10.3389/fonc.2020.01254

Frontiers in Oncology | www.frontiersin.org 1 July 2020 | Volume 10 | Article 1254

Edited by:

Francesca Finotello,

Innsbruck Medical University, Austria

Reviewed by:

Itai Yanai,

New York University, United States

Christina Stuelten,

National Cancer Institute (NCI),

United States

Pablo G. Camara,

University of Pennsylvania,

United States

*Correspondence:

Noel F. C. C. de Miranda

N.F.de_Miranda@lumc.nl

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Oncology

Received: 01 April 2020

Accepted: 17 June 2020

Published: 23 July 2020

Citation:

de Vries NL, Mahfouz A, Koning F and

de Miranda NFCC (2020) Unraveling

the Complexity of the Cancer

Microenvironment With

Multidimensional Genomic and

Cytometric Technologies.

Front. Oncol. 10:1254.

doi: 10.3389/fonc.2020.01254

Unraveling the Complexity of the
Cancer Microenvironment With
Multidimensional Genomic and
Cytometric Technologies

Natasja L. de Vries 1,2, Ahmed Mahfouz 3,4,5, Frits Koning 2 and Noel F. C. C. de Miranda 1*

1 Pathology, Leiden University Medical Center, Leiden, Netherlands, 2 Immunohematology and Blood Transfusion, Leiden

University Medical Center, Leiden, Netherlands, 3Human Genetics, Leiden University Medical Center, Leiden, Netherlands,
4Delft Bioinformatics Laboratory, Delft University of Technology, Delft, Netherlands, 5 Leiden Computational Biology Center,

Leiden University Medical Center, Leiden, Netherlands

Cancers are characterized by extensive heterogeneity that occurs intratumorally,

between lesions, and across patients. To study cancer as a complex biological system,

multidimensional analyses of the tumor microenvironment are paramount. Single-cell

technologies such as flow cytometry, mass cytometry, or single-cell RNA-sequencing

have revolutionized our ability to characterize individual cells in great detail and, with that,

shed light on the complexity of cancer microenvironments. However, a key limitation

of these single-cell technologies is the lack of information on spatial context and

multicellular interactions. Investigating spatial contexts of cells requires the incorporation

of tissue-based techniques such as multiparameter immunofluorescence, imaging mass

cytometry, or in situ detection of transcripts. In this Review, we describe the rise of

multidimensional single-cell technologies and provide an overview of their strengths

and weaknesses. In addition, we discuss the integration of transcriptomic, genomic,

epigenomic, proteomic, and spatially-resolved data in the context of human cancers.

Lastly, we will deliberate on how the integration of multi-omics data will help to shed light

on the complex role of cell types present within the human tumor microenvironment, and

how such system-wide approaches may pave the way toward more effective therapies

for the treatment of cancer.

Keywords: cancer microenvironment, single-cell, data integration, multi-omics, mass cytometry, spatial analysis,

immunophenotyping

INTRODUCTION – HETEROGENEITY OF CANCER AND NEED
FOR MULTIDIMENSIONAL APPROACHES

A genetic basis for cancer development was first proposed by the German zoologist Theodor Boveri
who speculated that malignant tumors might be the result of abnormal chromosome alterations
in cells (1). By then, a cancer cell-centric vision dominated, where tumorigenesis was thought
to be exclusively driven by multistep alterations in cellular genomes. During the last decades,
however, it has become increasingly apparent that the study of cancers must also encompass
other constituents of the cancer microenvironment including immune cells, fibroblasts, and other
stromal components, to capture all aspects of cancer biology (2). The immune system, for example,
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plays a dichotomous role in cancer development and progression,
as different cells can antagonize or promote tumorigenesis (3).
The mapping and understanding of the interplay between cancer
cells and other constituents of the cancer microenvironment is
thus fundamental for the clinical management of this disease.

The study of cancers as complex systems is further
complicated by cancer heterogeneity that can occur at
different levels; intratumorally, between lesions, and across
patients. Intratumoral heterogeneity involves the near-stochastic
generation of both genetic (e.g., mutations, chromosomal
aberrations) and epigenetic (e.g., DNA methylation, chromatin
remodeling, post-translational modification of histones)
modifications. Within tumors, distinct niches can favor
the outgrowth of different cancer cell clones that acquired
characteristics compatible with regional microenvironments
(e.g., nutrient and oxygen availability, exposure to immune cells).
Other intrinsic sources of heterogeneity such as self-renewal
of cancer cells and cell differentiation processes contribute
further to intratumoral heterogeneity (4, 5). In addition, the
immune system is a major part of the tumor microenvironment
and contains many different types of adaptive (e.g., CD4+ and
CD8+ T lymphocytes) and innate (e.g., macrophages and innate
lymphoid cells) immune cells that also contribute to cancer
heterogeneity (6). Their location within a tumor has been shown
to significantly impact their anti- or pro-tumorigenic effects (7).
In addition, the density of immune cell infiltration in tumors is
a well-known determinant for the prognosis of cancer patients
(8). Inter-lesional heterogeneity can be observed between
multiple primary tumors at time of diagnosis, between a primary
tumor and metastasis, and between different metastatic niches
in individual patients. They can be a result of the outgrowth
of subclones that can be (epi)genetically distinguished by
mutations or structural variations (9). Moreover, the structure
and composition of the cancer microenvironment can vary
between the primary tumor and metastases. Upon extravasation,
cancer cells from primary tumors are exposed to different
types of immune cells, stromal cells, platelets, and metabolic
stress, and have to adapt to the new tissue microenvironment.
As such, the metastatic tissue (“soil”) plays a critical role in
regulating the growth of metastases (“seed”) (10). Finally,
interpatient heterogeneity is, on top of the aforementioned
variables, also fueled by distinct germline genetic backgrounds
and environmental and stochastic factors that can affect cancer
progression but also immunity.

Major challenges in the field of cancer research are the
identification of predictive biomarkers to select patients that
are likely to respond to specific treatments, the detection of
mechanisms of resistance to therapy, and the development of
novel treatments to improve cancer survival. Here, we review
the rise of cutting-edge multidimensional technologies such as
spectral flow cytometry, multiparameter immunofluorescence,
(imaging) mass cytometry, single-cell RNA-sequencing (scRNA-
seq), and RNA spatial profiling that may play a crucial role
to address the former problems. We will discuss how multi-
omics of dissociated cells as well as of spatial data can be
obtained (Figure 1A) and the importance of integrating them to
reveal the full cellular landscape of the cancer microenvironment

(Figures 1B,C). For example, single-cell data of dissociated cells
can be used as guide for cell type identification in spatial data
(11) and, vice versa, spatial data can be used to predict the
location of dissociated cells based on the similarity of their
expression profiles to spatially-mapped data (12–14) (Figure 1B).
In addition, mapping can be used to predict the spatial profile of
genes or proteins which have not been experimentally measured
to expand the coverage of spatial data (Figure 1C) (15–17).

MULTIDIMENSIONAL SINGLE-CELL
TECHNOLOGIES AND THEIR STRENGTHS
AND WEAKNESSES

Single-Cell DNA- and RNA-Sequencing
Next-generation sequencing (NGS) approaches have
revolutionized our ability to generate high-throughput
genomic data where individual RNA and DNA molecules
are represented by sequencing reads thereby retaining
information on genotypes, phenotypes, cellular states, and
sub-clonal alterations. Traditional molecular profiling has,
until recently, largely relied on the analysis of bulk cell
populations. Deep sequencing of DNA and RNA from tissues
enabled reconstruction of “average” genomes and “average”
transcriptomes that could then be deconstructed by employing
bioinformatic algorithms to perform clonal evolution analysis
or determine the composition of cancer microenvironments
(18–21). For an unbiased and systematic characterization of cells,
high-throughput single-cell DNA- and RNA-sequencing have
emerged as powerful tools. With single-cell DNA-sequencing,
the genomic heterogeneity of tissues can be explored in detail.
It can be used to detect nucleotide variations and chromosomal
copy number alterations as well as more complex genomic
rearrangements and cellular fractions. Single-cell genome
sequencing involves whole-genome amplification of single cells,
of which the three main methods are MDA (22), MALBAC (23),
and DOP-PCR (24). In 2011, the first study of DNA-sequencing
of human breast cancer single cells was published (25), which
was followed by many single-cell studies charting genetic
heterogeneity within individual tumors as well as between
primary tumors and their metastases, thereby allowing for a
detailed understanding of the evolution processes occurring in a
tumor. Single-cell DNA-sequencing has myriad applications in
cancer research including examining intratumoral heterogeneity
(26–28), investigating clonal evolution during tumorigenic
processes (25, 29–32), tracing metastatic dissemination (33),
genomic profiling of circulating tumor cells (34–36), measuring
mutation rates (37), and gain insight into resistance to therapy
(38). By defining, in detail, the genetic composition of tumors,
the rationalization of targeted cancer therapies is made possible.
However, drawbacks of single-cell DNA-sequencing methods
are non-uniform coverage and allelic dropout events as well as
artifacts introduced during genomic amplification, all of which
contribute to a high rate of false negative and false positive
findings (39).

The first single-cell RNA-sequencing (scRNA-seq) experiment
was published in 2009 by Tang and colleagues who profiled the
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FIGURE 1 | Overview of the pipeline for the integration of single-cell data of dissociated cells and spatially-resolved data. (A) Single-cell data can be obtained by flow

and mass cytometry that make use of antibodies coupled to fluorochromes or heavy metal isotopes, respectively, for the immunodetection of dissociated cells. For

single-cell RNA-sequencing, antibodies coupled to oligonucleotides can be used to simultaneously retrieve information on protein and RNA expression of single cells.

Spatially-resolved data can be obtained by multiplexed imaging or spatial transcriptomics by immunodetection of tissue sections with antibodies coupled to

fluorochromes, heavy metal isotopes or oligonucleotides. Integration of single-cell data of dissociated cells with spatially-resolved data will reveal the full cellular

landscape of the cancer microenvironment. (B,C) Integration approaches for single-cell data of dissociated cells and spatially-resolved data. Single-cell data of

dissociated cells can be used as guide for cell type identification in spatial data and, vice versa, spatially-resolved data can be used to predict the location of

dissociated cells based on the similarity of their expression profiles to spatially-mapped data (B). In addition, single-cell data can be used to predict the spatial profile

of genes or proteins in the samples that have not been measured to expand the coverage of spatial data (C). Based on samples that have been measured (i.e.,

sample 1, 2, and 3), the expression of genes or proteins in sample 4, 5, and 6 can be predicted.
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transcriptome of a single cell from early embryonic development
(40). Rapid technological advances resulted in an exponential
increase in the number of cells that can be studied by scRNA-
seq analyses (41). Just 8 years later, 10x Genomics published a
scRNA-seq dataset of more than onemillion individual cells from
embryonic mice brains (42). There are many different scRNA-
seq library preparation platforms, which can be categorized
into plate-based, droplet-based, and microwell-based (41). The
selection of the method depends on the research question,
the number of input cells, the sequencing depth, the need
for full-length coverage of transcriptomes, and costs, among
others [reviewed by (43, 44)]. ScRNA-seq has demonstrated to
be a powerful technique to decipher cancer biology. In 2012,
Ramskold et al. applied scRNA-seq to study circulating tumor
cells in melanoma, and could identify potential biomarkers for
melanoma as well as SNPs and mutations in this relatively rare
circulating tumor cell population (45). Thereafter, scRNA-seq
has been used to study the microenvironment of several cancer
types including prostate cancer (46), breast cancer (47), glioma
(48–50), renal cancer (51), lung cancer (52), melanoma (53–
56), colorectal cancer (57–59), pancreatic ductal adenocarcinoma
(60), liver cancer (61), head and neck cancer (62), leukemia
(63), and glioma (64). A pioneering study that applied scRNA-
seq to primary glioblastomas uncovered inherent variability
in oncogenic signaling, proliferation, immune responses, and
regulators of stemness across cells sorted from five tumors
(48). However, this study was restricted to cancer cells and
did not further investigate other cell types of the cancer
microenvironment. Subsequently, another scRNA-seq study
examined distinct genotypic and phenotypic states of malignant,
immune, stromal, and endothelial cells of melanomas from 19
patients (53). They identified cell states linked to resistance
to targeted therapy, interactions between stromal factors
and immune cell abundance, and potential biomarkers for
distinguishing dysfunctional and cytotoxic T cells. A recent
study in colorectal cancer broadened such scRNA-seq analysis
by including a comparison of primary tumors to matched
normal mucosa samples (58). By projecting their scRNA-seq
data to a large reference panel, the authors identified distinct
subtypes of cancer-associated fibroblasts and new expression
signatures that were predictive of prognosis in colorectal cancer.
Further, scRNA-seq has been applied to investigate changes in
the tumor microenvironment of cancer patients treated with
immune checkpoint blockade to find signatures associated with
positive responses to this therapy (65, 66).

Currently scRNA-seq can be combined with sequencing of T
cell receptor and immunoglobulin repertoires thereby allowing to
connect information of B- and T cell specificity and phenotype.
High-throughput single-cell B cell receptor sequencing of more
than 250,000 B cells from different species has recently been
pioneered to obtain paired antibody heavy- and light chain
information at the single-cell level, and revealed a rapid
discovery of antigen-reactive antibody candidates (67). By a novel
approach called RAGE-seq (Repertoire and Gene Expression
by Sequencing), gene expression profiles can be paired with
targeted full-length mRNA transcripts providing BCR and TCR
sequences (68). This method has been applied to study cells

from the primary tumor and tumor-associated lymph node of
a breast cancer patient and demonstrated the ability to track
clonally related lymphocytes across tissues and link TCR and
BCR clonotypes with gene expression features (68). A limitation
of scRNA-seq is that RNA levels are not fully representative of
protein amounts. The advent of CITE-seq, REAP-seq, and Abseq
overcame this limitation by enabling simultaneous detection of
gene expression and protein levels in single cells by combining
oligonucleotide-labeled antibodies against cell surface proteins
with transcriptome profiling of thousands of single cells in
parallel (69–71). scRNA-seq, when employed in a discovery
setting, can inform on the best markers to be used for the study
of specific populations by complementary technologies such as
flow or mass cytometry. However, aspects of sample preparation
and handling have been shown to induce significant alterations
in the transcriptome (72). Furthermore, throughput is limited
by cost, protocol complexity, available sequencing depth, and
dropout events. Together, this can affect the downstream analysis
pipeline such as clustering of cell populations and the inference
of cellular relationships.

Computational analysis of scRNA-seq data is challenging
and involves multiple steps, e.g., quality control, normalization,
clustering, and identification of differentially expressed genes
and/or trajectory inferences. Multiple unsupervised clustering
analyses are available to identify putative cell types, of which
graph-based clustering is most widely used (73). For each of
these steps, numerous computational tools are available, but
in addition software packages have implemented the entire
clustering workflow such as Seurat (16), scanpy (74), and
SINCERA (75).

Single-Cell Epigenetic Characterization
Although most high-throughput profiling studies to date have
focused on DNA, RNA, and protein expression, recent progress
in studying the epigenetic regulation of gene expression,
at single-cell level, has been made. Over the last decades,
methods have been developed including ATAC-seq to measure
chromatin accessibility (76), bisulfite sequencing to measure
DNA methylation (77), ChIC-sequencing to measure histone
modifications (78), and chromosome conformation capture (3C)
to analyze the spatial organization of chromatin in a cell
(79). Several studies revealed epigenetic programs that regulate
T cell differentiation and dysfunction in tumors. Analysis of
chromatin accessibility by ATAC-seq revealed that CD8+ T
cell dysfunction is accompanied with a broad remodeling of
the enhancer landscape and transcription factor binding as
compared to functional CD8+ T cells in tumors (80–83). Also,
an increased chromatin accessibility at the enhancer site of
the PDCD1 gene (encoding for PD-1) has been found in
the context of dysfunctional CD8+ T cells (82). In addition,
studies have applied epigenetics to determine mechanisms
of resistance to cancer immunotherapies by characterizing
chromatin regulators of intratumoral T cell dysfunction before
and after PD-1, PD-L1, or CTLA-4 blockade therapy (84, 85).
Lastly, DNA hypermethylation may result in the inactivation
of genes, such as mismatch repair gene MLH1 associated with
microsatellite instability in colorectal cancer (86). Until recently,
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studies on epigenetic modifications depended on correlations
between bulk cell populations. Since 2013, with the development
of single-cell technologies, epigenomic techniques have been
modified for application to single cells to study cell-to-cell
variability in for instance chromatin organization in hundreds
or thousands of single cells simultaneously. Several single-
cell epigenomic techniques have been reported on recently,
including measurements of DNA methylation patterns (scRRBS,
scBS-seq, scWHBS) (87–89), chromatin accessibility (scATAC-
seq) (90), chromosomal conformations (scHi-C) (91), and
histone modifications (scChIC-seq) (92). A recent study applied
scATAC-seq to characterize chromatin profiles of more than
200,000 single cells in peripheral blood and basal cell carcinoma.
By analyzing tumor biopsies before and after PD-1 blockade
therapy, Satpathy et al. could identify chromatin regulators
of therapy-responsive T cell subsets at the level of individual
genes and regulatory DNA elements in single cells (93).
Interestingly, variability in histone modification patterns in
single cells have also been studied by mass cytometry, which
was denominated EpiTOF (94). In this way, Cheung et al.
identified a variety of different cell-type and lineage-specific
profiles of chromatin marks that could predict the identity of
immune cells in humans. Lastly, scATAC-seq has been combined
with scRNA-seq and CITE-seq analyses to find distinct and
shared molecular mechanisms of leukemia (95). These single-cell
strategies will allow to further understand how the epigenome
drives differentiation at the single-cell level and unravel drivers
of epigenetic states that could be used as target for the treatment
of cancer. Additionally, these methods may be used to measure
genome structure in single cells to define the 3D structure of
the genome. However, for many of these single-cell epigenetic
techniques, disadvantages are the low coverage of regulatory
regions such as enhancers (scRRBS), low coverage of sequencing
reads (scChiP-seq, scATAC-seq), and low sequencing resolution
(scHi-C) (96, 97).

Single-Cell Protein Measurements
Flow cytometry has been, in the past decades, the method of
choice for high-throughput analysis of protein expression in
single cells. The number of markers that can be simultaneously
assayed was limited to ∼14 markers due to the broad emission
spectra of the fluorescent dyes. Recent developments with
spectral flow cytometer machines enable the detection of up
to 34 markers in a single experiment by measuring the full
spectra from each cell, which are unmixed by reference spectra
of the fluorescent dyes and the autofluorescence spectrum (98).
Fluorescence emission is registered by detectors consisting of
avalanche photodiodes instead of photomultiplier tubes used
in conventional flow cytometry. A variety of cellular features
can be detected by flow cytometry including DNA and RNA
content, cell cycle stage, detailed immunophenotypes, apoptotic
states, activation of signaling pathways, and others [reviewed by
(99)]. This technique has thus been paramount in characterizing
cell types, revealing the existence of previously unrecognized
cell subsets, and for the isolation of functionally distinct cell
subsets for the characterization of tumors. However, the design of
multiparameter flow cytometry antibody panels is a challenging

and laborious task, and most flow cytometry studies have so
far focused on the in-depth analysis of specific cellular lineages,
instead of a broad and system-wide approach.

In 2009, the advent of a new cytometry methodology, mass
cytometry (CyTOF, cytometry by time-of-flight), overcame the
limitation of spectral overlap by using metal-isotope-conjugated
antibodies to detect antigens (100). The metal isotopes attached
to each cell are distinguished by mass and quantified in a
quadrupole time-of-flight mass spectrometer. A mass cytometer
is theoretically capable of detecting over 100 parameters per
cell, but current chemical methods limit its use to ∼40–50
parameters, simultaneously. Mass cytometry has expanded the
breadth of single-cell data in each experiment, making it highly
suitable for systems-level analyses such as immunophenotyping
of cancer microenvironments. By allowing the examination of
large datasets at single-cell resolution, mass cytometry can be
applied for the discovery of novel cell subsets as well as for
the detection and identification of rare cells. Further advantages
of mass cytometry are the irrelevance of autofluorescence, the
low biological background as heavy metals are not naturally
present in biological systems, and limited signal spillover between
heavy metals, thereby reducing the complexity of panel design.
Conversely, as compared to flow cytometry, mass cytometry
suffers from a higher cell loss during acquisition, is more
expensive, and is low-throughput, with a flow rate of up to 500
cells per sec as compared to thousands of cells per sec in flow
cytometry. In addition, cells cannot be sorted for further analysis
and forward- and side-scattered light is not detected.

Several studies have applied mass cytometry to further
characterize immune cell profiles in peripheral blood or tissues
from patients with breast cancer (101), renal cancer (102),
melanoma (55, 56, 103–105), lung cancer (52, 106, 107), glioma
(49, 50), colorectal cancer (57, 106, 108, 109), liver cancer (61,
110), ovarian cancer (111), and myeloma (112–115), among
others. In addition to characterizing immune cell profiles of
different tissue types, mass cytometry has also been used to
characterize immunophenotypes in tumors and monitor changes
during immunotherapy (56, 103–105, 114). In this way, factors
that influence response to immunotherapy can be investigated
and mechanisms at play during treatment can be characterized.
This information can be used to understand and facilitate the
identification and classification of responder vs. non-responders
to cancer immunotherapy.Most of the studies so far have focused
on the CTLA-4 and PD-1/PD-L1 axis of cancer immunotherapy,
but novel immunotherapeutic targets such as co-inhibitory
molecules LAG-3 or TIM-3 or co-stimulatory molecules such as
OX40 and GITR are currently being explored in mice models
and clinical trials (116). Moreover, mass cytometry has been
employed to study antigen-specific T cells with a multiplex
MHC class I tetramer staining approach, which has led to
the identification of phenotypes associated with tumor antigen-
specific T cells (106). Most studies applied mass cytometry for
measuring cell surface or intracellular markers, but it can also be
used to evaluate cell signaling processes relying on the analysis of
protein phosphorylation (117). Altogether, these studies showed
that immune responses in cancer are extremely diverse, within
tumors from individual patients as well as between patients

Frontiers in Oncology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 1254

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


de Vries et al. Integrating Multidimensional Technologies in Cancer

with equivalent tumor types. Hence, finding clinically-relevant
characteristics based on overall differences can be challenging
because of inter-patient variability; differences between cancer
patients can be so large that they compromise the discovery
of biomarkers.

Because the number of potential phenotypes (resulting from
the combination of different markers) increases exponentially
with the rise in number of antibodies being measured
simultaneously, computational tools for the analysis and
visualization of multidimensional data have become key in this
field. Traditional workflows for analyzing flow cytometry datasets
by manual gating are not efficient to capture the phenotypic
differences in mass cytometry and complex flow cytometry
data and suffer from individual user bias. In addition, flow
and mass cytometry datasets can easily contain millions of
cells, illustrating the need for scalable clustering algorithms
for efficient analysis. Current single-cell computational tools
employed for complex flow cytometry and mass cytometry
datasets include unsupervised clustering-based algorithms such
as SPADE (118), Phenograph (119), and FlowSOM (120).
However, these clustering-based tools do not provide single-
cell resolution of the data. On the other hand, non-linear
dimensionality reduction-based algorithms such as t-SNE (121)
are widely used tools but limited by the number of cells that they
can analyze simultaneously, resulting in down-sampled datasets
and non-classified cells. Recently, a hierarchical approach of the
t-SNE dimensionality-reduction-based technique, HSNE, was
described to be scalable to tens of millions of cells (122, 123). In
addition, a novel algorithm has recently been implemented in the
single-cell analysis field as a dimensionality reduction tool, called
uniform manifold approximation and projection (UMAP) (124).

Spatially-Resolved Data
Most of the multidimensional single-cell techniques such as
flow cytometry, mass cytometry, and scRNA-seq require cellular
dissociation to obtain cell suspensions prior to measuring the
individual cells. Different dissociation methods are used, both
mechanical and enzymatic, and may result in the loss of certain
cell types and affect the expression of specific cell surfacemarkers.
Moreover, tissue specimens are often contaminated with blood
or other tissues that are processed along with the tissue of
interest. As such, not all subsets identified in single-cell data
may be representative of the sample of interest. Another key
limitation is the lack of information on spatial localization
and cellular interactions within a tissue. Analysis of tissue
sections by traditional IHC- and immunofluorescence-based
methods are useful in providing spatial information (125), but
are severely limited in the number of markers that can be
measured simultaneously. Recent technological advances have
greatly expanded the number of markers that can be captured
on tissue slides. For instance, by applying the principles of
secondary ion mass spectrometry to image antibodies conjugated
to heavy metal isotopes in tissue sections with imaging mass
cytometry (IMC) (126) and multiplexed ion beam imaging by
time-of-flight (MIBI-TOF) (127). In both imaging approaches,
conventional IHC workflows are used but with metal-isotope-
conjugated antibodies that are detected through a time-of-flight

mass spectrometer. In IMC, a pulsed laser is used to ablate a
tissue section by rasterizing over a selected region of interest. The
liberated antibody-bound ions are subsequently introduced into
the inductively coupled plasma time-of-flight mass spectrometer.
IMC can currently image up to 40 proteins with a subcellular
resolution of 1µm. The principle of MIBI-TOF is similar, but
it makes use of a time-of-flight mass spectrometer equipped
with a duoplasmatron primary oxygen ion beam rather than a
laser. It currently enables simultaneous imaging of 36 proteins at
resolutions down to 260 nm (128). Both techniques are, however,
low-throughput due to the relatively long imaging time of 2 h per
field of 1 mm2 in IMC and 1 h 12min per field of 1 mm2 in MIBI-
TOF (129). IMC has been applied to study tumor heterogeneity
in several types of cancers, such as pancreatic cancer (130), biliary
tract cancer (131), breast cancer (126, 132, 133), and colorectal
cancer (108, 134). MIBI-TOF has been used to study the tumor-
immune microenvironment of breast cancer (127, 128, 135, 136)
and the metabolic state of T cells in colorectal cancer (109).
These spatially-resolved, single-cell analyses have great potential
to characterize the spatial inter- and intratumoral phenotypic
heterogeneity, which can guide cancer diagnosis, prognosis and
the selection of treatment. A recent study was able to extend
IMC data by integration with genomic characterization of breast
tumors and could, in this way, investigate the effect of genomic
alterations on multidimensional tumor phenotypes of breast
cancer (137).

Other multiplexed imaging techniques such as the Digital
Spatial Profiling (DSP) system fromNanoString and co-detection
by indexing (CODEX) make use of DNA oligonucleotides. In
DSP, antibodies or probes are tagged with unique ultraviolet-
photocleavable DNA oligos that are released after ultraviolet
exposure in specific ROIs and quantified (138). It enables
simultaneous detection of up to 40 proteins or over 90 RNA
targets from a tissue section and theoretically allows unlimited
multiplexing using the NGS readout, but is time-consuming,
does not allow for a reconstruction of the image, and has a lower
resolution (10µm) (129). In CODEX, antibodies conjugated to
unique oligonucleotide sequences are detected in a cyclic manner
by sequential primer extension with fluorescent dye-labeled
nucleotides. CODEX currently allows the detection of over 50
markers with an automated fluidic setup platform including a
three-color fluorescence microscope (139). Of note, throughput
is limited by sequential detection of antibody binding. A
disadvantage of CODEX, but also of IMC, is the lack of signal
amplification which hampers the detection of lowly abundant
antigens. A novel imaging technique, called Immuno-SABER,
overcame this limitation by implementing a signal amplification
step using primer exchange reactions. Immuno-SABER makes
use of multiple DNA-barcoded primary antibodies that are
hybridized to orthogonal single-stranded DNA concatemers,
generated via primer exchange reactions (140). These primer
exchange reactions allow multiplexed signal amplification with
rapid exchange cycles of fluorophore-bearing imager strands.
The Nanostring DSP platform has been used to study the tumor
microenvironment and the outcome of various clinical trials
of combination therapy for melanoma (141–144), interactions
between macrophages and lymphocytes in metastatic uveal
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melanoma (145), immune cell subsets in lung cancer (129, 143),
and tumormicroenvironments of different metastases in prostate
cancer (146). CODEX has been applied to study the immune
tumor microenvironment of colorectal cancer patients with 56
protein markers simultaneously (147).

These multiplexed imaging techniques can be applied to
snap-frozen as well as FFPE samples that are usually stored in
clinical repositories. However, they raise new analysis challenges
such as the visualization of 40 markers simultaneously, the
image segmentation for cell determination, and algorithms
for image-based expression profiles. To understand the tissue
architecture, it is necessary to have prior knowledge on which
cell types can be present and what their physical relationship
to one another could be. Several computational approaches
have been developed to enable data analysis of spatially-resolved
multiplexed tissue measurements including HistoCAT (148) and
ImaCytE (149). These approaches apply cell segmentation masks
[using a combination of Ilastik (150) and CellProfiler (151)] to
extract single-cell data from each image, which allow for deep
characterization using multidimensional reduction tools such
as t-SNE combined with the assessment of spatial localization
and cellular interactions. In addition to cell-based analysis such
imaging technologies also allow the employment of pixel-based
analysis that do not depend on cell segmentation.

Integration of single cell transcriptome profiles with their
spatial position in tissue context can be achieved by labeling
of DNA, RNA, or probes using in situ hybridization (ISH).
Traditional ISH techniques have been improved to allow
the detection of single molecules, named single-molecule
fluorescence ISH (smFISH) that can be used to quantitate
RNA transcripts at single-cell resolution within a tissue context
(152, 153). However, only a small number of genes can be
measured simultaneously and a main limitation is the lack of
cellular resolution to hundreds of micrometers. To improve
the throughput, several highly multiplex methods of in situ
RNA visualization have been developed such as osmFISH (154),
sequential FISH [seqFISH (155) and seqFISH+ (156)] and error-
robust FISH [MERFISH (157)]. These allow the subcellular
detection of 100–10,000 transcripts simultaneously in single
cells in situ by using sequential rounds of hybridization with
temporal barcodes for each transcript, but require a high
number of probes and are time-consuming. Furthermore, ISH
can suffer from probe-specific noise due to sequence specificity
and background binding. Another approach which may be
more applicable for tumors is in situ RNA sequencing on
tissue sections. STARmap (158) and FISSEQ (159) can profile
a few hundreds to thousands of transcripts by using enzymatic
amplification methods, but at lower resolution and sensitivity
compared to seqFISH and MERFISH. Spatial Transcriptomics
(160) and Slide-seq (161) can profile whole transcriptomes
by using spatially barcoded oligo-dT microarrays. The spatial
transcriptomics method has been used to study and visualize
the distribution of mRNAs within tissue sections of breast
cancer (160, 162), metastatic melanoma (56, 163), prostate cancer
(164), and pancreatic cancer (165). These studies highlight
the potential of gene expression profiling of cancer tissue
sections to reveal the complex transcriptional landscape in its

spatial context to gain insight into tumor progression and
therapy outcome.

INTEGRATION OF TRANSCRIPTOMIC,
(EPI)GENOMIC, PROTEOMIC, AND
SPATIALLY-RESOLVED SINGLE-CELL
DATA

Traditionally, each type of single-cell data has been considered
independently to investigate a biological system. However, cancer
is a spatially-organized system composed of many distinct cell
types (Figure 2A). These different cell types including immune
cells, stromal cells, and malignant cells can be visualized and
investigated in an interactive manner (Figure 2B). By applying
multi-omics to individual cells in the cancer microenvironment,
the molecular landscape of every cell (44) can be defined with
its proteome (proteins), transcriptome (RNA sequence), genome
(DNA sequence), epigenome (DNA methylation, chromatin
accessibility), and spatial localization (x, y, z-coordinates)
(Figure 2C). Integrating these different molecular layers for
each cell will allow a detailed profiling of cancer as a complex
biological system (Figure 2D). Data integration approaches have
classically been categorized in three groups: early (concatenation-
based), intermediate (transformation-based), and late (model-
based) stage integration (166). Early or intermediate stage
integration approaches are more powerful than late stage
integration since they can capture interactions between different
molecular data-types. However, such approaches are also
more challenging methodologically given the different data
distributions across data types.

A number of studies have used complementary forms of
multidimensional analysis on the same sample type in the context
of cancer. We have performed a search strategy in PubMed,
Web of Science, and Embase databases to find studies that
have used mass cytometry in concert with scRNA-seq in the
context of human cancer (Supplementary Table 1). An overview
of the eight relevant studies that applied mass cytometry together
with scRNA-seq to study human cancer and their integration
stage is shown in Table 1. In addition, we performed a search
strategy in PubMed, Web of Science, and Embase databases
on studies that applied single-cell mass cytometry in concert
with spatially-resolved data obtained by IMC or MIBI-TOF in
human cancer (Supplementary Table 1). An overview of the two
relevant studies and their integration stage is shown in Table 2.
Notably, all different multidimensional datasets in these studies
were analyzed separately and follow a late (model-based) stage
integration. Only Goveia and colleagues applied an integration
of clustered mass cytometry and scRNA-seq data (107). They
merged scaled average gene expression data for each scRNA-
seq cluster with scaled average protein expression data for each
CyTOF cluster, an approach based on a recently described
method from Giordani et al. (167). As they integrated the data
only after clustering eachmodality separately, it is still considered
late stage integration.

Integrating multiple single-cell datasets is a challenging task
because of the inherently high levels of noise and the large
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FIGURE 2 | An integrated multicellular model of cancer. (A) From cells in a spatially-organized cancer microenvironment to (B) a three-dimensional view of individual

cells. (C) From each individual cell in the cancer microenvironment, protein expression can be measured by single-cell protein analysis, RNA expression by single-cell

RNA analysis, DNA and chromatin expression by single-cell (epi)genome analysis, and the x, y, z-coordinates with spatially-resolved analysis. (D) Integrating all four

molecular layers for each cell will allow a detailed profiling from individual cell-to-cell interactions to whole tissue context.

amount of missing data. Furthermore, the ever-expanding scale
of single-cell experiments to millions of cells poses additional
challenges. Several methods have been proposed to integrate
multimodal single-cell data. State-of-the-art methods focus on
embedding both spatial and standard datasets into a latent space
using dimensionality reduction, such as Seurat (16), LIGER (17),
and Harmony (168), or by employing factor analysis, such as
MOFA (169), MOFA+ (170), scMerge (171), and scCoGAPS
(172). In addition, a recent study introduced gimVI as a model
for integrating spatial transcriptomics data with scRNA-seq
data to impute missing gene expression measurements (15).
Of note, most of the methods so far follow an intermediate

or late integration approach (166). As such, these methods
overcome challenges due to the different data distributions across
data types, but they are less powerful in capturing interactions
between different molecular data types.

Several methodologies have been developed to simultaneously
acquire multiple measurements from the same cell (Box 1).
Although obtaining simultaneous measurements from the same
cell is becomingmore feasible, it is still more common to perform
subsequent measurements from the same sample (different
sets of cells). Integrating spatial-based assays with mRNA or
protein expression measurements can be beneficial for several
reasons. For instance, spatial measurements are often limited in
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TABLE 1 | Overview of studies applying mass cytometry together with single-cell RNA-sequencing to study human cancer heterogeneity.

References Methods for single-cell profiling Cancer type Integration stage

Lavin et al. 2017 (52) Mass cytometry and scRNA-seq Lung cancer Late

De Vries et al. 2019 (57) Mass cytometry and scRNA-seq Colorectal cancer Late

Zhang et al. 2019 (61) Mass cytometry and scRNA-seq Liver cancer Late

Sankowski et al. 2019 (49) Mass cytometry and scRNA-seq Glioma Late

Halaby et al. 2019 (55) Mass cytometry and scRNA-seq Melanoma Late

Goswami et al. 2020 (50) Mass cytometry and scRNA-seq Glioblastoma Late

Goveia et al. 2020 (107) Mass cytometry and scRNA-seq Lung cancer Late

Helmink et al. 2020 (56) Mass cytometry and scRNA-seq Melanoma Late

scRNA-seq, single-cell RNA-sequencing.

TABLE 2 | Overview of studies applying mass cytometry together with imaging mass cytometry or MIBI-TOF to study human cancer heterogeneity.

References Methods for single-cell profiling Cancer type Integration stage

Zhang et al. 2019 (108) Mass cytometry and IMC Colon cancer Late

Hartmann et al. 2020 (109) Mass cytometry and MIBI-TOF Colorectal cancer Late

IMC, imaging mass cytometry; MIBI-TOF, multiplexed ion beam imaging by time-of-flight.

terms of the number of features they can assess simultaneously,
although the latest generations ofMERFISH and seqFISH(+) can
measure around 10,000 transcripts per cell. By integrating these
imaging techniques with scRNA-seq, the amount of biologically-
relevant information can be enhanced. Moncada et al. presented
an integration of scRNA-seq with the spatial transcriptomics
method generated from the same sample to study pancreatic
cancer (165). A clear challenge when integrating spatial protein
(e.g., IMC, MIBI-TOF, CODEX) with scRNA-seq data is the need
to model relationships between mRNA and protein expression
levels, thus adding an extra layer of complexity. The advent
of CITE-seq, combining antibody-based detection of protein
markers with transcriptome profiling, could be used to bridge this
gap since it allows simultaneous measurement of both mRNA
and surface protein marker expression. We foresee an important
role for CITE-seq data in the integration of IMC, MIBI-TOF,
and CODEX spatial data with scRNA-seq data. Recently, the
integration of CITE-seq with CODEX as well as with IMC has
been pioneered by Govek et al. (173).

POTENTIAL AVENUES OF HOW THE
INTEGRATED DATA WILL HELP TO SHED
LIGHT ON THE COMPLEX ROLE OF THE
MICROENVIRONMENT IN CANCER

Cancer heterogeneity has long been recognized as a factor
complicating the study and treatment of cancer but, until
recently, it was difficult to account for in cancer research.
The advent of multidimensional single-cell technologies has
shed light on the tremendous cellular diversity that exists
in cancer tissues and heterogeneity across patients. Moving
forward, it will be important to work on the integration of
available (spectral) flow cytometry, mass cytometry, scRNA-seq,

and spatially-resolved datasets to investigate commonalities and
differences in cellular landscapes between cancer tissues.Multiple
flow andmass cytometry datasets can bematched if they include a
shared marker set between panels, thereby extending the number
of markers per cell and allowing meta-analysis of different mass
cytometry datasets with a common core of markers (174). In
addition, cell-type references from different single-cell datasets
can improve the functional characterization of cells (175). Such a
system-wide approach will improve insights into how different
components of the cancer microenvironment interact in a
tissue context. This requires an extensive collaboration between
multi-disciplinary research fields such as oncology, immunology,
pathology, and bioinformatics.

Nevertheless, the development and widespread use of
innovative methodologies also implies the development of
analytical tools for the interpretation of complex datasets and
their standardization across laboratories. Furthermore, systems-
level analyses challenge a researcher’s capacity to reconnect
findings to their biological relevance. Studies should focus on the
removal of unwanted variation and experimental noise in high-
throughput single-cell technologies as well as the development of
cell-type references, such as the Human Cell Atlas (176) and the
Allen Brain Atlas (177) principles. We need to further develop
algorithms to integrate data from different imaging and non-
imaging single-cell technologies. Alternatively, technological
developments should allow the acquisition of molecular profiles
from single cells without the need of dissociating them from
their tissue context. Lastly, it would be of great value to correlate
multi-omics techniques with cell-to-cell signaling networks such
as CellPhoneDB (178) and NicheNet (179). We expect that
this integrated and comprehensive data can be used to create
a multicellular model of cancer, from single cells to its tissue
context, to understand and exploit cancer heterogeneity for
improved precision medicine for cancer patients.

Frontiers in Oncology | www.frontiersin.org 9 July 2020 | Volume 10 | Article 1254

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


de Vries et al. Integrating Multidimensional Technologies in Cancer

BOX 1 | Methods for the integration of transcriptomic, (epi)genomic, and

proteomic single-cell data.

The analysis of protein expression has been extended to include transcript

measurements at the single-cell level. CITE-seq (69), REAP-seq (70),

and PLAYR (180) can be used to detect mRNA and protein levels

simultaneously in single-cells. In CITE-seq and REAP-seq, oligonucleotide-

labeled antibodies are used to integrate cellular protein and transcriptome

measurements. In PLAYR, mass spectrometry is used to simultaneously

analyze the transcriptome and protein expression levels. The analysis of

mRNA expression and methylation status in single cells can be achieved by

scM&Tseq (181). In addition, mRNA expression and chromatin accessibility of

single cells can be analyzed by sci-CAR (182), SNARE-seq (183), and Paired-

seq (184). Chromatin organization and DNAmethylation from a single nucleus

can jointly be profiled by snm3C-seq (185). DR-seq (186) and G&T-seq (187)

can assay genomic DNA andmRNA expression simultaneously in single cells,

allowing correlations between genomic aberrations and transcriptional levels.

Moreover, recent studies have reported on the development of single-cell

triple-omics sequencing techniques, such as scTrio-seq (188) and scNMT-

seq (189). In scTrio-seq, the transcriptome, genome, and DNA methylome

of individual cells are jointly captured. Lastly, scNMT-seq jointly profiles

transcription, DNA methylation, and chromatin accessibility, allowing for a

thorough investigation of different epigenomic layers with transcriptional

status.

How will such system-wide approaches contribute toward
more effective therapies for the treatment of cancer? With the
advent of targeted therapy and immunotherapy, remarkable
advances have been made that changed the management of
oncologic treatment for a significant number of patients.
However, still only a minority of cancer patients benefit from
these therapies, and resistance to treatment remains a major
complication in the clinical management of advanced cancer
patients. Integrated multi-omics data can help to improve
our understanding of the variability in treatment response
and resistance mechanisms. By linking detailed molecular and
immunological profiles of cells in the cancer microenvironment
with sensitivity to specific therapies, potential targets for cancer
treatments and associated biomarkers can be identified. This

would also support a rational selection of patients that are
most likely to benefit from specific treatments. Furthermore,
integrated multi-omics data has the potential to guide the
development of alternative therapies, for instance through the
identification of resistance mechanisms. We expect that such
system-wide approaches, with technologies that include spatial
information, will become standard methodologies in cancer
research in the coming years.
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