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A B S T R A C T   

The traceability of geographic origin is essential for guaranteeing the quality, safety, and protection of oyster 
brands. However, the current outcomes of traceability lack credibility as they do not adequately explain the 
model’s predictions. Consequently, we conducted a study to evaluate the efficacy of utilizing explainable ma
chine learning combined with mineral elements analysis. The study findings revealed that 18 elements have the 
ability to determine regional orientation. Simultaneously, individuals should pay closer attention to the potential 
risks associated with oyster consumption due to the regional differences in essential and toxic elements they 
contain. Light gradient boosting machine (LightGBM) model exhibited indistinguishable performance, achieving 
flawless accuracy, precision, recall, F1 score and AUC, with values of 96.77%, 96.43%, 98.53%, 97.32% and 
0.998, respectively. The SHapley Additive exPlanations (SHAP) method was used to evaluate the output of the 
LightGBM model, revealing differences in feature interactions among oysters from different provinces. Specif
ically, the features Na, Zn, V, Mg, and K were found to have a significant impact on the predictive process of the 
model. Consistent with existing research, the use of explainable machine learning techniques can provide in
sights into the complex connections between important product attributes and relevant geographical 
information.   

1. Introduction 

Oysters were recognized worldwide for their popularity as bivalves, 
primarily due to their substantial amounts of protein, amino acids, 
eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22: 
5n-3), and mineral elements (Liu et al., 2022; Zhao et al., 2022; Loaiza 
et al., 2023). In 2022, China’s oyster production is projected to exceed 
6.20 million tons, primarily concentrated in the provinces of Liaoning, 
Fujian, Shandong, Guangdong and Guangxi (MOAC, 2023). In recent 
years, an outbreak of dangerous algal blooms, specifically harmful 
microalgae, has led to the detection of various toxins, such as 
dinophysistoxin-2 and domoic acid, in oysters sourced from Guangdong 
and Guangxi provinces (Zheng et al., 2022). Moreover, oysters possess 
the ability to accumulate toxic elements such as cadmium in their tissues 
(Ng et al., 2010). Therefore, the market may be susceptible to the entry 
of contaminated items as a result of labeling fraud and illegal seafood 

trading (Sumaila et al., 2020; Matos et al., 2021). In such circumstances, 
human concerns regarding the quality and safety of oysters lead to a 
higher tendency for buyers to choose branded oysters from reputable or 
renowned production regions (Guo et al., 2023). Moreover, following 
the enforcement of the China-EU agreement on geographical in
dications, various oyster products with designated geographic origins (e. 
g., Beihai Oyster) have been incorporated into the catalog of mutually 
recognized items. Consequently, the significance of advancing oyster 
origin traceability technologies that prioritize product quality, safety, 
and trademark protection has been underscored. 

The Fisheries and Fisheries Administration Bureau, a division of the 
Ministry of Agriculture and Rural Affairs in China, is primarily respon
sible for overseeing the quality and safety of oyster products (Zhai et al., 
2020). Furthermore, to ensure quality and safety of oysters and maintain 
consumer trust, several approaches have been adopted in China to 
identify their origin. These include non-targeted lipidomics analysis (Liu 
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et al., 2022), attenuated total reflectance Fourier-transform infrared 
spectroscopy (Guo et al., 2023), shellomics and microstructural analysis 
(Zhang et al., 2023). Additional methods, such as pyrolysis mass spec
trometry fingerprinting (Ratel et al., 2008), mineral elemental finger
printing (Mouchi et al., 2021), and the combination of 
compound-specific isotope and elemental analysis (Matos et al., 2021), 
have proven advantageous in identifying the origin of oysters. Among 
these technologies, elemental fingerprinting stands out as a fast, 
cost-effective, and straightforward method that relies on the under
standing that the elemental composition of the maricultural environ
ment can be accurately represented in the organisms themselves (Kang 
et al., 2021). Elemental fingerprinting has proven successful in deter
mining the origin of Asian seabass, Black tiger prawns, sea cucumber 
and scallops (Honig et al., 2020; Han et al., 2022a; Kang et al., 2022). 
However, the suitability of this method for tracing the origin of Chinese 
oysters is questionable. 

Machine learning has emerged as a valuable tool for investigating 
food security, food fraud and food origin traceability research, even 
when traditional face-to-face survey data is lacking (Jiménez-Carvelo 
et al., 2019; Deng et al., 2021; Kang et al., 2022; Martini et al., 2022; 
Huang et al., 2023). Machine learning has proved to be effective in 
various fields, including economic, biology, manufacturing, and health 
promotion research, primarily due to its strong classification perfor
mance after alleviating the influence of overfitting by data reduction, 
feature selection, cross-validation and other measures (Lundberg and 
Lee, 2017; Lundberg et al., 2020; Kim and Kim, 2022). However, un
derstanding the inner workings of a machine learning model can be 
challenging due to its black-box nature, which can hinder human 
comprehension of the underlying reasons behind a specific prediction 
(Ribeiro et al., 2016; Ekanayake et al., 2022). SHapley Additive exPla
nations (SHAP) has emerged as a novel framework that efficiently ex
plains the output of a machine learning model (Lundberg and Lee, 
2017). This method evaluates the average marginal contribution of a 
feature using SHAP values, thereby enhancing our understanding of 
predictions in specific scenarios. Moreover, it offers valuable insights 
into both individual instances and overall patterns at a global and local 
scale (Lundberg and Lee, 2017; 2019). The interpretation of SHAP 
values has played pivotal roles in establishing trust in auxiliary diag
nosis, understanding spatial phenomena, enhancing strength pre
dictions, and facilitating environmental management (Goodwin et al., 
2022; Kim and Kim, 2022; Li, 2022; Ekanayake et al., 2022; Wang et al., 
2022). To the best of our knowledge, however, there has been no 
investigation of this technique in the identification of oyster origin. By 
addressing this gap, we can gain users’ trust, enhance our understanding 
of the impact of input features on predictions, and improve the accuracy 
of models in real-word scenarios. 

This study establishes the multi-elemental profiles, comprising 
essential and toxic elements, in oysters sourced from the primary 
farming regions in China to evaluate the quality and safety of oysters 
across various regions. Further, the random forest (RF), traditional 
gradient boosting decision tree (GBDT), Light gradient boosting ma
chine (LightGBM) and extreme gradient boosting (XGBoost) models 
were developed to evaluate the feasibility of utilizing mineral elements 
and explainable machine learning in oyster origin traceability. Subse
quently, the model with the highest performance was further examined 
using SHAP at both global and local levels. The objective of this inves
tigation was to identify a highly effective solution for tracing the origin 
of oysters by leveraging mineral elements and explainable machine 
learning to enhance the regulation of oyster quality and safety. Addi
tionally, this study highlights the impact of crucial features on the 
model’s accuracy in predicting the origin of oysters. 

2. Materials and methods 

2.1. Sampling 

The same species of oyster (Crassostrea gigas) samples were collected 
from 94 sampling stations located in China’s primary production re
gions, as illustrated in Fig. 1. Specifically, samples from Guangdong (n =
51) and Guangxi provinces (n = 21) were collected in 2020, while 
samples from Liaoning (n = 8) and Shandong provinces (n = 14) were 
obtained in 2021. At each sampling site, 30 individual fresh oysters with 
size 10–15 cm and weight 150–200 g were carefully gathered, placed in 
food-grade plastic bags, and refrigerated at a temperature of 4 ◦C for a 
maximum of 48 h before transportation to the laboratory (Kang et al., 
2021). 

2.2. Sample preparation and analysis 

To eliminate any residual foreign materials, the soft tissues within 
the shells were excised using a plastic knife and thoroughly rinsed with 
distilled water. Subsequently, the soft tissues were refrigerated (− 20 ◦C) 
for 12 h prior to being lyophilized at − 50 ◦C for a duration of 4 days. The 
resultant dried soft tissues were then finely powdered. For the exami
nation of mineral elements, 0.5 g oyster samples were carefully digested 
using a combination of concentrated nitric acid and perchloric acid on a 
heated plate. The resulting digest was adjusted to a known volume of 
100 mL with ultrapure water. 

The concentrations of Mn, Fe, Cu, Zn, Sr, As, Cd, Se, Li, Al, V, Co, Ni, 
Ag, Ba, Pb, Bi, Ca, and Mg were measured using inductively coupled 
plasma mass spectrometry (ICP-MS, ELAN DRCII, PerkinElmer In
struments, USA). Additionally, potassium (K) and sodium (Na) were 
determined using inductively coupled plasma optical emission spec
troscopy (ICP-OES, Optima 5300DV, PerkinElmer Instruments, USA). 
The ICP-MS and ICP-OES operation parameters proposed by Kang et al. 
(2018) were adopted for the analysis. The external standard approach 
was employed for quantification, with determination coefficients of the 
standard curves exceeding 0.995. Accuracy and precision of the 
analytical procedure were assessed using a scallop standard reference 
material (SRM) (GBW10024). The SRM exhibited a similar matrix 
composition to the analyzed samples, and the observed concentrations 
closely aligned with the certified values, resulting in recoveries ranging 
from 92.3% to 97.9% with a relative standard deviation (RSD) below 
10% (n = 5). 

Fig. 1. Spatial distribution of oyster samples collected from four provinces 
in China. 
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2.3. Statistical analysis 

Model generation and examination was implemented in Python 3.8 
and Pycharm Community Edition 2021.3.1, with imbalanced-learn 0.9.0 
(Lemaître et al., 2017), XGBoost 1.5.2 (Chen and Guestrin, 2016), 
scikit-learn 0.24.2 (Pedregosa et al., 2011), lightGBM 2.2.3 (Ke et al., 
2017), and SHAP 0.41.0 libraries (Lundberg et al., 2020). 

2.3.1. Machine learning models 
The Random Forest model is a machine learning technique that en

tails the creation of numerous decision trees through random selection 
of features and samples. Each tree generates a prediction, and the final 
output is determined by aggregating these predictions (Breiman, 2001). 
The GBDT method is an interactive algorithm for decision tree modeling. 
It combines the outcomes of multiple trees that are trained indepen
dently, with each subsequent tree contributing to the correction of errors 
made by the preceding tree (Friedman, 2001). LightGBM is an optimized 
GBDT algorithm that constructs each tree in a leaf-wise manner, maxi
mizing the fit at every step (Ke et al., 2017; Wang et al., 2022). XGBoost 
is a gradient boosting integration technique that includes a regulariza
tion factor in the objective function to manage the complexity of the 
trees. This procedure helps in mitigating the problem of overfitting in 
the model (Chen and Guestrin, 2016; Ekanayake et al., 2022). All the 
aforementioned models excel in classification tasks will be utilized as a 
quality control strategy by predicting the geographical origin of oysters 
from unknown sources. 

2.3.2. Model construction and evaluation 
The process of constructing and evaluating the model was illustrated 

in Fig. 2. Firstly, the mineral elements (Mn, Fe, Zn, Se, As, Cd, Li, Al, V, 
Co, Sr, Ag, Ba, Bi, Ca, K, Mg, and Na), which exhibit significant regional 
variations, were compiled into a data matrix consisting of 94 samples. 
This matrix was structured with 94 rows representing cases and 18 
columns representing features. The desired dataset was a 94 × 1 matrix 
with a column labeled "province label” denoting the provinces Liaoning, 
Shandong, Guangdong, and Guangxi, assigned the labels 0, 1, 2, and 3 
respectively. 

Secondly, the dataset (n = 94) was randomly split into training and 

testing sets in a 0.7:0.3 ratio prior any data preprocessing to prevent 
data leakage during model development (Kapoor and Narayanan, 2023). 
Subsequently, considering the compositions of elements in oysters 
exhibit varying magnitudes (in g/kg or mg/kg). In addition, the results 
revealed an imbalanced pattern resulting from differences in actual 
oyster mariculture farms across provinces. The negative impact on the 
performance of machine learning models is inevitable (Fernández et al., 
2018). To mitigate adverse effects and prevent data leakage, we selected 
the Standard Scaler, applied the fit() function to the training set, and 
subsequently used the transform() function on both the training and 
testing sets to normalize each dataset. Moreover, the synthetic minority 
oversampling technique (SMOTE) was exclusively applied to the 
training set (Kang et al., 2022). 

Third, the preprocessed training set (n = 140) was utilized for 
training the models. All models underwent hyper-parameter optimiza
tion using a grid search strategy with 10-fold cross-validation on the 
training set. Learning curves were calculated for each hyperparameter- 
optimized classifier on the datasets using a 10-fold cross-validation to 
track the model fitting status with an increasing number of training 
samples. 

Finally, statistical metrics were employed to assess the performance 
of the models using the test set (n = 31). This study adopted various 
statistical measurements including accuracy, precision, recall, and F1 
score, which is defined as follows: 

Accuracy=
TP + TN

TP + TN + FP + FN
(1)  

Recall=
TP

TP + FN
(2)  

Precision=
TP

TP + FP
(3)  

F1 score=
2 × Precision × Recall

Precision + Recall
(4) 

where TP, FP, TN, and FN represent true positives, false positives, 
true negatives, and false negatives, respectively. Additionally, AUC re
fers to the area under the curve of the receiver operating characteristic 

Fig. 2. Flowchart of model construction, performance evaluation and interpretation (the area of dataset rectangles represent sample size only).  
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(ROC), constructed using FP and TP (Wang et al., 2020). 

2.3.3. Shapley additive explanations (SHAP) 
The RF model was selected based on its performance and its inter

pretation was facilitated by the SHAP framework. TreeExplainer, an 
innovative technique for model explanation rooted in game-theoretic 
Shapley values, was utilized, demonstrating its effectiveness in 
enhancing interpretability for tree-based models (Lundberg and Lee, 
2017; 2019, 2020). The SHAP algorithm assessed the contribution of 
each variable to the model’s output using both the model and input 
dataset, as elaborated below (Lundberg and Lee, 2017): 

φi =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
(5) 

where φi, F and S represent the contribution of each feature, the set of 
all features, and all features excluding ith feature, respectively. Then, two 
models are retrained, fS∪{i} when i is included and fS when it is not, and 
their predictions are compared to the current input fS∪{i}(xS∪{i}) − fS(xS), 
where xs indicates the values of the input features in the set S. 

3. Results and discussion 

3.1. Elemental compositions of oysters from different regions 

Oysters are sedentary filter-feeders capable of absorbing metals 
present as dissolved or suspended particles in the water column. The 
average concentrations of Na, Mg, Ca, and K in oysters obtained from 
four provinces in this study were 30.26 ± 27.69, 9.94 ± 7.45, 9.49 ±
9.35, and 8.58 ± 2.32 g/kg, respectively. These values were consistent 
with findings from prior research studies (Lu et al., 2017). The average 
Al and Fe contents in oysters were 1.21 ± 0.72 and 0.74 ± 0.54 g/kg, 
respectively. Oysters served as hyper-accumulators for copper Cu and 
Zn, exhibiting mean concentrations of 0.57 ± 0.46 and 1.85 ± 1.32 
g/kg, respectively, which were 1–2 orders of magnitude higher than the 
other trace elements. In comparison, the average concentrations of Sr, 
Mn, V, and As in oysters were 60.95, 58.18, 21.74, and 16.74 mg/kg, 
respectively, vastly surpassing the average concentrations of Cd (8.37 
mg/kg), Se (5.89 mg/kg), Cr (3.41 mg/kg), Ag (3.36 mg/kg), Ba (2.93 
mg/kg), Li (2.49 mg/kg), Pb (0.89 mg/kg), and Co (0.43 mg/kg). The 
average Bi content in oysters was only 11.50 μg/kg. Among the metals 
analyzed, significant positive linear correlations were observed for 
Cu–Zn (R2 = 0.856, p < 0.01), Cr–Ni (R2 = 0.933, p < 0.01), and Na–Mg 
(R2 = 0.970, p < 0.01). These findings suggest that the metal stoichi
ometry of Cu–Zn, Cr–Ni, and Na–Mg remains relatively stable and their 
accumulation in oysters is closely linked. 

The mean ± standard deviation of 22 elements in oysters is pre
sented in Table 1. The results of the One-Way ANOVA test indicate 
significant differences in the concentrations of 18 elements (Na, Mg, Ca, 
K, Al, Fe, Zn, Sr, Mn, V, As, Ag, Se, Cd, Li, Ba, Co, and Bi). Similarly, 
significant differences in the profiling of Al, Mn, Fe, Cu, Zn, V, Cr, Co, Ni, 
As, Sr, Cd and Pb were detected in a research of scallop origin trace
ability (Kang et al., 2022). The average concentrations of As, Li, V, Sr, K, 
Mg, and Na in oysters from the northern regions of China (specifically 
Liaoning and Shandong Provinces) were significantly higher (p < 0.05) 
than those in oysters from the southern regions of China (specifically 
Guangdong and Guangxi Provinces). Additionally, the average Ca con
centration in northern Chinese oysters was notably higher than that in 
oysters from Guangdong (p < 0.05). Moreover, the average Ag con
centration in oysters from Liaoning Province was significantly greater 
than that in oysters from the other three provinces (p < 0.05). The 
average Fe and Se contents of oysters from Shandong Province were 
significantly higher than those from Guangdong (p < 0.05). Moreover, 
the average Co content of oysters from Northern China was notably 
lower than that of Guangxi (p < 0.05). Additionally, the average Al, Mn, 
and Ba contents of Shandong oysters were significantly higher than 

those of the other three provinces (p < 0.05). The elevated concentra
tions of elements in Northern China may be attributed to the lower 
environmental temperatures in the region, which result in reduced 
metabolic rates. Prior studies have established a significant negative 
correlation between temperature and various elements (such as Al, Ag, 
Co, Fe, Mn, Se, and V) in oysters (Ward and Flick, 1990). The concen
tration of Bi in oysters from Guangdong Province was significantly 
higher than in the other three provinces (p < 0.05). Additionally, 
noteworthy levels of Cd were detected in oysters from Southern China. 
Moreover, the average Zn concentration in oysters collected from 
Southern China was significantly higher than in Shandong Province (p <
0.05). Aside from temperature, various factors can also influence the 
geographical variances in mineral elements found in oysters. For 
instance, elevated particle loads in the water column could lead to 
higher concentrations of elements in oysters due to increased production 
of pseudo-faeces and/or diminished food and energy acquisition by the 
oysters (Chouvelon et al., 2022). Moreover, there were significant var
iations in both the content and structure of microalgae found in different 
sea locations (Li et al., 2021). Differences in diet, specifically phyto
plankton, can influence the accumulation of K, Ca, Mg, Mn, Fe, Al, Ba 
and Pb in oysters (Vilhena et al., 2016). Consequently, the single factor 
mentioned above or the combined influence of these factors can 

Table 1 
Elemental concentrations (mean ± standard) of oysters from different regions.  

Elements Unit Liaoning Shandong Guandong Guangxi p-value 

Na g 
kg− 1 

47.89 ±
7.33b 

90.11 ±
13.29a 

18.08 ±
6.39c 

13.22 ±
3.75c 

<0.001 

Mg g 
kg− 1 

14.61 ±
2.33b 

25.56 ±
4.01a 

6.71 ±
2.77c 

5.59 ±
0.94c 

<0.001 

Ca g 
kg− 1 

13.81 ±
4.72ab 

18.49 ±
16.31a 

5.65 ±
4.28c 

11.18 ±
8.68bc 

<0.001 

K g 
kg− 1 

12.05 ±
0.95a 

11.53 ±
0.91a 

7.50 ±
1.79b 

7.90 ±
1.38b 

<0.001 

Al g 
kg− 1 

1.38 ±
0.83b 

1.95 ±
0.85a 

1.04 ±
0.55b 

1.09 ±
0.66b 

<0.001 

Fe g 
kg− 1 

0.96 ±
0.45ab 

1.26 ±
0.49a 

0.61 ±
0.55b 

0.63 ±
0.32b 

<0.001 

Cu g 
kg− 1 

0.38 ±
0.03a 

0.42 ±
0.08a 

0.62 ±
0.55a 

0.63 ±
0.41a 

0.260 

Zn g 
kg− 1 

1.52 ±
0.14ab 

0.68 ±
0.16b 

2.05 ±
1.54a 

2.27 ±
0.94a 

0.001 

Ni mg 
kg− 1 

1.93 ±
0.63a 

3.71 ±
1.17a 

3.03 ±
5.95a 

2.83 ±
1.16a 

0.841 

Sr mg 
kg− 1 

87.02 ±
19.80b 

163.41 ±
65.76a 

33.81 ±
24.44c 

48.62 ±
30.72c 

<0.001 

Mn mg 
kg− 1 

63.38 ±
21.78b 

121.02 ±
23.99a 

43.03 ±
21.83c 

51.12 ±
26.45bc 

<0.001 

V mg 
kg− 1 

25.60 ±
1.26b 

28.21 ±
1.32a 

20.63 ±
2.71c 

18.64 ±
1.86d 

<0.001 

As mg 
kg− 1 

20.00 ±
0.98a 

20.97 ±
1.97a 

15.50 ±
4.15b 

15.68 ±
3.29b 

<0.001 

Ag mg 
kg− 1 

6.45 ±
0.58a 

2.88 ±
0.59bc 

2.69 ±
2.06c 

4.14 ±
2.33b 

<0.001 

Se mg 
kg− 1 

6.02 ±
0.90ab 

6.83 ±
1.13a 

5.18 ±
1.17b 

6.96 ±
1.91a 

<0.001 

Cd mg 
kg− 1 

5.389 ±
0.41b 

4.52 ±
0.81b 

9.57 ±
5.86a 

9.18 ±
2.10a 

0.001 

Li mg 
kg− 1 

3.76 ±
1.15b 

5.06 ±
1.29a 

1.88 ±
0.72c 

1.78 ±
0.75c 

<0.001 

Cr mg 
kg− 1 

3.22 ±
0.60a 

4.63 ±
2.55a 

3.45 ±
6.94a 

2.57 ±
0.82a 

0.731 

Ba mg 
kg− 1 

1.90 ±
1.01b 

12.68 ±
8.49a 

1.09 ±
1.16b 

1.26 ±
0.82b 

<0.001 

Co mg 
kg− 1 

0.55 ±
0.22a 

0.57 ±
0.17a 

0.41 ±
0.29ab 

0.36 ±
0.13b 

0.036 

Pb mg 
kg− 1 

0.49 ±
0.17a 

0.55 ±
0.15a 

1.18 ±
2.86a 

0.55 ±
0.34a 

0.549 

Bi μg 
kg− 1 

3.13 ±
2.12b 

2.59 ±
1.79b 

16.64 ±
11.12a 

8.18 ±
4.50b 

<0.001 

Note: The superscript letters indicated significant difference among groups (p <
0.05) under Duncan test. 
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contribute to the observed patterns of mineral elements in oysters from 
different origins. The variability in mineral elements demonstrates the 
potential for utilizing geographical orientation to trace the origin of 
oysters. 

3.2. Evaluation of oyster quality and safety in diverse regions 

As highlighted in the introduction, individuals may be exposed to 
toxic elements when consuming oysters for essential elements. More
over, excessive intake of essential elements can also pose risks to human 
health (Zoroddu et al., 2019). To assess the potential exposure risk to 
essential and toxic elements from consumed oysters, a comparison was 
made between the levels of these elements in oysters ingested by adults 
and the tolerable reference levels specified by the European Food Safety 
Authority (EFSA). This comparison utilized a semi-deterministic 
approach, focusing on the average intake of elements for an adult with 
a body weight (bw) of 70 kg, consuming a 15 g serving portion of dried 
edible media (equivalent to approximately 100 g of fresh oyster tissue) 
daily. The assumption of consuming 15 g of dried oysters daily is derived 
from prior studies citing the water content of oysters as 85% (Zhao et al., 
2022). The average levels of essential and toxic elements in the diet 
obtained from consuming oysters were outlined in Table 2. 

Consuming oysters from the four provinces provides a safe source of 
essential elements including Na, K, Ca, Fe and Mn (Table 2). In terms of 
Mg content, oysters from Shandong exhibit inferior quality in compar
ison to those from the other three provinces. However, there have been 
no reports of toxic effects produced by excessive magnesium ingested 
from food (EFSA, 2015d). Given the elevated levels of Cu and Zn present 
in oysters, despite these elements being essential for the human body, 
caution is advised regarding the quantity consumed. Excessive intake of 
Cu can lead to significant genetic disorders, such as Wilson’s disease 
(EFSA, 2015b). Chronic intake of excessive Zn can lead to severe 
neurological diseases due to copper deficiency (EFSA, 2014c). More
over, the potential risk associated with toxic elements such as As, Cd, V 
and Al from the consumption of oysters should be a primary concern 
(Table 2). The excessive consumption of As (particularly inorganic 
arsenic) by humans has been linked to various detrimental effects, 
including skin lesions, cancer, and developmental toxicity (EFSA, 
2009b). While excessive intake of Cd can impact DNA repair, gene 
expression, and even lead to kidney damage (EFSA, 2009a). An exces
sive intake of V can lead to gastrointestinal disturbances, such as diar
rhea and abdominal cramps (EFSA, 2004). However, there is still 
controversy surrounding the harmful effects of excessive intake of Al on 
the human body (EFSA, 2008). In our study, the dietary intake of toxic 
elements such as Pb, Se, Ni, and Cr was found to be below the safety 
threshold set by EFSA. Overall, oysters from Liaoning and Shandong 
exhibit higher levels of essential elements compared to those from 
Guangdong and Guangxi. Nevertheless, when evaluating the influence 
of multiple toxic elements in oysters, determining the superior oysters 
poses a challenge (Table 2). 

3.3. Model comparison and selection 

A learning curve is a commonly employed method for monitoring the 
effectiveness of model training (Kang et al., 2023). This method allows 
for the demonstration of an estimator’s validation and training scores as 
the training data fluctuates. It helps determine whether the estimator is 
more affected by a variance error or a bias error when additional data is 
utilized in the training process (Gupta, 2019). The means with standard 
errors of the cross-validation (CV) are presented in Fig. 3. As depicted in 
Fig. 3a, b, and c, when a limited amount of training data was utilized, the 
training scores of RF, GBDT, and LightGBM significantly outperformed 
the CV score. As additional training data was included, the CV score 
gradually aligned with the training score, revealing the model’s poten
tial for generalization. Nevertheless, the training score of the XGBoost 
model exhibited a decreasing trend when only a small amount of Ta

bl
e 

2 
Co

m
pa

ri
so

n 
of

 th
e 

di
et

ar
y 

in
ta

ke
 o

f e
ss

en
tia

l a
nd

 to
xi

c 
el

em
en

ts
 b

y 
co

ns
um

in
g 

oy
st

er
s 

fr
om

 d
iff

er
en

t p
ro

vi
nc

es
 b

y 
ad

ul
ts

 w
ith

 th
e 

da
ily

 in
ta

ke
 v

al
ue

s 
re

co
m

m
en

de
d 

by
 E

FS
A

.  

El
em

en
ts

 
N

a 
m

g/
 

da
y 

K 
m

g/
 

da
y 

Ca
 m

g/
 

da
y 

Cu
 m

g/
 

da
y 

Fe
 m

g/
 

da
y 

M
gm

g/
da

y 
M

n 
μg

/ 
da

y 
Zn

 m
g/

 
da

y 
Se

 μ
g/

 
da

y 
N

i μ
g/

 
da

y 
A

l m
g/

da
y 

V 
μg

/ 
da

y 
Cr

 μ
g/

da
y 

Cd
 μ

g/
da

y 
A

s 
μg

/d
ay

 
Pb

 μ
g/

da
y 

Li
ao

ni
ng

 
71

8.
4 

18
0.

8 
20

7.
2 

5.
7 

14
.4

 
21

9.
2 

95
0.

7 
22

.8
 

90
.3

 
29

.0
 

20
.7

 
38

4.
0 

48
.3

 
80

.8
 

30
0.

0 
7.

4 
Sh

an
do

ng
 

13
51

.6
 

17
3.

0 
27

7.
4 

6.
3 

18
.9

 
38

3.
4 

18
15

.3
 

10
.2

 
10

2.
4 

55
.6

 
29

.3
 

42
3.

2 
69

.4
 

67
.8

 
31

4.
6 

8.
2 

G
ua

ng
do

ng
 

27
1.

2 
11

2.
5 

84
.8

 
9.

3 
9.

15
 

10
0.

6 
64

5.
4 

30
.8

 
77

.7
 

45
.4

 
15

.6
 

30
9.

4 
51

.8
 

14
3.

6 
23

2.
5 

17
.7

 
G

ua
ng

xi
 

19
8.

3 
11

8.
5 

16
7.

7 
9.

4 
9.

45
 

83
.8

 
76

6.
8 

34
.0

 
10

4.
4 

42
.4

 
16

.4
 

27
9.

6 
38

.6
 

13
7.

7 
23

5.
2 

8.
2 

Re
fe

re
nc

e 
va

lu
es

 o
f 

EF
SA

 

A
I (

 
EF

SA
, 

20
19

) 

A
I (

 
EF

SA
, 

20
16

) 

TU
I (

 
EF

SA
, 

20
15

a)
 

TU
I (

 
EF

SA
, 

20
15

b)
 

TU
I (

 
EF

SA
, 

20
15

c)
 

A
I (

EF
SA

, 
20

15
d)

 
A

I (
 

EF
SA

, 
20

13
) 

TU
I (

 
EF

SA
, 

20
14

c)
 

TU
I (

 
EF

SA
, 

20
14

b)
 

TU
I (

 
EF

SA
, 

20
05

) 

TW
I 1

 m
g/

 
kg

 b
w

/ 
w

ee
k 

( 
EF

SA
, 

20
08

) 

TU
I (

 
EF

SA
, 

20
04

) 

TD
I 3

00
 μ

g/
 

kg
 b

w
/d

ay
 ( 

EF
SA

, 
20

14
a)

 

TW
I 2

.5
 μ

g/
 

kg
 b

w
/w

ee
k 

(E
FS

A
, 

20
09

a)
 

TW
I 1

5 
μg

/ 
kg

 b
w

/w
ee

k 
(E

FS
A

, 
20

09
b)

 

TD
I 0

.5
0 

μg
/k

g 
bw

/ 
da

y 
(E

FS
A

, 
20

10
) 

D
ai

ly
 s

af
e 

in
ta

ke
 le

ve
ls

 
fo

r 
ad

ul
ts

#
 

20
00

 
35

00
 

25
00

 
5 

45
 

35
0 

(m
en

), 
30

0 
(w

om
en

) 

30
00

 
25

 
30

0 
15

0 
10

 
10

–2
0 

21
,0

00
 

25
 

15
0 

35
 

N
ot

e:
 T

he
 b

ol
d 

nu
m

be
rs

 in
di

ca
te

 th
at

 th
e 

in
ta

ke
 o

f e
ss

en
tia

l a
nd

 to
xi

c 
el

em
en

ts
 in

 th
e 

oy
st

er
 e

xc
ee

ds
 th

e 
da

ily
 in

ta
ke

 v
al

ue
s f

or
 a

du
lts

, a
s c

al
cu

la
te

d 
ac

co
rd

in
g 

to
 E

FS
A

’s
 re

co
m

m
en

da
tio

ns
 (t

he
 u

ni
t i

s s
am

e 
w

ith
 E

le
m

en
ts

); 
TW

I, 
to

le
ra

bl
e 

w
ee

kl
y 

in
ta

ke
; T

D
I, 

to
le

ra
bl

e 
da

ily
 in

ta
ke

; T
U

I, 
To

le
ra

bl
e 

up
pe

r i
nt

ak
e;

 A
I, 

ad
eq

ua
te

 in
ta

ke
s;

 #
 =

TW
I/

7 
×

av
er

ag
e 

bo
dy

 w
ei

gh
t (

as
su

m
ed

 a
s 7

0 
kg

 fo
r a

du
lts

) o
r T

D
I ×

av
er

ag
e 

bo
dy

 w
ei

gh
t o

r T
U

I o
r A

I. 

X. Kang et al.                                                                                                                                                                                                                                    



Current Research in Food Science 8 (2024) 100738

6

training data was used, while the CV score progressively converged with 
the training score as more data was incorporated (Fig. 3d). Hence, to 
mitigate overfitting in the XGBoost model, an increased amount of 
training data should be employed. 

The performance of the models was evaluated utilizing a test set to 
ascertain their generalization capabilities. LightGBM model exhibited 
best performance, achieving a higher accuracy (96.77%), precision 
(96.43%), recall (98.53%), F1 score (97.32%), and AUC (0.998). The 
performance of the GBDT model was found to be comparable to that of 
the XGBoost model, and superior to that of the RF model (Table 3). In 
general, all four models exhibited satisfactory performance for oyster 
origin tracking. To focus on the discrimination abilities of the LightGBM 
model, we presented ROC curves and a confusion matrix (Fig. 4). The 
LightGBM model exhibited an exceptional ability to differentiate be
tween oysters from the four provinces, as evidenced by an AUC of 0.998 
(Fig. 4a). Based on the confusion matrix (Fig. 4b), all test samples from 
the Liaoning, Shandong, and Guangdong provinces were accurately 
categorized, except for one from Guangxi Province being misclassified as 
a neighboring province, Guangdong. The prediction accuracy of this 

study (96.77%) exceeded that of the pyrolysis mass spectrometry 
fingerprint (89.2%) and the combination of compound-specific isotope 
and elemental analysis (90.0%) (Ratel et al., 2008; Matos et al., 2021), 
and it was on par with the untargeted lipidomics approach and atten
uated total reflectance Fourier-transform infrared spectroscopy in terms 
of determining the oyster origin (Liu et al., 2022; Guo et al., 2023). 
When considering the cost and accuracy of the technology, mineral 
element analysis combined with the LightGBM algorithm is undoubtedly 
suitable for identifying the origin of oysters in China. 

3.4. Interpretation of LightGBM model with SHAP values 

Transparency and interpretability are important criteria for assessing 
the viability of machine learning models. However, machine learning 
models with sophisticated nonlinear algorithms are often complex and 
may involve intricate interactions of numerous factors or features, 
making it challenging for users to understand the reasoning behind the 
model’s outputs. Generally, a post-hoc explanation will be employed for 
a sophisticated machine learning model (Ekanayake et al., 2022). 
Hence, the use of SHAP explanations to uncover the inherent nature of a 
specific prediction, understand the interaction between each variable 
and the model output, and shed light on a particular example. It is 
essential for evaluating and enhancing model performance (Park et al., 
2022). 

3.4.1. Global feature interpretation 
The interpretation of the global feature contribution to an origin 

detection model can be achieved through the utilization of a stacked bar 
plot (Kang et al., 2023; Huang et al., 2023). In this study, a stacked bar 

Fig. 3. Learning curves of RF, GBDT, LightGBM, and XGBoost model.  

Table 3 
Overall performance of Oyster origin classification models evaluated with the 
test set.  

Models Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 score 
(%) 

AUC 

RF 90.32 91.29 92.89 91.96 0.996 
GBDT 93.55 94.87 94.87 94.87 0.995 
LightGBM 96.77 96.43 98.53 97.32 0.998 
XGBoost 93.55 94.87 94.87 94.87 0.977  
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plot was employed to demonstrate the impact of different features on the 
output of the LightGBM model. The features were arranged based on the 
average absolute SHAP values across the four provinces (Fig. 5a). It 
became apparent that among the variables, Na, Zn V, Mg, and K exerted 
the most significant influence on the model’s output for determining the 
origin of the oyster. Nevertheless, owing to variations in origin, the 
contributions of each feature to the model output exhibited differences. 

In the SHAP summary plot of Fig. 5b–e, each sample is represented as 
a point. The horizontal axis indicates the impact on the prediction 
through SHAP values, while the color gradient, ranging from blue to red, 
signifies the intensity of the corresponding feature value. This plot 
effectively combines feature importance with the directional relation
ship between feature values and their impact on predictions (Parsa et al., 
2020; Maroni et al., 2022). For instance, characteristics such as Ag, K, V, 
Na and Mg exhibited the most pronounced influence on the predictions 

for samples from Liaoning (Fig. 5b). The presence of elevated levels of 
Ag, K and V increased the likelihood of classifying the sample as origi
nating from Liaoning. These findings align with previous research 
demonstrating the high concentration of K in the Bohai Sea, which can 
impact oyster mariculture in Liaoning province (Lu et al., 2017). 
Another notable observation supporting these results is the significantly 
higher Ag content in oysters from Liaoning compared to other provinces. 
While the feature Fe had SHAP values close to zero, suggesting that its 
impact on the classification of the observations into the Liaoning group 
was not substantial (Fig. 5b). 

Zn emerged as the primary contributor in predicting the samples 
from Shandong, with the impact of high feature value samples to model 
output was negative (Fig. 5c). In addition, V, Na, Ba, Mg, Mn, Li and Sr 
were recognized as notable features influencing the model’s result. 
Samples with high feature values of these elements had a positive effect 

Fig. 4. LightGBM model predicting performance for samples from each geographical origin (a: ROC curves; b: confusion matrix).  

Fig. 5. Global interpretation of the LightGBM model based on SHAP values: (a) the feature importance for the LightGBM model; while (b), (c), (d), and (e) represent 
the feature contributions for predicting samples from Liaoning, Shandong, Guangdong, and Guangxi, respectively. The color bar, ranging from blue to red, indicates 
the magnitude of feature values from low to high. Additionally, the position of the points on the horizontal axis denotes the positive or negative association between 
the features and target variables. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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on the model’s output. In contrast, additional features like Se, Ag, Al, 
and Ca had minimal influence on the model’s output (Fig. 5c). Oysters 
exhibit salinity conformity, with the Na levels in their tissues being 
rapidly influenced by the salinity levels in their environment (Lu et al., 
2017). Additionally, variations in Mg and Sr may reflect changes in 
ambient temperature, as the Mg/Ca and Sr/Ca ratios have been utilized 
as proxies for temperature reconstruction (Poulain et al., 2015). 

Bi, Se, K, and Na were identified as the primary influencers on the 
model output for Guangdong samples, where samples with low feature 
values of K, Na, and Se exhibited positive SHAP values (Fig. 5d). This 
prediction can be explained by the generally low levels of K and Na 
found in South China Sea oysters (Lu et al., 2017). 

Na, Mg, Cd, and Se were determined as the key features influencing 
the predictions of Guangxi samples, where low feature values of Na and 
Mg exhibited a positive SHAP value (Fig. 5e). Nevertheless, the feature 
value of Se showed an opposite effect on the model output in predictions 
for Guangdong and Guangxi samples (Fig. 5d and e). In addition, high 
feature values of V, Li and As were discovered to have a negative impact 
(Fig. 5e). These findings indicate that the LightGBM model shared 
contributions from high and low feature value samples across the 
Liaoning, Shandong, Guangdong, and Guangxi identifications. More
over, variations in environmental characteristics, such as temperature, 
salinity, elemental contents, and other factors, enabled the determina
tion of the oyster’s origin. 

3.4.2. Local feature interpretation 
The force plot of SHAP illustrates the contribution of local features 

based on SHAP values for randomly selected cases from each province, 
along with the predicted geographical origin (Fig. 6). A pink band rep
resents a feature that increases the possibility of predicted provinces, 
while a blue band suggests that the feature reduces the possibility of 
predicted provinces. The length of the band signifies the magnitude of 
the effect (Nordin et al., 2023; Pradhan et al., 2023). The assigned 
sample is classified as belonging to the projected province if the model 
output is to the right of the base value; otherwise, it is not (Han et al., 
2022b; Huang et al., 2023). It can be seen that the model output is 
clearly visible to the right of the base value, indicating that the four cases 
all belong to the selected provinces. However, the feature contributions 
vary for each instance. For the Liaoning situations, the base value is 
− 3.06. The selected samples demonstrate a relatively higher projection 

towards the Liaoning group at 1.95, with all the features increases the 
predicted Liaoning province for this sample (Fig. 6a). In the Shandong 
cases, the 10 features (e.g. Na, V, Zn, and Ba) are associated with posi
tive SHAP values, while the remaining 8 features have minimal impact 
on determining the origin attribution (Fig. 6b). Conversely, in the 
Guangdong cases, Se has little detrimental influence, with the selected 
samples showing a significantly higher projected Guangdong value at 
1.74. In the Guangxi cases, the features Na, Mg, Cd and V contribute to 
pushing the prediction above the base value (Fig. 6d). In general, the 
effect of features on geographical origin in the case study is consistent 
with the mariculture environment knowledge as discussed in section 
3.1. Further, the local feature interpretation aligns with the trend 
observed in the global feature interpretation, thereby demonstrating the 
reliable explanatory capability of SHAP for individual predictions made 
by our models. 

4. Conclusion 

This study emphasizes the regional discrepancies in essential and 
toxic elements found in oysters across various production areas, while 
underscoring the potential hazards of consuming oysters excessively. 
Moreover, the efficacy of explainable machine learning in identifying 
the provenance of oysters through mineral elements was demonstrated. 
The performance of the LightGBM model excelled in classifying oysters 
from the four provinces compared to the other three models. Subse
quently, the LightGBM model was interpreted using SHAP to provide 
insights on the importance of Na, Zn, V, Mg, and K, in the estimation 
process. These findings establish causal relationships among features, 
enhancing user confidence and ensuring reliable practical applications 
of the models. This innovative contribution extends beyond the devel
opment and utilization of machine learning, advancing the concept of 
interpretability within the field of seafood origin traceability. Ulti
mately, this research will aid in the prevention and control of food fraud 
and ensure food safety. 

Although successful in achieving its objectives, this study had several 
limitations. Specifically, it did not address the impact of oyster species 
and sampling time on the predictive model’s reliability. Therefore, 
future studies should consider a more comprehensive research plan, 
including a broader range of influencing factors, incorporating addi
tional sampling locations, and integrating alternative discrimination 

Fig. 6. Local interpretation based on SHAP values for instances randomly selected from (a) Liaoning, (b) Shandong, (c) Guangdong, and (d) Guangxi.  
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techniques to enhance result accuracy. Moreover, the risk of potential 
data leakage should be considered in the field of food origin traceability. 
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