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Editing a gateway for cell therapy across 
the blood–brain barrier
Beatriz Achón Buil,1,2 Christian Tackenberg1,2 and Ruslan Rust1,2

Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards 
clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local 
intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging 
adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected 
cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood–brain bar-
rier and the blood–CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune 
cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface 
signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving 
the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental ap-
proaches that have already been developed in which (i) cells are either engineered to express cell surface proteins 
mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmaco-
logical agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the per-
meability of the blood–brain barrier. Although these approaches could significantly enhance homing of stem cells 
into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in 
safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, 
represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques 
described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in 
stroke and may be relevant to other brain diseases.
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Introduction
The average human brain is composed of 86 billion neurons and 85 bil-
lion glia—indispensable cells that require a special protective environ-

ment to ensure proper brain function.1 This protection is guaranteed 

by a 650-km (400-mile) network of specialized blood vasculature de-

signed to selectively restrict the entry of potentially toxic substances 

into the brain.2 This blood–brain barrier (BBB) is fundamental in 
maintaining homeostasis and physiological brain function, with BBB 
disruption being a hallmark of most major neurological disorders.3

Unfortunately, the BBB is, at the same time, a barrier for most system-
ically applied drugs. An intact BBB is impermeable for 98% of all small 
molecule drugs and for nearly all large substances, such as peptides, 
antibodies or gene- and cell-based therapeutics.4
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Therefore, many research laboratories are developing diverse 
strategies to improve therapeutic drug delivery to the brain, ran-
ging from targeted ultrasound and alteration of administration 
routes to biochemical or genetic modifications. For instance, vari-
ous drug delivery systems have been tested to transport small mo-
lecules across the BBB based on nanoparticles, such as liposomes or 
cyclodextrins. For larger molecules, such as antibodies, the brain 
shuttle technology has been recently developed and is currently 
being clinically tested for Alzheimer’s disease to enable efficient 
crossing of the BBB by binding the transferrin receptor.5 By con-
trast, the delivery of cells to the brain has been considerably less ex-
plored, even though cell therapy holds great promise to restore 
damaged neural networks and become a promising regenerative 
strategy for acute neurological injuries, such as stroke. In total, 
more than 80 clinical trials in the field of cell therapy for stroke 
have already been conducted or are currently ongoing. Although 
the initial clinical results have demonstrated the safety of cell ther-
apies, further validating their translational potential, promising re-
sults from preclinical animal research have not been confirmed 
beyond doubt in a clinical setting.

The reasons for this limited translational success are multifa-
ceted. For example, it is poorly understood which is the most 
promising cell source for transplantation. Some clinical trials 
have used primary, non-neuronal cells, such as mesenchymal 
stem cells (MSCs), which can be obtained from various tissues, 
such as bone marrow (BM, BD-MSCs), adipose tissue (AD-MSCs) 
or umbilical cord blood (UCB-MSCs), while other experimental set-
tings have favoured the use of neural cells, including neural stem/ 
progenitor cells (NSCs/NPCs). With advances in reprogramming 
technology, the use of induced pluripotent stem cell (iPSC)–de-
rived NPCs is gaining more popularity, but this approach is not 
yet in the clinical phase for stroke therapy. An overview of the 
cell sources used in cell therapies for stroke is provided in 
Table 1. In addition to the cell source itself, the delivery of trans-
plants to injured brain regions has been recognized as a major 
hurdle by experts in the field.6 Despite the great promise of cell- 
based therapies for stroke, there is currently no clinical ‘gold 
standard’ for how to deliver cells most efficiently to injured brain 
regions.

In this review, we discuss promising approaches by focusing on 
the newest strategies in cell delivery and cellular engineering that 
may shape a new generation of cell therapies capable of reaching 
injured brain regions more efficiently, thus constituting improved 
future strategies for stroke therapy.

Delivery routes for the cell graft to the 
injured brain
There are several feasible routes for delivering a cellular graft to 
the recipient of a cell therapy. The most commonly used routes 
for cell delivery in animal models and in humans are the intra-
cerebral (IC), intracerebroventricular (ICV), intrathecal (IT), 
intra-arterial (IA), intravenous (IV) and intranasal (IN) deliveries 
(Fig. 1). Although intraperitoneal and subcutaneous injections 
are the preferred routes for drug administration in rodent models, 
their use for cell delivery is not effective enough and is even less so 
in humans13; therefore, we will not consider these routes in this 
review. Each route of cell delivery has its advantages and disad-
vantages in terms of efficacy and safety—a careful weighing of 
these factors is essential in developing successful cell therapy 
(Table 2).

Intracerebral transplantation
IC delivery enables the precise injection of cells into the damaged 
brain parenchyma, which is the main advantage of this route. 
This route entails the smallest injection volume, which may 
prompt the need for multiple injections to reach the therapeutic 
threshold (∼106 cells). A comparative preclinical study showed 
that an IC NPC injection resulted in a higher number of trans-
planted cells in the ischaemic brain compared to ICV and IV admin-
istration.15 However, it remains unclear to what extent the graft 
migrates and spreads throughout the whole lesion. Some preclinic-
al studies have shown that ESC, BM-MSC and NSC have the poten-
tial to migrate to the damaged brain regions.22–26 At the same time, 
other authors have suggested that ESC-derived NPCs and oligo-
dendrocyte precursor cells injected IC migrated only short dis-
tances27,28 or only towards the peri-infarct region rather than to 
the stroke core when ESCs, NPCs or BM-MSCs were injected.25,29,30

A large body of research confirms that local IC transplantation of 
BM-MSCs or NSCs improved functional recovery and decreased in-
farct volume of stroked rodents.15,23,31,32 However, the stereotaxic 
IC injection is an invasive procedure that can be challenging or 
even impossible to perform depending on the stroke location. 
This technique also carries the risk of damaging adjacent healthy 
tissue and causing unexpected adverse events. Although some 
studies have demonstrated a good safety profile,33,34 other clinical 
trials have revealed adverse effects related to surgical procedures, 
including headache, partial seizures and subdural haematoma.35–38

Regarding efficacy of cell therapies, some studies demonstrated im-
proved recovery in at least one of the functional scores compared to 
the baseline when BM-MSCs, NSCs and CD34+ cells were locally 
transplanted in subacute or chronic stroke patients (Table 3 and 
Supplementary Table 1).34,36–38 However, a major limitation in reli-
ably assessing efficacy is the absence of a placebo-controlled group 
in IC cell therapies due to the invasiveness of the procedure. 
Additionally, IC injections cannot be carried out in acute stroke pa-
tients due to the associated risks with the procedure, which limits 
the therapeutic application of IC cell transplantations to the sub-
acute and chronic stroke phase.

Intracerebroventricularand intrathecal 
transplantation
In rodents, cells can enter the CSF through ICV transplantation via the 
ventricles (fourth and lateral), the subdural space, the cisterna magna 
(subarachnoid space) or by IT administration.64–68 The most common 
way of accessing the CSF in humans is through the IT route by lumbar 
puncture, but ICV administration has also been performed. 
Compared to direct parenchymal delivery, ICV cell injection is less in-
vasive and allows for a higher cell injection volume. Furthermore, this 
route entails higher levels of grafted cells being delivered into the is-
chaemic brain compared to systemic IV engraftment.15,68 Stem cells 
are widely distributed throughout the brain depending on the fluidity 
of the CSF.69 NPCs grafted by ICV injections migrated post-stroke to 
the damaged tissue in a middle cerebral artery occlusion (MCAO) 
mouse model.15 The injection of UCB-MSCs and iPSCs into the CSF 
can improve motor functions and reduce lesion size after cerebral is-
chaemia.66,68 Administered cells also exhibit an indirect effect by ac-
tivating endogenous NSCs and oligodendrocyte progenitors localized 
at the subventricular zone.65,70 Conversely, the effect of injected cells 
is considered insufficient in the damaged areas further away from the 
ventricles.14 Furthermore, NSC ICV injection showed no beneficial 
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outcomes in improving the sensorimotor function of stroked rats, 
whereas NSC IC transplantation resulted in a significant improve-
ment.71 A pilot clinical study on treating stroke with IT injection of 
autologous CD34+ cells improved National Institutes of Health 
Stroke Scale (NIHSS) and Barthel index from baseline, without re-
porting adverse events.41 Another clinical trial on ischaemic and 
haemorrhagic stroke determined that IT injection of bone marrow- 
mononuclear cells (BM-MNCs) is safe and leads to a better functional 
recovery in ischaemic stroke patients.39 ICV administration of au-
tologous BM-MSCs improved NIHSS from baseline in some haemor-
rhagic stroke patients (Table 3 and Supplementary Table 1).40

However, all these studies lack a control cohort which is crucial for 
determining efficacy.

Intra-arterial injection
Cells can enter arterial circulation through the common carotid ar-
tery in mice or the external carotid artery in rats.72 In humans, cells 
are delivered to the middle cerebral artery through cannulation en-
tering via the femoral artery.47 Endovascular administration allows 
at least a seven-times higher injection volume compared to IC graft.73

In a rat model, the percentage of NPCs found in the ischaemic brain 
following IA injection was relatively low (1–10% of injected cells).16

NPCs and UCB-MSCs IA injected into experimentally stroked rats pre-
sented a broader distribution throughout the lesion compared to 
cells grafted into the cisterna magna, IC or IV.16,67 The IA route cir-
cumvents the venous circulation that entails mechanical entrap-
ment in peripheric organs74; this advantage is of most interest 
when stem cells present a substantial adhesion capacity.75 Higher le-
vels of transplanted cells in the ischaemic brain via the IA route com-
pared to IV administration were correlated with better neurological 
recovery in animal models.76,77 Furthermore, IA Injection of 
BM-MSCs and BM-MNCs after rodent MCAO led to better outcomes 
in various behavioural tests, such as the rotarod, a standard test for 
assessing neuromuscular coordination after stroke in a rodent.16,77–79

In some preclinical studies, IA cell injection has been associated with 
complications, such as reduction of cerebral blood flow, micro- 
embolisms or even death,67,80,81 while other studies have not re-
ported any adverse effects.77,78,82 More recently, procedural refine-
ments of IA cell injections, such as replacing microcatheters by 

microneedles, have been found to improve the safety of the proced-
ure.80 Cell size, cell dose and cell infusion velocity should all be con-
sidered for reducing the number of micro-embolisms and Lacunar 
strokes that may occur when cells are injected via the IA route.19,81,83

Clinical trials using BM-MNCs for treating acute stroke have reported 
two cases of partial seizures and some moderate adverse events, e.g. 
urinary infection and pneumonia following IA injection.45,46

Nevertheless, the IA injection of BM-MNCs for treating subacute 
stroke has been reported to be safe in other clinical trials, which high-
lights the importance of determining the optimal timing for cell en-
graftment.43,44 Regarding efficiency, the IA administration of CD34+ 

HSCs or BM-MNCs significantly improved NIHSS, modified ranking 
scale and/or Barthel index from baseline.46,47 Nevertheless, the inclu-
sion of a control arm, determined that although there is a trend to 
better improvement in patients treated with BM-MNCs, there are 
no significant differences compared to control cohort (Table 3 and 
Supplementary Table 1).43–45 A biodistribution clinical study deter-
mined that IA administration of BM-MNCs resulted in high cell 
counts in liver and spleen, but relatively low cell number in the brain, 
which might explain the mixed results in clinical trials.84

Intravenous injection
IV injection in rodents is usually performed via the tail vein, but the 
femoral vein can also be used.85 In patients, IV administration is usu-
ally performed via the three main veins of the antecubital fossa on 
the anterior surface of the elbow joint. The main drawback in IV de-
livery is the increased entrapment of injected cells in peripheral or-
gans, mainly in the lungs, liver and spleen.17,86 This downside can 
also be considered an advantage due to the anti-inflammatory effect 
observed in the spleen following IV NSC injection.17 Due to cell en-
trapment and brain-barrier impediment, only 1% of injected cells ar-
rive at the ischaemic brain.18 Therefore, systemic IA and IV 
administration requires a higher cell dose (∼108 cells)than the IC 
route to reach the therapeutic threshold, which entails higher costs 
and potentially more side effects.87 In rodents, the cells grafted using 
this route are distributed throughout the brain parenchyma and can 
migrate to the damaged area.88–92 Despite the low number of grafted 
cells in the lesion, IV injections of BM-MSCs or NSCs have been 
shown to promote functional recovery post-stroke in rodents,88,92–95

Table 1 Stem cells used for treating stroke

Cell type ESC Primary NSC iPSC iPSC- NPC DPSC MSC MNC (=MSC + HSC)

Cell source7 Embryonic 
tissue

Embryo or 
foetal tissue

Diverse, often 
fibroblasts

Diverse, often 
fibroblasts

Dental 
Pulp

BM-MSC 
AD-MSC 

UCB-MSC

BM, cord blood, 
peripheric blood

Differentiation potential8 ++ + ++ + + + +
Low risk of oncogenesis7,9,10 − + − + + + +
In vitro expansion9,11 ++ + ++ + ++ + ++
Immunotolerance7 − − − − + ++ −
Reduction of infarct 

volume7,11,12
+ ++ + ++ + ++ ++

Improved functional 
recovery7,11,12

+ ++ + ++ ++ ++ ++

Anti-inflammatory factor 
secretion7,11,12

+ + + + ++ ++ ++

Trophic factor 
secretion7,11,12

+ + + ++ ++ ++ ++

Cell replacement7,11,12 + ++ + ++ ++ − −

ESC = embryonic stem cell; DPSC = dental pulp stem cells; HSC = haematopoietic stem cells. (++) Advantage described in >60% of the studies; (+) Advantage described in <60% of 

the studies; (−) Absent advantage or disadvantage.
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which may be at least partially explained by the secretion of immu-
nomodulatory or trophic factors.18,94 In clinical settings, the IV route 
is the most preferred one and has been described as a feasible and 
safe technique in several clinical trials.49–51,55–57,59–63 IV injections of 
BM-MSCs or BM-MNCs for treating subacute or chronic stroke have 
shown mixed results.50,54,56,57,59,60 However, in other studies, the IV 
injection of adipose-derived-MSCs, BM-MSCs or BM-MNCs for 

treating acute, subacute or chronic stroke have not achieved signifi-
cant improvement in any of the studied functional outcome scores 
compared to the control cohort.48,49,51,52,55 A biodistribution clinical 
study determined that IV administration of BM-MNCs resulted in 
lung entrapment and low cell counts in brain which might explain 
the failure observed in clinical trials (Table 3 and Supplementary 
Table 1).84 However, the determination of the optimal cell type, cell 

Figure 1 Stem cell administration routes for treating stroke in clinics. Cell grafts can be transplanted into the ischaemic area (IC) or CSF via the ven-
tricles (ICV) or IT injection. Stem cells can also be injected systematically through the IA or IV routes, or cells can be administered IN.

Table 2 Pros and cons of stem cell delivery routes for treating stroke

Route of administrtion Advantages Disadvantages

IC Precise graft placement14

High levels of grafted cells at the lesion15
Poor cell distribution throughout the lesion14

Small volume of injected cells16

Adverse events in clinical trials (Supplementary 
Table 1)

Intra-cerebroventricular, ICV, 
IT

Cell distribution throughout different parts of the 
CNS14

Mainly for lesions close to ventricles14

Intravascular 
IA 
IV

Good cell distribution throughout the lesion16,17

Immunomodulation via spleen (IV)17

Big volume of injected cells16

Safe in clinical trials (Supplementary Table 1)

1–10% of grafted cells in the lesion16,18

Adverse events in preclinical studies (IA)19

Cell entrapment in lungs, liver and spleen17

IN Bypass BBB20

No entrapment in other organs20
Only preclinical trials21
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dose and injection timing are also crucial for improving the recovery 
of stroke patients following endovascular cell administration.

Intranasal administration
The pathways and mechanisms underlying cell migration to the 
brain parenchyma after IN administration are not fully understood. 
IN-administered cells migrate from nasal mucosa through the crib-
riform plate into the olfactory bulb and other brain regions or go 
into the CSF to eventually enter the brain parenchyma.20 Cells 
can also enter the peripheral trigeminal system spread throughout 
the nasal epithelium, then migrate again to the CSF or to the brain-
stem and the spinal cord.96 IN delivery is the least invasive route, 
but it entails low injection volumes (<20 µl in mice).73 It has also 
been demonstrated that IN administration enables a faster homing 
of BM-MSC (1.5 h) compared to intravascular delivery (from 24 h to 
10 days).97 Moreover, IN administration enables the homing of 
MSCs towards the ischaemic area98 and improves functional recov-
ery after stroke.97,99 However, the IN route has not yet been studied 
as thoroughly as the other routes and requires further investigation 
to determine key parameters, such as the optimal dose, timing and 
adverse events. IN cell grafts have only been performed in rodents, 
which possess a more developed olfactory system than humans.21

Thus, a possible translation into clinical practice is still far away.
Overall, all current routes of cell delivery to the brain have ad-

vantages and disadvantages. Contemporary strategies must balance 
the potential effectiveness of cell therapy against the procedure’s in-
vasiveness and safety risks for stroke patients. BBB is the major obs-
tacle to non-invasive and endovascular routes of applications, such 
as IV cell delivery. Recent studies on BBB function and advances in 
cellular engineering hold significant potential for enabling the modi-
fication of graft properties, which would facilitate the development 
of targeted delivery to injured brain regions, thus improving the ef-
fectiveness of minimally invasive cell therapies.

Cell trafficking across the barriers of the 
CNS
To develop an effective cell therapy capable of overcoming the barriers 
of the CNS, a promising strategy is to outline the molecular mechan-
ism underlying the physiological cell trafficking of, for example, per-
ipheral immune cells. The cell surface signature and molecular 
pathways can be used as a template for improving the migratory abil-
ities of therapeutic cells. Depending on the selected route for delivering 
cells, there are different obstacles to reaching the ischaemic area. 
IC-injected cells can be delivered directly to the damaged area, where-
as ICV and IN require a further step in migration from the CSF towards 
the injury site. Cells injected into the systemic blood circulation (IA and 
IV) must overcome the additional hurdle of brain barriers, which in-
clude the BBB and the brain–CSF barrier (BCSFB) located at the choroid 
plexus.100 Although the brain parenchyma was considered to be im-
mune privileged,101 studies have demonstrated that immune cells 
such as neutrophils, monocytes and T cells can migrate across the vas-
cular endothelial monolayer and, under pathological conditions such 
as stroke, can enter the CNS parenchyma.102–105

Immune cell trafficking across an intact 
blood–brain barrier
The extravasation of immune cells from the bloodstream into target 
tissues (including the brain) depends on the orchestrated interaction 
of circulating leucocytes (e.g. neutrophils and monocytes) with vascu-
lar endothelial cells (ECs). This process, first described 30 years ago,106

starts with (i) the capture and rolling of circulating leucocytes along 
the EC surface and is followed by (ii) the integrin activation in leuco-
cytes necessary for (iii) the subsequent leucocyte arrest and crawling, 
which leads to (iv) leucocyte diapedesis across the EC monolayer, be-
fore the eventual leucocyte migration through the extracellular ma-
trix located between the blood vessels and the parenchyma (Fig. 2).

The capture and rolling of leucocytes
The first step is regulated by the transient interaction between selectins 
and glycoproteins. P-selectin (expressed on an activated platelet and 
EC) and E-selectin (expressed on an activated EC) interact with 
P-selectin glycoprotein ligand-1 (PSGL-1) containing the tetrasaccharide 
sialyl Lewis × (sLex), which is the minimal glycan determinant for selec-
tin interaction.107 The molecules involved also depend on cell type and 
inflammatory status—for example, in a mouse model of multiple scler-
osis (a CNS inflammatory disease), leucocyte rolling was also mediated 
by endothelial α4 integrins.108

Integrin activation in leucocytes
The main actors in the second phase are chemokines, which can be 
secreted by ECs, especially during the inflammatory response. 
Damaged parenchymal cells can also secrete chemokines, which 
can directly diffuse or be transcytosed by ECs into the blood-
stream.109 The chemokine family is classified into four subfamilies 
(CXC, CC, C and CX3C)110 and their receptors are G-coupled protein 
receptors located at leucocyte surfaces.111 The binding of chemo-
kines to their receptors starts a intracellular signalling cascade in 
leukocytes that results in the conformational change of integrins.112

The activation of leukocytic integrins via chemokine signalling is 
necessary for the subsequent step of the extravasation process.

Table 3 Resume of clinical trials using stem cells for treating 
stroke in the last 10 years

Route Cell type Controlled 
study

Stroke phase

IC BM-MSC33,36,37 No Subacute
CD34+ cells34 Yes Chronic

NSC35,38 No Subacute/chronic
ICV, 

IT
BM-MNC39 No Subacute/chronic
BM-MSC40 No Chronic 

(haemorrhagic)
CD34+ cells41 No Chronic

IA BM-ALD40142 Yes Subacute
BM-MNC43–45 Yes Acute/subacute

BM-MNC46 No Acute
CD34+ HSC47 No Acute

IV AD-MSC48 Yes Acute/subacute
BM-MNC49–51 Yes Subacute/chronic
BM-MNC52,53 No Acute/subacute
BM-MSC54–57 Yes Acute/subacute
BM-MSC58–60 No/Yes Chronic

BM-MSC or EPC61 Yes Subacute
BM multipotent 

cell62
Yes Acute

UCB cells63 No Acute/subacute

BM-ALD401 = BM-derived aldehyde dehydrogenase bright stem cells; EPC = 
endothelial progenitor cells; HSC = haematopoietic stem cells. Stroke phase: acute 

<7 days; subacute 7 days to 6 months; chronic > 6 months.
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Leucocyte arrest and crawling
Integrin activation in leucocytes is necessary for their interaction with 
immunoglobulin gene superfamily (IgSF) molecules present in ECs. 
There are four main integrins involved in leucocyte arrest: lymphocyte 
function-associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin), 
macrophage-1 antigen (Mac1, CD11b/CD18, αMβ2-integrin), very late 
antigen-4 (VLA-4, CD49d/CD29, α4β1-integrin) and lymphocyte Peyer’s 
patch adhesion molecule-1 (LPAM-1, α4β7-integrin). LFA-1 interacts 
with intercellular adhesion molecule-1 (ICAM-1), ICAM-2 and ICAM-3; 
Mac-1 binds to ICAM-1; VLA-4 interacts with vascular cell adhesion 
molecule-1 (VCAM-1); and LPAM-1 links VCAM-1 and mucosal addres-
sin cell adhesion molecule-1 (MadCAM-1).113 The link between leuco-
cytic activated integrins and endothelial IgSF molecules results in a 
firm arrest of immune cells. Following this step, through a process 
known as crawling, leucocytes can laterally move towards the nearest 
junction or towards a permissive site of transmigration.114 In the initial 
characterizations, researchers thought that Mac-1, LFA-1 and their re-
spective counter-receptors (ICAM-1 and ICAM-2) were involved in this 
process.114 However, a subsequent study suggested that LFA-1 is mainly 
involved in firm adhesion, whereas crawling mainly depends on the 
interaction of Mac-1 with ICAM-1.115

Leucocyte diapedesis
Before leucocyte diapedesis, an ICAM-1 cluster forms on the EC 
membrane surrounding the leukocytic filopodia-like structures.116

Diapedesis can occur in two ways: across ECs (transcellular) or be-
tween ECs (paracellular). Transcellular diapedesis is thought to be 
preferable when cell junctions are very tight—for example, at the 
BBB.117 This pathway requires the homophilic interaction of plate-
let EC adhesion molecule-1 (PECAM-1, CD31) and CD99 between 
leucocytes and ECs.116 Junctional adhesion molecule A (JAM-A, 
JAM-1) is also necessary for transcellular migration, but its role 
remains controversial.118 As for the paracellular diapedesis, the 
IgSF–integrin interaction induces the loosening of the adherent 
junctions.116 In addition to the already mentioned PECAM-1, CD99 
and JAM-A, other molecules, such as ICAM-2, VCAM-1 and JAM-C, 
are involved in paracellular transmigration.116

Leucocyte migration through the 
extracellular matrix towards the brain 
parenchyma
After crossing the EC monolayer, leucocytes must cross the basement 
membrane, a highly cross-linked sheet of extracellular matrix com-
posed of collagen IV, laminin, nidogen and perlecan, to reach the tar-
get tissue. Except for the capillaries, all CNS blood vessels have the 
following two different basement membranes: (i) the endothelial 
basement membrane in contact with ECs; and (ii) the parenchymal 
basement membrane in contact with the endfeet of astrocytes, which 
delimitates a CSF-drained perivascular space in between. As immune 
cell trafficking through the BBB occurs at post-capillary venules, fol-
lowing vascular monolayer extravasation, immune cells enter the 
perivascular space119 where they seek permissive areas. For example, 
T cells migrate across endothelial BM through areas containing 
laminin-α4 and low laminin-α5 levels via α6β1-integrin.120 Once in 
the perivascular space, immune cells interact with resident antigen- 
presenting cells before traversing the parenchymal basement mem-
brane.121 In physiological conditions, there is no antigen recognition 
and, thus, immune cells undergo apoptosis or are drained out of the 

CNS due to the connection of the perivascular and leptomeningeal/ 
subarachnoidal space with the cervical lymph node or via the glym-
phatic system.122 However, after antigen recognition, leukocytes can 
secrete matrix metalloproteinases (MMPs) such as MMP2 and MMP-9 
to break down the parenchymal basement membrane and enter the 
CNS parenchyma.123

Much less is known about leukocytic extravasation through the 
BCSFB, whose structure differs from that of the BBB. BCSFB presents 
fenestrated capillaries, followed by a monolayer of tightly joined epi-
thelial cells. Choroid plexus vessels constitutively display E- and 
P-selectin,124 and epithelial cells constitutively express ICAM-1 and 
VCAM-1, but only on the apical surface125; therefore, the extravasa-
tion molecular pathway remains uncertain. For instance, interleukin 
17–producing T helper (TH-17) cells can go through the BCSFB via the 
interaction of CCR6 with CCL20, which is constitutively expressed in 
choroid plexus epithelial cells.126 This pathway allows the entrance 
of TH-17 cells into the uninflamed brain, which eventually leads to 
a pro-inflammatory state and the entrance of more immune cells 
via the activation of different pathways.126 Severe dysregulation of 
leukocyte migration and brain barriers occurs after major brain injur-
ies, such as stroke. In the acute phase, immune cell extravasation 
from blood vessels exacerbates the pro-inflammatory environment 
and increases BBB permeability. This pathological condition could 
be used to improve the migratory abilities of therapeutic cells.

Immune cell trafficking across barriers in 
the ischaemic brain
Important hallmarks of ischaemic stroke include a local and sys-
temic inflammatory response and a temporal disruption of the 
BBB that eventually leads to increased permeability for molecules 
and immune cells.127 However, it remains unclear whether the in-
filtration of immune cells is due to the pro-inflammatory state or 
the absence of brain barriers, or both.

Post-ischaemic neurons and glial cells secrete damage-associated 
molecular patterns that activate astrocytes and microglia, which, in 
turn, secrete cytokines, chemokines and metalloproteinases,128 similar 
to the molecule secretion following traumatic brain injury.129 The main 
pro-inflammatory cytokines secreted in the acute phase are 
interleukin-1beta (IL-1β) and tumour necrosis factor-alpha (TNF-α).130

Another two released pro-inflammatory cytokines are interferon- 
gamma (IFN-γ) and IL-6, but IL-6 can also present a neuroprotective ef-
fect.128 In addition, high levels of IL-23 activate γδ T cells (an ‘unconven-
tional’ subtype of T cells) that produce IL-17, which results in increased 
neutrophil infiltration.131 At the same time, the secretion of anti- 
inflammatory cytokines such as IL-4, IL-10, TGF-β and IFN-β by immune 
cells and microglia may exert a protective effect.128,130 The classification 
of cytokines in pro- or anti-inflammatory mediators is a quite simplistic 
vision for determining their aversive/protective function, as for ex-
ample, TNF-α present a detrimental role in the acute phase but it is ne-
cessary for long-term recovery.132 The inflammatory environment 
generated by the microglia, astrocytes and leukocytes can, in turn, acti-
vate endothelial and immune cells, increasing the levels of the mole-
cules involved in transmigration.133

The capture and rolling of leucocytes 
after an experimental stroke
After MCAO, E-selectin and P-selectin expression levels are in-
creased in the brain vasculature adjacent to the ischaemic 
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area.134–139 Following inflammation, P-selectin is rapidly localized 
at the surface of ECs containing Weibel–Palade bodies. In addition 
to P-selectin, these granules contain von Willebrand factor, which 
interacts with PSGL-1 and β2-integrins, triggering further extrava-
sation steps.140 Similar pathways are involved in neuroinflamma-
tory diseases such as multiple sclerosis, as in an experimental 
autoimmune encephalomyelitis mouse model it was demonstrated 
that interaction between E-/P-selectin and PSGL-1 is crucial for 
T-cell rolling in inflamed spinal cord, but not for the onset of the 
disease.141

Integrin activation in leucocytes in the 
ischaemic brain
Chemokines play a key role in the second step (activation) and in the 
directed migration of cells to the lesion. Monocyte chemoattractant 
protein-1 (MCP-1, CCL2) is one of the most studied chemokines 
whose levels increase after ischaemic brain injury.142–147 The inter-
action between MCP-1 and its receptor CCR2 leads to a higher 

permeability of the BBB and a higher leukocyte infiltration,148–151

which also have an essential role in multiple sclerosis.152 Other post- 
ischaemic upregulated molecules are stromal cell-derived factor 1 
(SDF-1, CXCL12),153,154 macrophage inflammatory protein 3α 
(MIP-3α, CCL20) and MIP-1α (CCL3),142,143,155,156 whose receptors 
are CXCR4, CCR6 and CCR5 and CCR1, respectively. After reper-
fusion, levels of cytokine-induced neutrophil chemoattractant 
(CINC) were increased, which was associated with neutrophil in-
filtration.147,157 CINC is thought to be part of the IL-8 (CXCL8) 
family, which binds leukocytic CXCR1 and CXCR2158 and whose 
mRNA and serum protein levels are higher in patients suffering 
from ischaemic stroke.157,159

Leucocyte arrest and crawling after an 
experimental stroke
The integrin activation on the leucocyte surface enables their inter-
action with IgSF proteins, whose expression by ECs is also modified 
after ischaemic injury. Cytokines, including TNF-α and IL-1, 

Figure 2 Immune cell transmigration across the BBB. The first step during the transmigration process is known as capture and rolling and is mediated 
by selectins located in ECs. Second, the interaction between the chemokines and their receptors in immune cells activates the integrins necessary for 
firm adhesion. Next, diapedesis can occur between ECs (paracellular) or through ECs (transcellular). After interacting with antigen-presenting cells 
(blue flower-shaped cells), immune cells can secrete metalloproteinases to break the components of the endothelial and parenchymal basement mem-
brane (BM) and eventually enter the brain parenchyma. Upregulated molecules in stroke are indicated with an asterisk in blue. The same letter indi-
cates the interaction partners.



830 | BRAIN 2023: 146; 823–841                                                                                                                            B. Achón Buil et al.

increase the ICAM-1 and VCAM-1 levels.160 Following a stroke, the 
ICAM-1 mRNA and protein levels are increased not only in rodent 
models but also in primates.139,161,162 Regarding VCAM-1, after 
MCAO in rodents, mRNA levels remain unmodified, but protein le-
vels increase, mainly in the ischaemic microvasculature.135,163 The 
interaction of integrins with IgSF proteins is an indispensable step, 
as the blockade of CD49d with a monoclonal antibody (MAb) 
(Natalizumab) is an approved treatment that prevents the extrava-
sation of immune cells into the CNS in multiple sclerosis.164

Leucocyte diapedesis in the ischaemic 
brain
Little is known about the upregulation of molecules involved in dia-
pedesis following ischaemic brain damage. CD99, PECAM-1 and 
ICAM-1 were significantly upregulated in an immortalized cell line 
of endothelial brain cells after oxygen–glucose deprivation.165

However, depending on the animal strain or the inflammatory mod-
el, leukocyte transmigration can occur in a PECAM-1-dependent or a 
PECAM-1-independent manner (e.g. in the presence of IL-1β or 
TNF-α, respectively).166

Leucocyte migration through the 
extracellular matrix towards the 
parenchyma post-stroke
After ischaemic damage, MMP-2 and MMP-9 activation results in in-
creased migration through the basement membranes and in BBB 
disruption.167 MMP-9 can be upregulated not only by cytokines 
(TNF-α and IL-6)168 but also by a tissue plasminogen activator (the 
main treatment for removing the blood clot in acute stroke), which 
has been associated with several complications, such as cerebral 
oedema and haemorrhagic transformation.169 Regarding MMP-2, 
it may play a role in the early opening of the BBB or in a later stage 
concerning the glial scar formation.168,170

Leucocyte migration through the brain 
parenchyma under pathological 
conditions
After entering the brain parenchyma, stem cells still have to mi-
grate to the injured area. This process is regulated by cytokines. 
For instance, the MCP-1/CCR-2 axis may play a crucial role in the 
macrophage and, to a lesser extent, in neutrophil migration follow-
ing transient cerebral ischaemia.171 Astrocytic and endothelial 
SDF-1α expression following ischaemic brain injury is involved in 
NSC migration towards the lesion.154 Another receptor expressed 
in NSC/NPCs is c-kit, which can direct their migration towards 
the stem cell factor whose expression is increased in neurons with-
in the injured brain area.172

The complex transmigration mechanism is carried out not only 
by immune cells but also by cancer cells that can escape from the 
primary tumour and metastasize to the CNS. In addition to the up-
regulation of certain molecules involved in immune cell extravasa-
tion (e.g. VLA-4, MMP-2 and MMP-9),173,174 three specific proteins, 
namely cyclooxygenase-2, epidermal growth factor receptor 
(EGFR) ligand and α2,6-sialyltransferase (ST6GALNAC5), were iden-
tified as mediators of BBB transmigration.175 Deciphering the 

molecular pathways of cell extravasation into the CNS can be 
used as a template for improving the migration of stem cells.

Approaches to improving stem cell 
migration
Stem cells can also pass through brain barriers, but only 1–10% of 
systemically injected stem cells migrate to the ischaemic brain.16

Differences in MSC and leukocyte migration have been extensively 
reviewed.176 In short, rolling is not required by MSC, crawling pat-
terns are different compared to leucocytes (absence of lateral mi-
gration) and the duration of the process is longer in MSC (1–2 h 
versus 20 min for leucocyte).176 Depending on the source, type 
and handling, the stem cells exhibit different sizes and surface- 
protein patterns, which can influence their migration capacities. 
For example, BM-MSCs cultured for 24 h in vitro and IV injected 
into sub-lethally irradiated mice presented lower migration cap-
acity to BM and the spleen compared to primary MSCs.177 Several 
approaches have been developed to enhance stem cell homing by 
focusing on increasing the levels of molecules involved in post- 
ischaemic extravasation through genetic modifications, surface 
cell engineering, preconditioning or cell selection (Fig. 3). A differ-
ent approach that does not involve the modification of the trans-
planted cells is to increase the permeability of the BBB.

Genetic engineering
One of the most widespread techniques for overexpressing pro-
teins is genetic engineering, which enables the introduction of nu-
cleic acids into the cell. Starting with the proteins involved in 
capture and rolling, primary MSCs have been transfected with a 
mRNA containing PSGL-1, sLex and IL-10.178 This construct re-
sulted in not only higher cell homing to the inflamed ear but 
also to immunomodulation via the anti-inflammatory cytokine 
IL-10.178 Second, several chemokine receptors have been overex-
pressed in UCB- and BM-MSC, including CXCR1, CCR2 and 
CXCR4, using a non-viral, lentiviral or adenoviral vector, respect-
ively.179–182 Regarding the firm adhesion step, CD49d was cloned 
into a recombinant adeno-associated virus for achieving a transi-
ent expression in BM-MSCs.183 CD49d dimerized with endogenous 
CD29 to form VLA-4, resulting in enhanced BM-MSC homing to 
BM.183 Furthermore, transfection of VLA-4 into human glial pre-
cursor cells induced higher homing to an inflamed brain following 
IA injection.184

Cell membrane engineering
Different techniques have enabled the attachment of extravasation- 
involved molecules to the surface of stem cells. One approach for 
enhancing MSC rolling involved the development of biotin- 
streptavidin-biotin bridges for anchoring selectin ligands to the cell 
membrane. Free amine groups on the MSC surface were biotinylated 
with sulfonated biotinyl-N-hydroxy-succinimide; afterwards, the cells 
were incubated with streptavidin and finally with biotinylated sLex.185

This technique was further developed by fusing biotinylated lipid vesi-
cles with MSCs instead of using BNHS186 or by designing a nanoscale 
polymer to link biotin to sLex, which promoted robust rolling in vitro 
and in vivo.187 Another approach consisted of transfecting the first 19 
amino acids of PSGL-1 and the tail of IgG1 into HEK cells overexpressing 
α1,3-fucosyltransferase (FUT7) to obtain a fusion protein correctly 
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glycosylated with sLex. Then, palmitated protein G (PPG) was incorpo-
rated into the MSC membrane, which enabled the non-covalent coup-
ling of the glycosylated fusion protein, which, in turn, enhanced rolling 
via selectin interaction.188 Another technique required reacting 
NHS-PEG2-maleimide with amine residues at the MSC surface for an-
choring peptides containing N-terminal thiols; this approach was 
used to anchor peptide K, an E-selectin ligand involved in rolling and 
capture.189 Cell membrane engineering was also used to increase these 
levels of chemokine receptors, which play a key role in integrin activa-
tion. Dimyristoyl-sn-glycero-3-phosphoethanolamine was chemically 
conjugated to CXCR4 to subsequently coat the MSC membrane.190

PPG was also used for coating an immortalized MSC line (BMC-9) with 
antibodies against ICAM-1, VCAM-1 and MadCAM-1, which promoted 
the adhesion and delivery of these modified cells to inflamed tis-
sues.191,192 Similar to PPG conjugation use to improve the rolling and ad-
hesion steps, all the described techniques can be used to increase the 
levels of other molecules involved in the extravasation process.

Stem cell selection and cell culture 
preconditioning
Instead of directly modifying stem cells via genetic or cell surface 
engineering, stem cells can also be selected according to the pres-
ence of molecules involved in the transmigration process. The se-
lection of NSCs expressing sLex and CXCR4 via fluorescence 
activated cell-sorting increased their migration towards the brain 
previously injected with SDF-1 after IV administration.193

Furthermore, fluorescence activated cell-sorting selection of 
CD94+ NSCs allowed higher numbers of NSCs into the ischaemic 
hemisphere compared to CD94− NSCs following IA injection, which 
improved stroke outcomes.75

Another alternative is adjusting cell culture conditions or pre-
conditioning stem cells with molecules that activate the intracellu-
lar pathways involved in promoting migration. These molecules, 
such as Toll-like receptor ligands194 or IL-1β that upregulate 
CXCR4 in BM-MSCs or UCB-MSCs, respectively, can be involved in 
the inflammatory response, resulting in an enhanced migration 
to the inflamed tissue.195 BM-MSC exposure to a cytokine cocktail 
composed of stem cell factor, IL-3, IL-6, Flt-3 ligand and hepatocyte 
growth factor increased CXCR4 expression and thus enhanced 
their migration to BM after IV injection in a sub-lethally irradiated 
mouse.196 Preconditioning or co-injection of Insulin-like growth 
factor 1 (IGF-1) promoted BM-MSCs homing to injured sites197,198

and towards SDF-1 via CXCR4 upregulation.199 BM-MSC exposure 
to Glycogen synthase kinase 3 beta inhibitors resulted in the upre-
gulation of CXCR4, MMP2 and MT1-MMP.200 Complement compo-
nent 1 subcomponent q also promoted SDF-1-directed migration 
in UCB-MSCs by increasing the expression of CXCR4 and 
MMP-2.201 Pre-incubation of MSCs with valproate or lithium upre-
gulated CXCR4 or MMP9, respectively, and resulted in enhanced 
graft migration to the ischaemic brain following IV injection in 
an MCAO rat model.202 A screening method was developed to iden-
tify molecules that upregulate the expression of CD11a in MSC to 
increase the interaction with IgSF molecules in ECs. Ro-31-8425 
was chosen as the lead candidate, and when it was used to precon-
dition MSCs, it enhanced their homing to inflamed tissues.203 NPCs 
cultured using a hyaluronic acid and laminin hydrogel presented 
upregulated CXCR4 and an increased in vivo migration rate towards 
exogenous SDF-1α.204,205 Acidic preconditioning of BM c-kit+ also 
increased CXCR4 levels and chemotaxis towards SDF-1.206

Hypoxic preconditioning of BM-MSCs not only increased their sur-
vival, proliferative and differentiation rates but also upregulated 
CXCR4, leading to higher homing to the ischaemic brain.207 By 

Figure 3 Approaches to enhancing stem cell transmigration to the brain. Stem cells can be modified via genetic or cell membrane engineering to in-
crease the levels of selectin ligands, chemokine receptors, integrins and metalloproteins. These molecules can also be upregulated by preconditioning 
cells with specific factors or by adjusting culture conditions. These modifications may enable a more efficient migration of cell grafts from the blood 
circulation to the brain.
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contrast, the high culture confluency of BM-MSCs increased tissue 
inhibitor of metalloproteinase-3 (TIMP-3), which reduces MMP ac-
tivity and thus transendothelial migration.208 Most of the studies 
are focused on increasing CXCR4 levels, which can be explained 
by the pleiotropic involvement of SDF-1/CXCR4 axis in develop-
ment, metastasis of cancer cells and NSC migration towards da-
maged areas.209

Increasing blood–brain barrier 
permeability
Increasing BBB permeability may be an alternative means of pro-
moting cell homing to the brain without having to modify the trans-
planted cells. Administration of cyclophilin A triggers the transient 
opening of the BBB by reducing the levels of the vascular tight junc-
tion protein Claudin-5.210 Accordingly, IV injection of cyclophilin A 
enabled a higher incorporation of the hydrophilic molecule doxo-
rubicin into the brain parenchyma.210 Mannitol has been proven 
to open the BBB in a safe way, and when it was co-injected with 
adipose-derived-MSCs, behavioural functions improved following 
experimental stroke. However, mannitol administration did not in-
crease the number of cells entering the brain, which suggests a 
higher penetration of trophic factors instead of cells.211 Focused 
ultrasound has also been shown to transiently open the BBB, and 
it has been demonstrated that this process enabled NSC entrance 
to the brain parenchyma.212 Nevertheless, the transient opening 
of the BBB may entail several side effects, especially in pathological 
conditions, as in the case of stroke, when the BBB is already im-
paired. In fact, BBB disruption leads to higher levels of inflamma-
tory factors, vasogenic oedema and a higher risk of haemorrhagic 
transformation, which worsen stroke outcomes and increase the 
mortality rate.213

Reduction of stem cell off-target 
entrapment following systemic injection
Systemic cell injection poses the risk of cells clogging vessels or be-
coming trapped in peripheral organs. The pulmonary first-pass ef-
fect refers to the mechanical entrapment in lungs of objects 
displaying a larger diameter than lung capillaries (ø = 8 µm in hu-
mans and ø = 4 µm in mice).214–216 As the average diameter of 
stem cells ranges from 6 to 20 µm (e.g. NPC ø = 16 µm),7 they are 
likely to become trapped in the lungs following vascular infusion. 
Ex vivo expansion can influence cell morphology and physiology, 
giving rise to even larger diameters (MSC diameter can reach up 
to 53 µm).217 Furthermore, these techniques for improving stem 
cell migration can also increase the cellular adherence properties, 
leading to a higher entrapment rate.218 In addition to the first up-
take by the lungs, stem cells can undergo secondary redistribution 
to other organs, including the liver, kidneys and the spleen,219

which may entail further adverse effects. Endovascular administra-
tion of MSCs can lead to pulmonary embolism in small animal 
models,217 and can facilitate the tumour growth and promote me-
tastasis.220,221 Therefore, although systemically injected cells can 
also exhibit a beneficial effect without entering the CNS,222 the po-
tential adverse events related to peripheral entrapment is still con-
sidered as a non-negligeable risk. It can be addressed by reducing 
relative cell diameters and thus the probability of cell entrapment 
or by selectively removing cells that have become trapped in organs 
other than the brain.

Decreasing the probability of cell 
entrapment
The diameter of cells and blood vessels is a key factor in the occur-
rence of mechanical entrapment. On the one hand, increasing blood 
vessel diameter with the vasodilator sodium nitroprusside decreased 
cell entrapment in pulmonary microvasculature.215,219 On the other 
hand, smaller cells are likelier to avoid the pulmonary first-pass effect. 
For instance, a comparison between BM-MSCs and BM-MNCs re-
vealed that BM-MNCs (ø = 7 µm) exhibited a 30-fold higher pulmonary 
passage than BM-MSCs (ø = 18 µm).216 Culture conditions can also be 
optimized to decrease cell volume—for example, by adapting cell con-
fluency or growing cells in suspension.223–226 However, cell entrap-
ment is determined not only by cell and vasculature size but also by 
cell deformability.227 Preconditioning haematopoietic stem cells 
with SDF-1a or H2O2 can increase their deformability, which may re-
sult in better properties for passing even thinner blood vessels.228

Safety-switch systems for selective 
specific ablation of cells
Reducing cell entrapment by modifying cell size or deformability 
properties does not guarantee the absence of cells in off-target or-
gans. Therefore, the selective removal of cells trapped in organs 
other than the brain is required. Suicide gene therapy, first devel-
oped for selectively removing cancer cells,229–231 has great potential 
for accomplishing this goal. The application of genes encoding pro-
teins that induce cell death following the administration of a specif-
ic molecule has enabled the development of ‘safety switches’. This 
technology has already been applied to reduce graft-versus-host 
disease after allogenic transplantation of BM cells.232,233 The imper-
meability of brain barriers could be considered an advantage be-
cause it can prevent the passage of the safety switches to the 
brain parenchyma, leading to a selective removal of transplanted 
cells in the periphery and not in the brain.

There are three main techniques for the selective ablation of cells 
via transgene insertion: enzyme/prodrug system, MAb-mediated sys-
tem and inducible dimerization system234 (Fig. 4).

Enzyme–prodrug system
The enzyme–prodrug system enabled the development of gene- 
directed enzyme–prodrug therapy. The system consists of deliver-
ing suicide genes to cancer cells for their subsequent ablation by 
prodrug administration, the prodrug is then converted into a toxic 
metabolite. The most studied suicide genes are herpes simplex 
virus thymidine kinase (HSV-TK), cytosine deaminase (CD), 
nitroreductase (NTR), carboxypeptidase G2, purine nucleoside 
phosphorylase, Cytochrome P450 (P450) and a mutated version 
of thymidylate monophosphate kinase (TMPK). These enzymes 
can metabolize Ganciclovir (GCV), 5-fluorocytosine, CB1954, a ni-
trogen mustard-based prodrug (e.g. CMDA), 6-methylpurine deox-
yriboside, Oxazaphosphorine drugs (e.g. cyclophosphamide) and 
azidothymidine, respectively, leading to cell death.235,236

One of the major concerns of the enzyme/prodrug system is the 
source of the suicide gene. Exogenous sequences coming from a 
virus (HSV-TK), bacteria (NTR, carboxypeptidase G2, purine nucleo-
side phosphorylase, CD) or yeast (CD) are more immunogenic than 
endogenous genes, which could lead to a premature elimination of 
the administered cells by the recipient’s immune system.237 GCV is 
already clinically approved for the treatment of cytomegalovirus 
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infections in immunocompromised individuals, which can also re-
sult in an undesired ablation of transgenic cells.238 At the same 
time, although the human enzyme P450 is less immunogenic, it is 
mainly expressed in the liver, which may result in liver toxicity. 
Catalytically improved variants of the enzymes, as is the case 
with human TMPK, may help to overcome this issue.236 Another 
point to consider is cell cycle dependency. HSV-TK and P450 are 
only active in dividing cells, while the other enzymes are also func-
tional in non-dividing cells.235,236 A noteworthy feature of the en-
zyme–prodrug system is the bystander effect, which refers to the 
ability to induce apoptosis in cells lacking the suicide gene by the 
diffusion of the converted toxic metabolite. This effect is favourable 
for oncotherapy but is less applicable for the selective removal of 
entrapped stem cells, as it can result in the death of endogenous 
healthy cells. In general terms, bacterial systems exhibit a stronger 
bystander effect compared to P450, but the result depends on the 
chosen prodrug.239 Regarding BBB passage, GCV and 5-fluorocyto-
sine have been widely used to treat brain tumours,240,241 which 
shows their ability to enter the brain parenchyma and potentially 
ablate therapeutic cells in the CNS. Therefore, the obtention of 
BBB-impermeable prodrugs would be favourable for the removal 
of transgenic cells exclusively in peripheric organs.

Monoclonal antibody-mediated system
Rituximab is a MAb against CD20 that has been widely used to treat 
B-cell lymphoma. Rituximab can lead to cell death via complement 
activation and antibody-dependent cell cytotoxicity.242 The latter is 
caused by the interaction between the Fc region of the MAb at-
tached to the target cell with the Fc receptor of an effector cell, 
such as NK cells.243 Rituximab’s mechanism of action has been 
used to develop safety switches by adding the CD20 truncated 
gene to T cells to avoid the graft-versus-host disease after trans-
plantation.244–246 This approach was further developed by combin-
ing the epitopes of CD34 and CD20 antigens (RQR8) to obtain T cells 
containing a selection marker and a suicide gene.247 However, as 
CD20 is present in endogenous B cells, a similar system was devel-
oped by introducing a truncated human EGFR gene into chimeric 
antigen receptor T cells, followed by Cetuximab (anti-EGFR) admin-
istration.248,249 Another strategy consists of adding a 10 amino acid 

tag of c-myc to the chimeric antigen receptor followed by the ad-
ministration of a MAb against c-myc.250

An antibody–drug conjugate refers to a MAb that is chemically 
linked to a toxic payload, which was initially developed to reduce 
off-target toxicities in cancer treatment.251 In 2017, the Food and 
Drug Administration had approved only three antibody–drug 
conjugates for the treatment of different cancer types, but the 
number of approved treatments has now increased to 11.252

Therefore, another strategy involves developing antibody–drug 
conjugates against specific molecules present in the surface of 
therapeutic stem cells. Antibody–drug conjugates can be engi-
neered to specifically recognize the previously described proteins 
for enhancing migration, which might improve the efficacy and 
safety of cell therapies at the same time. Furthermore, anti-
body–drug conjugates have a limited ability to cross the BBB, 
which can be considered a downside for treating glioblastomas253

but an advantage for the selective removal of entrapped cells out-
side the brain.

Inducible dimerization system
Human caspase-9 was fused to an FK506 binding protein to enable 
conditional dimerization in the presence of a small molecule 
known as the chemical inducer of dimerization (CID).254 The ad-
ministration of CIDs (AP1903 or AP20187)255 leads to the activation 
of the inducible caspase-9 (iCas9), resulting in the rapid induction 
of apoptosis. The main advantages of this approach are its low im-
munogenicity (human gene) and the use of an inert small molecule. 
Although this system is gaining popularity, the available clinical 
data are still limited. However, CIDs are lipid-permeable synthetic 
ligands that are likely to cross the BBB. Accordingly, AP20187 was 
used to selectively ablate macrophages in an intracranial glioma 
mouse model.256

To conclude, features such as the bystander effect, efficacy, 
immunogenicity and suicide molecule hydrophobicity should 
be considered when choosing the ideal ablation system for a 
specific disease. A comparative study analysed some of these 
characteristics in HSV-TK, mTMPK–azidothymidine, CD20–MAb 
and iCas9–CID systems. The results showed that mTMPK was 
the least effective system, while for the other three systems, 

Figure 4 Genetic safety systems for eliminating cell grafts in untargeted organs. After cloning a gene encoding for a suicide enzyme, a specific antigen 
or inducible caspases, cells can be eliminated by adding the corresponding prodrug, MAb or a CID, respectively.
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the main difference was that HSV-TK required 3 days of constant 
GCV administration instead of having an immediate effect, as 
was the case with CD20 and iCas9.257

Conclusion
Both preclinical data and initial clinical trials using cell therapy for 
brain regeneration show highly promising results. Importantly, the 
transplantation of stem cells has proven to be safe, without major 
adverse events. Nevertheless, there are still some hurdles to over-
come before cell therapy can be established as a standard clinical 
strategy for treating brain diseases. In addition to the choice of 
the ideal cell source, which may differ depending on the disease 
in question, the administration route is of utmost importance. 
Systemic injection of cells represents the method with the highest 
translational potential because it is the least invasive and highly 
practicable in everyday clinical practice. However, the low perme-
ability of the BBB and BCSFB prevents the entry of systemically ap-
plied cells into the brain. Therefore, genetic engineering and cell 
surface modification of transplanted cells will be necessary to in-
crease the BBB/BCSFB penetration and homing to the injury site 
using similar mechanisms as observed in different types of im-
mune cells. In parallel, it is essential to prevent unwanted entrap-
ment of transplanted cells in peripheral organs. Safety switches, 
such as the incorporation of suicide genes into cell grafts, can be ap-
plied to specifically remove cells that did not reach their target 
region.

The techniques described in this review have great potential to 
increase the efficacy and safety of a cell therapy and to establish 
next-generation cell therapies as standard treatments for treating 
other brain diseases in the future.
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