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Extensive disruption of protein interactions by
genetic variants across the allele frequency
spectrum in human populations
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Haiyuan Yu 1,2

Each human genome carries tens of thousands of coding variants. The extent to which this

variation is functional and the mechanisms by which they exert their influence remains largely

unexplored. To address this gap, we leverage the ExAC database of 60,706 human exomes

to investigate experimentally the impact of 2009 missense single nucleotide variants (SNVs)

across 2185 protein-protein interactions, generating interaction profiles for 4797 SNV-

interaction pairs, of which 421 SNVs segregate at > 1% allele frequency in human populations.

We find that interaction-disruptive SNVs are prevalent at both rare and common allele

frequencies. Furthermore, these results suggest that 10.5% of missense variants carried per

individual are disruptive, a higher proportion than previously reported; this indicates that each

individual’s genetic makeup may be significantly more complex than expected. Finally, we

demonstrate that candidate disease-associated mutations can be identified through shared

interaction perturbations between variants of interest and known disease mutations.
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Recent explosive population growth has generated an excess
of rare genetic variation segregating in human populations
that likely plays a key role in the individual genetic burden

of complex disease risk1–6. In agreement with this paradigm,
large-scale whole-genome and whole-exome sequencing efforts
have reported an excess of genetic variation in human genomes
segregating at very low allele frequencies3,4,6–9. In particular, rare
coding single nucleotide variants (SNVs) have been predicted to
disproportionately impact protein function4,7,10 in human gen-
omes; however, methods and metrics for estimating the func-
tionality of coding SNVs vary widely, and there is no consensus
estimate for the number of functional variants per individual11.
As such, a direct assessment of the functional impact of coding
SNVs could prove indispensable to furthering our understanding
on how segregating genetic variation influences complex traits
and human disease.

Biological processes are likely regulated through intricate net-
works of protein and macromolecular interactions, as opposed to
single proteins acting independently12,13. Researchers have
accordingly identified a large number of mutations that disrupt
these interactions; however, most of these perturbations corre-
spond to synthetic mutations from scanning mutagenesis
experiments14–16, the vast majority of which do not occur natu-
rally in human populations. For example, the SKEMPI database
comprehensively collected the impact of 3047 mutations on
protein-binding events published in the literature17, only seven of
which are listed as human population variants in ExAC9. Efforts
to examine the impact of disease-associated mutations on protein
function18–20 are also limited because most of these mutations are
very rare and consequently only impact a small number of
individuals. The evolutionary context in which all genomic var-
iants evolve is largely missing from such studies as a result.

In order to acquire a more representative understanding of the
functional impact of human population variants on protein
function, we leveraged the ExAC dataset of coding variants from
60,706 human exomes9 to systematically evaluate the impact of
2009 missense SNVs, 811 of which are segregating at minor allele
frequency (MAF) > 0.1% in human populations, across 2185
protein–protein interactions. We find that disruptive SNVs are
strongly enriched at conserved protein loci and occur more
prevalently at lower allele frequencies, underscoring the func-
tional importance of disruptive variants uncovered by our assays.
Moreover, we also determine that on average 10.5% of coding
SNVs carried per individual are expected to impact
protein–protein interactions, a rate much higher than indicated
by previous reports4,7,10. Unexpectedly, while we observe an
enrichment of functional SNVs at rare allele frequencies in
agreement with previous literature3,4,7,10, we also find that 9.6%
of tested common variants with MAF > 10% perturbed protein
interactions, indicating that many common variants are also
functional. Finally, we show how candidate disease-associated
mutations can be identified through matching interaction per-
turbation profiles with known disease-causing mutations. In this
manner, we characterize a rare variant on the enzyme PSPH that
significantly reduces its catalytic activity, as well as a rare variant
on SEPT12 that results in male subfertility in CRISPR-edited
mice, demonstrating the functional relevance of the interaction-
disruptive SNVs reported here.

Results
Disruptive SNVs occur extensively across broad MAF ranges.
Alterations to protein–protein interactions can have deleterious
consequences to fitness, particularly in human genetic
disease19,21,22 (Fig. 1a). As such, coding variation at interaction
interfaces is mostly rare23 and subject to evolutionary

constraint24,25. In contrast, common variation is expected to be
largely neutral and therefore unlikely to be extensively func-
tional26–28. Nonetheless, notable exceptions exist, including
APOE-epsilon 4, a risk-associated allele for Alzheimer’s disease29

(MAF= 18.4%), and the P12A polymorphism (MAF= 11.0%) of
PPARG, which increases risk for type 2 diabetes30. Indeed, the
extent to which MAF indicates whether an allele is disruptive to
protein interactions remains largely unexplored. Hence, to sys-
tematically identify functionally relevant SNVs across rare to
common allele frequencies, we constructed a resource of
sequence-verified, single-colony clones for 2009 SNVs derived
from three major databases: 1676 variants from ExAC9, 204
Mendelian disease-associated mutations from HGMD31, and
162 somatic mutations in cancer from COSMIC32. To avoid
oversampling rare variants which dominate ExAC, we randomly
selected alleles in ExAC across defined MAF bins ranging from
singletons to very common alleles (Fig. 1b; see the section
“Methods”).

Upon constructing this resource, we then performed yeast two-
hybrid (Y2H) experiments to measure the impact of these 2009
missense SNVs across 2185 human protein–protein interactions
(Supplementary Note 1). In this manner, we identified 442
interaction-disrupting SNVs, including 298 disruptive ExAC
variants, comprising a network of 4797 SNV-interaction pairs
(Fig. 1c). We further validated the quality of our SNV-interaction
network by performing Protein Complementation Assay (PCA)33

in human 293T cells to retest a representative subset of ~400
disrupted and non-disrupted SNV-interactions pairs from our
ExAC subset. SNV-disrupted interactions retested at a rate
approximate to a negative reference set comprising randomly
selected ORF pairs whereas non-disrupted interactions retested at
a rate statistically indistinguishable from a positive reference set
of literature-established protein interactions34,35 (Fig. 2a, Supple-
mentary Fig. 1a). Our result remained unchanged when we
removed interactions corresponding to highly disruptive SNVs
(Supplementary Fig. 1b). Taken together, our PCA retest
demonstrated the reproducibility and validated the quality of
our Y2H-generated SNV-interaction network.

To examine the influence of allele frequency on disruptive
variants, we partitioned our tested ExAC variants across four
allele frequency bins, ranging from very rare (MAF ≤ 0.1%) to
very common (MAF > 10%) alleles and then calculated the
fraction of variants that disrupted one or more protein
interactions per MAF bin. We found that the fraction of
disruptive variants decreased inversely with increasing allele
frequency (P= 0.0054 by chi-square test, Fig. 2b), which agrees
with expectations1,4,7; however, we note that 9.6% of very
common variants (MAF > 10%) were still disruptive. Considering
that the majority of SNVs found in an individual genome are
common36, this elevated proportion may indicate that disruptive
coding variation is markedly widespread across populations. To
investigate this more closely, we weighted these MAF-stratified
disruption rates by their expected proportions within a typical
human genome using the site frequency spectrum for missense
variants in ExAC (Supplementary Note 2; see the “Methods”
section). In this manner, we determined that given an average of
13,595 missense variants per genome, 1434 (10.5% ± 1.8%; SEM)
are expected to disrupt protein interactions, a figure notably
higher than indicated by previous estimates (Fig. 2c, Supplemen-
tary Tables 1–3). We note, however, that the extent to which
interaction disruptions result in cellular phenotypes, particularly
for common variants, remains undetermined. Regardless, our
results demonstrate that many variants show some degree of
functionality, at least within the context of our interaction assays;
as such, the genetic background in each individual genome might
be far more complex than expected.
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To add further context to our disruption rate analysis, we also
determined the fraction of cancer-associated somatic mutations
that disrupt interactions and found that 34.8% of somatic
mutations located in genes with established roles in cancer
progression were disruptive (Fig. 2b; see the “Methods” section).
Notably, this fraction decreased significantly to 22.1% for somatic
mutations located in all other genes (P= 0.036 by one-tailed
Z-test), a figure comparable to the 20.0% disruption rate observed
for very rare (MAF ≤ 0.1%) ExAC alleles. In contrast, 52.9% of
tested HGMD disease-associated mutations were disruptive
(Fig. 2b). Collectively, these trends in disruption rate suggest
that driver mutations in oncogenesis may often function by
perturbing interactions, as is the case for disease-associated
mutations. Therefore, prioritizing disruptive somatic mutations
through our interaction perturbation approach may be an
effective means to identify potential driver genes and mutations.

The extent to which a mutation is disruptive can also be
categorized by measuring the fraction of corresponding protein

interactions disrupted by a particular variant. Accordingly, we
first grouped each of our 298 disruptive variants by the number of
interactions they perturb (Supplementary Fig. 1c). We observed
that 205 of our tested SNVs disrupted only a single interaction
(68.8%), while a small fraction of variants (6.7%) disrupted five or
more interactions, suggesting that disruptive mutations tend to
perturb specific subsets of protein function as opposed to
perturbing protein function as a whole. Examining the distribu-
tion of disruptive variants across the number of interactions
perturbed revealed a similar trend (Supplementary Fig. 1d).

Next, for proteins tested against multiple interaction partners,
ExAC variants that leave all interactions intact were categorized
as non-disruptive, variants that disrupt a subset of interaction
partners were categorized as partially disruptive, and variants that
disrupt all tested protein interactions were categorized as null-like
(Fig. 2d). Across these three categories, the median allele
frequency for tested variants in ExAC decreased significantly
from 0.21% for non-disruptive variants to 0.085% for partially
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disruptive variants (P= 0.0067 by one-tailed U-test) then
nominally to 0.034% for null-like variants (Fig. 2e), suggesting
that partially disruptive and null-like variants are potentially
deleterious. Furthermore, we also find that Grantham scores, a
biochemical measure quantifying the dissimilarity between amino
acid residues37, for partially disruptive and null-like variants are
significantly higher in comparison to non-disruptive variants

(Fig. 2f). Moreover, conservation-based functional prediction
algorithms, including PolyPhen-227 and MutPred238, show
significant increases in the likelihood that a variant is deleterious
across non-disruptive, partially disruptive, and null-like disrup-
tion categories (Fig. 2g, Supplementary Fig. 1e). Taken together,
these results show that disruptive variants follow expected
patterns of selective constraint and conservation that are
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characteristic of damaging mutations and imply that these
disruptive variants may be functionally relevant in cells.

Missense variants seldom result in unstable protein expression.
Mutations can disrupt interactions through local perturbations to
specific interaction interfaces or by destabilizing protein folding
as a whole22. To distinguish between these two distinct
mechanisms, we developed a dual fluorescence screening assay to
survey the impact of interaction-disruptive variants on protein
folding. To set up our dual fluorescent screen, we cloned a subset
of wild-type (WT) ORFs that are stably expressed when tagged
with GFP, as well as their corresponding ExAC variant clones,
into a custom GFP-tagged expression vector that co-expresses an
untagged mCherry control (see the “Methods” section). We then
transfected WT and mutant ORFs into 293T cells to test for
mutation-induced changes to protein expression in 96-well plate
formats (Fig. 1c). GFP expression levels for transfected WT and
mutant samples, normalized with respect to mCherry expression
levels, were then used to calculate stability scores for all WT and
mutant proteins (Supplementary Note 3). We then grouped
variants across stable, moderately stable, and unstable protein
expression categories using these stability scores (see the
“Methods” section), noting that our three demarcations corre-
sponded well with western blot intensity (Fig. 3a). In this manner,
we systematically determined the impact of 278 ExAC variants on
protein folding (Fig. 3b).

Mutations that destabilize protein folding should abolish the
function of the harboring protein and may likely be depleted
within genes that are sensitive to loss-of-function (LoF)
mutations as a result. Accordingly, we examined the fraction of
variants that occur on genes with pLI ≥ 0.9, a threshold used to
define genes that are intolerant to LoF mutations9, and found that
the fraction of variants in LoF-intolerant genes decreased
significantly from 27.1% to 13.2% for stable and moderately
stable variants, respectively (P= 0.018 by one-tailed U-test;
Fig. 3c). Protein-destabilizing variants also tend to be rare; we
observed that median allele frequency decreased from 0.064% for
stable protein variants to 0.021% for moderately stable and
unstable variants combined (P= 0.019 by one-tailed U-test;
Supplementary Fig. 2a), implying that the destabilized variants
uncovered by our protein stabillity assay are functionally
consequential and selectively constrained as a result.

We next investigated the correspondence between protein
stability and interaction-disruptive phenotypes by comparing the
distribution of stability scores across tested variants from non-
disruptive, partially disruptive, and null-like categories. We found
that the ratio of mutant-to-WT stability scores is significantly
lower for partially disruptive variants than non-disruptive (P=
0.0077 by one-tailed U-test) and nominally reduced for null-like
variants in comparison to partially disruptive variants (Fig. 3d).
While destabilized protein expression certainly influences protein
interaction perturbations, we found only seven cases (7%) in
which an interaction-disruptive variant resulted in unstable

mutant protein expression (Supplementary Fig. 2b). As such,
we conclude that most disruptive variants function by inducing
local structural perturbations that disrupt specific protein
interactions as opposed to destabilizing protein stability as a
whole, which agrees with previous studies on disease-associated
mutations19,20. These results further highlight the importance of
dissecting specific interaction disruptions induced by SNVs.

To demonstrate that stably expressed, disruptive variants can
be functionally relevant even at common allele frequencies, we
characterized a null-like, common variant, A142T (MAFEur=
9.3%), on the protein AKR7A2 (Fig. 3e). AKR7A2 is an NADPH-
dependent aldo-keto reductase that catalyzes the reduction of
succinic semialdehyde (SSA) to gamma-hydroxybutyrate (GHB),
an important reaction in the degradation pathway for the
inhibitory neurotransmitter GABA39. Since AKR7A2 is a dimer
in solution and A142T disrupts an AKR7A2 interaction with
itself, we hypothesized that this mutation might also impact
AKR7A2 enzymatic activity. As such, we purified recombinant
WT and mutant AKR7A2 protein to test for changes in NADPH-
dependent turnover of SSA (see the “Methods” section).
Accordingly, we found that kcat/KM decreased from 1.8 × 107

min−1 M−1 for WT protein to 1.0 × 107 min−1 M−1 for
AKR7A2_A142T (P= 0.035 by one-tailed t-test, Fig. 3f). In
addition to impacting SSA turnover, the A142T mutation is
reported to significantly decrease the in vitro metabolism of both
doxorubicin and daunorubicin by AKR7A2, which could have
important implications in cancer therapy40. Moreover, missense
mutations that impair ABAT and SSADH activity, enzymes
immediately upstream of AKR7A2 (Supplementary Fig. 2c), can
result in severe human neurological disorders41–43. Hence, we
postulate that AKR7A2_A142T may indeed be functionally
relevant in genetic backgrounds with lowered ABAT or SSADH
activity.

Disruptive variants are widespread in disease-relevant genes.
We next investigated how disruptive variants are distributed
across different gene categories and protein functional sites. We
observed comparable enrichment for disruptive variants across
disease-associated, cancer-associated, and essential gene sets (Fig.
4a; see the “Methods” section); this enrichment was also com-
parable to the fraction of disruptive variants found across all
genes tested in our SNV-interaction network, excluding highly
constrained LoF-intolerant genes (pLI ≥ 0.9), which were sig-
nificantly depleted for disruptive variants in comparison to other
gene sets (Fig. 4a). LoF-intolerant genes correspond well with
haploinsufficient genes9 in which a single mutant copy of a gene
is enough to be deleterious. Such genes would be highly sensitive
to disruptive variants as a result, potentially explaining the lower
fraction of disruptive variants observed in such genes. Notably,
duplicate or functionally similar genes can compensate for cor-
responding proteins impacted by a disruptive mutation. However,
we found no enrichment for disruptive variants within a pub-
lished set of duplicate genes44 in comparison to non-disruptive

Fig. 2 Assessing the impact of disruptive alleles on protein function. a Fraction of protein pairs recovered by PCA for disrupted and intact interactions in
comparison to positive and random reference sets (PRS and RRS). P values by one-tailed Z-test between disrupted and intact interactions. P values by two-
tailed Z-test for all other comparisons. b Fraction of disruptive variants in ExAC (blue) across four allele frequency ranges (i) <0.1%, (ii) 0.1 – 1.0%, (iii) 1.0
– 10%, and (iv) >100%. P value by chi-square test. Fraction of disruptive somatic mutations in COSMIC (purple) in known cancer-affiliated genes or other
genes and fraction of disruptive germline disease-associated genes from HGMD (red) are also shown. P values by one-tailed Z-test. c Reported number of
functional missense variants per individual genome varies extensively across different studies. d ExAC variants tested against≥ 2 interactions further
partitioned into three disruption categories. Distribution of e allele frequency, f Grantham scores, and g PolyPhen-2 scores across three disruption
categories. Error bars in a and b indicate+ SE of proportion. Thick black bars in g are the interquartile range, white dots display the median, and extended
thin black lines represent 95% confidence intervals. P values in e, and g by one-tailed U-test. P values in f by two-tailed U-test. See also Supplementary
Tables 1–3, Supplementary Data 2–4, and Supplementary Fig. 1
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variants (Supplementary Fig. 3a), nor within a custom-generated
set of sequence-conserved, functionally similar proteins (Sup-
plementary Fig. 3b; see the “Methods” section). In contrast, a
sizable proportion of the disruptive variants in our SNV-
interaction network occur in genes relevant to human disease
and traits, motivating further exploration into their potential
impact.

The structural and genomic loci at which a disruptive variant
occurs is strongly indicative of the functional relevance of the
mutation. Similar to disease-associated mutations20, we found
that variants located at the interaction interface disrupted
interactions significantly more often than variants located away
from the interface (19.2% and 5.0%, respectively; P= 3.9 × 10−5

by one-tailed Z-test, Fig. 4b; see the “Methods” section). Protein
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sites corresponding to disruptive variants were also found to be
substantially more conserved than those for non-disruptive
variants (P= 1.2 × 10-10 by one-tailed U-test, Fig. 4c). Purifying
selection may also be more specific to disruptive variants at
conserved protein sites than non-disruptive variants at equally
conserved sites. To demonstrate this, we binned disruptive and
non-disruptive variants by their corresponding Jensen–Shannon
Divergence (JSD) scores, an amino acid-based metric for
conservation, and then compared their mean allele frequency
per JSD scoring bin (see the “Methods” section). We found that
while allele frequencies for both disruptive and non-disruptive
variants were somewhat comparable at low JSD conservation
scores, allele frequency for disruptive variants strongly decreased
across increasingly stringent JSD cutoffs in comparison to non-
disruptive variants (Supplementary Fig. 4a). A similar pattern was
also observed using a genomic—as opposed to an amino acid-
based—measure for conservation, phyloP45 (Supplementary Fig.
4b). Therefore, in addition to frequently occurring in disease-
relevant genes, disruptive variants are also more likely to occur at
functionally important sites in these genes, further implying that
a significant fraction of these disruptive variants may be
phenotypically relevant.

To complement our exploration of the relationship between
conservation and disruptive variation, we also investigated
whether disruptive variants tend to occur at genomic regions
under positive selection. We applied a test for positive selection
based on the distribution of allele frequency around a variant
using whole-genome sequencing data from Phase 3 of the 1000
Genomes Project46 (see the “Methods” section). We observed that
genomic regions with disruptive variants exhibit a significant
signature of positive selection more often than those with non-
disruptive variants. This is the case both within 1000 Genomes
continental population groups and globally (Fig. 4d). This result
may point to the functional importance of some of the disruptive
variants identified here. Therefore, this result also facilitates
molecular interpretation of positive selection signals, both in
terms of interaction perturbations and by investigating the
functions of interacting proteins lost and gained in the presence
of these disruptive variants.

Identifying phenotypic SNVs via matching disruption profiles.
Previous studies have shown that disease-associated mutations
often function by perturbing specific protein–protein
interactions19,20,22. We therefore investigated whether a dis-
ruptive population variant with the same interaction impact as a
known disease-associated mutation could also result in disease.
To do this, we first examined whether pairs of disease-associated
mutations that occur on the same gene tend to result in the same
interaction perturbations (see the “Methods” section). We found
that pairs of disease-associated mutations that share at least one
or more disrupted interactions resulted in the same disease sig-
nificantly more often than mutations that did not share any
disrupted interactions (0.738 to 0.630, respectively; P= 8.5 × 10-4

by one-tailed Z-test, Fig. 4e). This trend persisted when mutation

pairs shared two or more disrupted interactions in comparison to
no shared disrupted interactions (0.760 to 0.630, respectively; P
= 0.018 by one-tailed Z-test, Fig. 4e). This result therefore sug-
gests that shared interaction disruption profiles may be an
informative approach to prioritizing candidate disease-associated
mutations.

To demonstrate how pairs of disease-associated mutations on
the same gene with matching disruption profiles can result in the
same disease, we highlight three disease-associated mutations on
SMAD4 (Fig. 4f), a crucial protein in the TGFβ/SMAD signaling
pathway. Two mutations on SMAD4, E330K, and G352R, are
associated with juvenile polyposis47,48, while a third mutation,
N13S, results in a clinically distinct disease, pulmonary arterial
hypertension49. We observed that E330K and G352R cluster
together in three-dimensional space near the SMAD4–SMAD3
interaction interface (Fig. 4g). N13S, in contrast, appears
positioned away from E330K and G352R near the N-terminus
of SMAD4. In agreement with the proximal clustering of E330K
and G352R near the SMAD4–SMAD3 interaction interface, both
mutations disrupted the SMAD4 interaction with SMAD3 in
addition to disrupting the SMAD4–SMAD9 interaction (Fig. 4f).
These SMAD protein disruption results agree with previous
evidence implicating the TGFβ/SMAD signaling pathway in the
formation of juvenile polyposis50,51. In contrast, the N13S
mutation left SMAD4 interactions with SMAD3 and SMAD9
intact, which agrees with a previous study that found no evidence
that N13S alters SMAD-mediated signaling49.

With this example as a template, we then explored cases in
which both an ExAC variant and a known disease-associated
mutation shared the same disruption profile with the goal of
determining whether the population variant can result in the
same disease phenotype. To do this, we tested two mutations with
matching disruption profiles on the protein PSPH (Fig. 5a): (i)
T152I, a rare variant (MAF= 0.10%) in ExAC that disrupts an
interaction with itself and (ii) D32N, a disease-associated
mutation that also disrupts an interaction with itself and causes
phosphoserine phosphatase deficiency in a compound hetero-
zygous individual with two deleterious PSPH mutations52. An
additional PSPH non-disruptive rare variant, T149M, was
included as a control. Since PSPH exists as a dimer in solution
and can aggregate when mutations that interfere with dimeriza-
tion are introduced53, we reasoned that mutations that disrupt
this dimerization may also reduce PSPH enzymatic activity. We
therefore purified recombinant WT, D32N, T152I, and T149M
PSPH proteins and measured for changes in phosphatase activity
for PSPH mutants relative to WT using a malachite green assay.
Our in vitro assays revealed that T152I significantly reduced
PSPH phosphatase activity to 59.2% ± 4.3% relative to WT
(SEM; P= 0.0010 by one-tailed t-test; n= 3), which nearly
matched the D32N reduction in activity (60.0% ± 3.3%, P= 6.6 ×
10-4 by one-tailed t-test compared to WT; n= 3). In contrast,
T149M showed no significant change in enzymatic activity
relative to WT (P= 0.19 by one-tailed t-test, Fig. 5b). Because
phosphoserine phosphatase deficiency is a recessively inherited

Fig. 3 Disruptive population variants seldom result in unstable protein expression. a Western blots for representative wild-type:variant pairs across three
stability categories detected using α-GFP. α-GAPDH was used as a loading control. b DUAL-FLOU protein stability scores for 278 wild-type:variant pairs.
Dashed blue line represents 1:1 ratio between stability scores for mutant and wild-type. c Fraction of variants residing in LoF-intolerant genes (pLI≥ 0.9) for
stable (n= 199), moderately stable (n= 53), and unstable (n= 10) protein stability categories. d Ratio of mutant-to-wild-type stability scores
corresponding to non-disruptive (n= 103), partially disruptive (n= 45), and null-like variants (n= 12). e Diagram of interactions disrupted by null-like
AKR7A2_A142T variant. Cellular expression levels of V5-tagged AKR7A2 was measured by Western blot using α-V5. α-γ-Tubulin was used as a loading
control. * indicates 37 kDa marker. f In vitro specific activities of purified recombinant AKR7A2 wild-type and A142T using succinic semialdehyde substrate.
Fitted curves (dashed lines) are shown for wild-type and A142T. P value by one-tailed t-test. Error bars indicate ± SE of mean at eight different substrate
concentrations. Error bars in c and d indicate +SE of proportion. P values in c and d by one-tailed U-test. See also Supplementary Figs. 2, 6, and 7a
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condition52, our findings suggest that T152I may lead to the same
disease phenotype in homozygous or compound heterozygous
individuals.

To further demonstrate how potential physiologically relevant
mutations can be identified using shared disruption profiles, we
also characterized a pair of disruptive mutations on the GTPase,
SEPT12: G169E (MAF= 0.02%), a rare variant not known to

associate with any disease phenotypes, and D197N, an infertility-
causing mutation in men54. Both mutations perturbed interac-
tions with SEPT7 and SEPT2 subgroup proteins, SEPT1 and
SEPT5 (Fig. 5c). These perturbations are particularly relevant
because SEPT12 is known to interact with other septin proteins
found in the SEPT2, SEPT6, and SEPT7 protein subgroups to
form a filamentous structure at the sperm annulus55–57.
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Moreover, the infertility-causing mutation SEPT12_D197N has
been previously shown to perturb interactions with these same
septin subgroup proteins, resulting in a disorganized sperm
annulus and poor sperm motility in a mouse model for D197N57.
Lastly, using homology modeling, we observed that both G169E
and D197N mutations occur at SEPT12 interaction interface
residues with SEPT1 (Fig. 5d) and confirmed that both mutations
disrupt the SEPT12–SEPT1 interaction without reducing protein
stability in 293T cells (Fig. 5e). These results demonstrate that
these mutations function by specifically perturbing SEPT12
protein–protein interactions, as opposed to disrupting
SEPT12 stability as a whole.

We then investigated whether these matching SEPT12
molecular phenotypes result in corresponding organismal
phenotypes by generating Sept12G169E mice using a CRISPR-
editing approach58. We found that homozygous Sept12G169E

males were subfertile in comparison to WT males (Fig. 5f).
Notably, sperm from homozygous Sept12G169E males exhibited
poor motility (Fig. 5g), a phenotype also reported for Sept12D197N

male mice57. Our observations of poor sperm motility and
subfertility in homozygous Sept12G169E male mice suggest that
SEPT12_G169E may deleteriously impact fertility in men
homozygous for this mutation, although we note that no
individuals homozygous for SEPT12_G169E have been reported
in ExAC. Taken together with our in vitro data, these results also
demonstrate how shared disruption profiles can be used to
prioritize candidate disease-associated mutations.

Discussion
Disentangling the phenotypic impact of functional missense
mutations from benign mutations has proven to be uniquely
challenging59,60. Conventions for determining which missense
mutations are functional vary widely4,7,10, as do their genome-
wide estimates for the number of functional coding mutations per
individual (Fig. 2c). These inconsistencies are problematic, since
accurate measurements of the impact of SNVs on protein func-
tions are essential for generating concrete hypotheses about dis-
ease etiology based on molecular mechanisms21. Therefore, in the
absence of a consensus metric for assessing the functional impact
of missense mutations across a large set of proteins, we directly
measured the impact of 1676 missense ExAC-listed population
variants (811 with MAF > 0.1%) across 4109 protein-variant
interaction pairs and identified 298 disruptive variants affecting
669 human protein interactions. In this manner, we have con-
structed an unbiased resource to examine the relationships
between the population, genetic, and evolutionary characteristics
of SNVs and their functional impacts genome-wide.

By weighting our measured disruption rates against their
expected proportions per individual genome, we further deter-
mined that 10.5% of missense variants per individual are expected

to be disruptive. It should be noted that, like any high-throughput
assay, Y2H cannot detect all interactions for a given protein. If we
were able to detect more interactions, we would likely discover
more interaction disruptions. Therefore, this 10.5% figure
represents only a lower-bound estimate for the number of dis-
ruptive missense variants per individual. Furthermore, consider-
ing that interaction perturbations are just one way in which
mutations can perturb protein function, genome-wide surveys for
other types of activities (e.g., enzymatic activities, transcription
factors binding to DNA, etc.) may reveal that functional variants,
at least at the molecular-level, are even more widespread than
suggested here. Finally, we note that literature-curated sources are
not appropriate for reproducing the analyses presented here
because of their strong biases to synthetic and very rare muta-
tions. Even literature-curated mutations listed at appreciable
allele frequencies may be inappropriate, since such mutations are
often selected because of their known disease associations. For
example, a recent study comprehensively collected the impact of
7955 mutations on human protein interactions published in the
literature61; however, only 161 of these mutations were without
disease annotations and listed in ExAC, of which 49 occurred at
appreciable frequencies (MAF > 0.1%).

The genetic and genomic context in which a variant occurs is
crucial for properly interpreting the functional impact that a
disruptive mutation may have. While haplosufficiency likely
mitigates the impact of numerous disruptive variants, an indivi-
dual already harboring one disruptive variant can become sen-
sitized to the consequences of subsequent mutations in the same
gene or pathway. For example, we identified a null-like, common
variant, A142T, on the protein AKR7A2 that significantly reduces
its enzymatic activity relative to WT (Fig. 3g). This mutation
alone likely has a minimal impact on fitness; however, mutations
to enzymes immediately upstream to AKR7A2, particularly
ABAT and SSADH (Supplementary Fig. 2b), can result in severe
neurological disorders41–43. Co-occurrence of AKR7A2_A142T
with similarly disruptive mutations in ABAT or SSADH could
therefore result in a neurological disorder that would not other-
wise occur in an individual harboring only a single disruptive
mutation. Such relationships are frequent in complex disease,
including cancer and heart disease, which unlike Mendelian
mutations, require multiple mutations on more than one gene to
cause a disorder. Each disease-associated mutation in complex
disease therefore contributes a certain measure of disease risk that
can be quantified by a GWAS, and some authors consider these
effects to be approximately additive across loci62. Measuring how
one mutation modulates the impact of another is challenging;
however, measuring which mutations are individually functional
is a crucial first step. Hence, we anticipate that our SNV-
interaction network will serve as a pivotal framework for defining
the epistatic relationships that modulate the impact of disruptive

Fig. 5 Prioritizing candidate disease-associated mutations through shared disruption profiles. a Schematic of interaction disruption profiles for disease-
associated mutation D32N and rare variants T152I and T149M. Stable expression of FLAG-tagged wild-type and mutant PSPH proteins was validated by
Western blot using α-FLAG. α-γ-Tubulin was used as a loading control. A brief diagram of PSPH phosphatase activity is shown. * indicates 37 kDa marker
b Enzymatic activity of purified recombinant wild-type and mutant PSPH proteins using phosphoserine substrate was measured in vitro using a malachite
green assay performed in triplicate. Enzymatic activities for PSPH mutants are shown in proportion to wild-type activity. Error bars indicate +SE of mean.
P value by one-tailed t-test. c Schematic of interaction disruption profiles for SEPT12 rare variant G169E and disease-associated mutation D197N.
d Homology model of SEPT12–SEPT1 interaction. PDB ID 5CYO chains A and B used as template. Disruptive mutations on interaction interface are labeled.
e Disruption of SEPT12 interaction with SEPT1 by G169E and D197N was validated by co-IP. SEPT12 bait proteins were detected using α-FLAG. SEPT1 prey
was detected using α-HA. α-GAPDH was used as a loading control. f Fertility tests of 2–6-month-old WT (n= 2 males, avg= 8.9 ± 0.51; n= 2 females,
avg= 8.6 ± 0.61) and Sept12G169E/G169E (n= 3 males, avg= 4.0 ± 1.3; n= 2 females, avg= 9.2 ± 0.57) mice bred to age-matched controls. Litter sizes were
recorded. Green=males. Blue= females. All comparisons are not significant except for male WT vs. male Sept12G169E/G169E (P= 0.00052; by two-tailed
t-test). g Assessment of sperm motility of WT (n= 2, sperm= 166), Sept12G169E/+ (n= 4, sperm= 484), and Sept12G169E/G169E (n= 3, sperm= 416) mice.
See also Supplementary Figs. 7b, 8, and 9

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11959-3

10 NATURE COMMUNICATIONS |         (2019) 10:4141 | https://doi.org/10.1038/s41467-019-11959-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


variants, particularly for partially penetrant variants that only
result in disease in certain genetic backgrounds (Supplementary
Note 4).

Several methods to experimentally measure the impact of
coding mutations at large scales have been recently reported20,63–
65. The depth of proteins, variants, and interactions presented
here complements these previous methods well. For example,
Fields and Shendure developed a massively parallel single-amino-
acid mutagenesis pipeline, named PALS, that can generate nearly
all potential singleton mutations possible for a particular gene of
interest63. This impressive depth makes PALS an excellent
method for studying extensive variation in a single protein, most
notably TP5363 and BRCA166, but remains to be optimized for
studying variation across a large set of unique genes. In contrast,
our mutagenesis approach allowed us to survey > 2000 mutations
across 847 unique genes. Similarly, while Y2H is widely used for
characterizing the impact of mutations on protein–protein
interactions19,20, several derivatives for detecting perturbations by
Y2H exist. For instance, Stelzl and colleagues developed the Int-
Seq platform for probing protein–protein interaction disruptions
using a Reverse Two-Hybrid (R2H) approach65. While this R2H
approach increases assay sensitivity, a R2H reference interactome
is not yet available, limiting the coverage of this approach to a
handful of interactions.

Interaction perturbations constitute only a particular subset of
the variety of ways in which mutations can impair protein
function. Continued efforts to survey all potential manners in
which molecular-level perturbations can alter cellular and orga-
nismal phenotypes are needed to properly understand the impact
of mutations on human health. Although our experimental fra-
mework was not designed to find potentially causal variants
driving GWAS phenotypes (Supplementary Fig. 5; see the
“Methods” section), experimental frameworks that can differ-
entiate functional variants from those that are non-functional will
be key to identifying causal variants in common disease as well as
for characterizing SNVs that alter drug–protein interactions
(Supplementary Note 5; see the “Methods” section). Towards this
goal, the genetic, protein interaction, and population-level
insights presented here may represent a pivotal step forward to
an improved understanding of the evolutionary forces that shape
the human genome and protein function.

Methods
Selecting SNVs from ExAC, HGMD, and COSMIC databases. Population var-
iants encoding for missense mutations were selected from ExAC release 0.3.19.
Unless a specific subpopulation is listed, all reported allele frequencies and allele
frequency-derived calculations refer to allele frequency across all ExAC popula-
tions. Disease-associated missense mutations were obtained from HGMD (Public
release version, 2014). Cancer-associated somatic missense mutations were selected
from COSMIC version 84. For all three datasets, we required that (i) mutations
reside on genes in either hORFeome v8.167 or v5.168, (ii) corresponded with one or
more high-throughput Y2H-testable protein–protein interactions (Supplementary
Note 1), and (iii) for ExAC variants, achieved a PASS filter status. We mapped each
RefSeq transcript from ExAC to an appropriate ORF in our library by looking at
the top BLAXTX candidate with an E-value ≤ 0.001. We verified that this was a
representative ORF for our mutation by performing EDNAFULL matrix pairwise
alignment using EMBOSS Stretcher. Valid representative ORFs had to be identical
within a 31 amino acid window centered on the position of interest for muta-
genesis. Beyond local identity, ORFs were required to have more than 95% global
identity, or be an exact subset of the transcript, spanning at least a third of the
query transcript.

Since over half of all variants in ExAC are singletons, to avoid oversampling
rare alleles, we selected between 200 and 400 variants across six mutually exclusive
allele count bins of 1, <10, <100, <1000, <10,000, and >10,000 for a total of 1676
ExAC alleles (Fig. 1b). In each bin, we randomly selected variants on genes with
Y2H-testable interactions. To minimize gene bias, we selected an average of two
variants per gene. 204 HGMD mutations listed as DM (disease-causing mutations)
were selected in accordance to criteria detailed in ref. 20 but expanded to test across
all amenable Y2H protein–protein interactions. 162 COSMIC mutations among
110 different genes with available hORFeome clones were also tested across all
amenable Y2H protein–protein interactions. Genes listed in the Cancer Gene

Census (v84) and listed as a Tier 1 known drivers in IntOGen (2016.5) were
designated as Known cancer genes. Genes not listed in the Cancer Gene Census
and not listed as a driver in IntOGen were designated as Other genes (Fig. 2b).

Large-scale cloning of SNVs through Clone-seq pipeline. Single colony-derived
mutant clones were constructed using Clone-seq20, a high-throughput mutagenesis
and next-generation sequencing platform. In brief, WT clones were picked from
hORFeome clones and served as templates for site-directed mutagenesis performed
in 96-well plates using site-specific mutagenesis primers (Eurofins). Primers for
mutagenesis were designed using the webtool primer.yulab.org, and a list of all
primers used in this study is provided in Supplementary Data 1. To minimize
sequencing artifacts, PCR was limited to 18 cycles using Phusion polymerase (NEB,
M0530). PCR products were digested overnight with DpnI (NEB, R0176) then
transformed into competent bacteria cells to isolate single colonies. Up to four
colonies per individual mutagenesis reaction were then hand-picked and arrayed
into 96-well plates and incubated for 21 h at 37 °C under constant vibration. After
incubation, glycerol stocks were generated; clones were then pooled into inde-
pendent bacterial pools. An additional maxiprepped bacterial pool comprising only
WT DNA templates corresponding to each mutagenesis PCR reaction was also
prepared. Maxiprepped clonal DNA from each bacterial pool was then combined
through multiplexing (NEB, E7335) and sequenced in a single 1 × 75 single-end
Illumina NextSeq run. Properly mutated clones which differed from their
sequenced WT templates only by the desired single base-pair mutation—and
nowhere else—were then identified by next-generation sequencing analysis and
recovered from their corresponding single colony glycerol stocks.

Identifying successfully mutated clones. After de-multiplexing, mapped reads
corresponding to the generated pools (wildtype plus up to four mutant pools) were
mapped to genes of interest using the BWA mem algorithm (bwa mem -a -t 12 <
reference > < reads > ). In order to detect both the desired variant as well as
undesired off-target mutations, we first obtained the read counts for each allele (A,
T, C, G, insertion, or deletion) for all positions in the clones. Using these read
counts we calculated the score for a given position, pos, containing a mutation
from the wildtype allele, WT, to a mutant allele, Mut, as follows:

Score WT; pos;Mutð Þ ¼ ObservedMut; pos

ExpectedMut; pos
ð1Þ

where ObservedMut;pos is the observed fraction of reads at position pos matching
allele Mut and ExpectedMut; pos is the fraction of reads at position pos matching
allele Mut that we would expect to see if it the mutation in question had indeed
occurred. We define this fraction as:

ExpectedMut; pos ¼
1

TotalMutations
þ TotalMutations� 1ð Þ � SeqErr posð Þ

� Alleles� 1ð Þ � SeqErr posð Þ
ð2Þ

where TotalMutations is the total number of mutants attempted for a particular
ORF (i.e. the number of copies of the ORF included in the pool), SeqErr(pos) refers
to the inherent sequencing error, and Alleles is the total number of alleles.

To explain further, assuming that all clones for a particular gene contribute a
similar number of reads, we expect that if one of the clones for a gene contains a
mutation to the Mut allele at position pos, we should see 1

TotalMutations fraction of the
reads match the Mut allele. Due to sequencing errors, we expect the true fraction
observed to deviate slightly from this base fraction. We first add a term for the
fraction of Mut alleles that we expect to see as a result of sequencing errors in the
other non-mutant clones for the gene. Second, we subtract a term for sequencing
errors in the mutant clone converting the Mut allele to any of the (Alleles-1) other
alleles. We define the sequencing error as the average fraction of non-WT bases
observed in the 10 closest positions that were not targeted for mutagenesis.

Based on comparisons to Sanger sequencing results, we set a threshold of
Score WT; pos;Mutð Þ � 0:5 to call true mutations. In identifying successful
instances of site-directed mutagenesis, we first checked for the presence of the
desired mutation using this score threshold. Using the scores for all other positions
along the clone, we then screened each successful mutant for the presence of any
other unwanted mutations that may have been introduced as PCR artifacts. Any
clones containing unwanted mutations were removed, and the remaining clones
were sorted using a combination of their desired mutation score, maximum
undesired mutation score, sequencing coverage, and sequencing quality.

Calculating proportion of functional mutations exome-wide. The total number
of missense variants in ExAC release 0.3.1, diagrammed in Fig. 1b, was determined
by summing the adjusted allele count found in the ExAC database for all variants
annotated as missense_variant in at least one transcript. The number of functional
mutations was calculated by multiplying the mean disruption rate per individual
(Supplementary Note 2) by the total number of missense variants in ExAC.

The total number of missense variants in the 1000 Genomes Consortium—
Phase I, Genomes of the Netherlands, and Exome Sequencing Project—Phase I
were obtained from refs. 4,7,10, respectively. Calculations for the number of
functional missense mutations from each source are annotated in Supplementary
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Tables 1–3. We note that the number of functional mutations by mutation type was
not reported for ESP variants in ref. 4. As such, functional nonsynonymous
mutations, including nonsense variants, were instead reported for ESP—Phase I.
We expect the proportions of functional missense variants for ESP, 5.5% and 10.0%
using conservative and liberal criteria counts listed in ref. 4, respectively,
(Supplementary Table 3), to be slight overestimates as a result.

Profiling disrupted protein interactions through Y2H. Clone-seq-identified
mutant clones were transferred into Y2H vectors pDEST-AD and pDEST-DB by
Gateway LR reactions then transformed into MATa Y8800 and MATα Y8930,
respectively. All DB-ORF MATα transformants, including WT ORFs, were then
mated against corresponding WT and mutant AD-ORF MATa transformants in a
pairwise orientation using automated 96-well procedures to inoculate AD-ORF and
DB-ORF yeast cultures followed by mating on YEPD agar plates. All DB-ORF yeast
cultures were also mated against MATa yeast transformed with empty pDEST-AD
vector to screen for autoactivators. After overnight incubation at 30 °C, yeast were
replica-plated onto selective Synthetic Complete agar media lacking leucine and
tryptophan (SC-Leu-Trp) to select for mated diploid yeast then incubated again
overnight at 30 °C. Diploid yeast were then replica-plated onto SC-Leu-Trp agar
plates also lacking histidine and supplemented with 1 mM of 3-amino-1,2,4-tria-
zole (SC-Leu-Trp-His+3AT), as well as SC-Leu-Trp agar plates lacking adenine
(SC-Leu-Trp-Ade). After overnight incubation at 30 °C, plates were replica-cleaned
and incubated again for three days at 30 °C.

Disrupted protein–protein interactions were identified as follows: (1) mutated
protein reduces growth by at least 50% relative to WT interaction as benchmarked
by twofold serial dilution experiments, (2) neither WT or mutant DB-ORFs are
autoactivators and, (3) reduced growth phenotype reproduces across three screens.
A mutation was scored as disruptive if one or more corresponding protein-protein
interactions were disrupted and was scored as non-disrupted if otherwise.
Mutations tested against two or more interactions partners were further
categorized as non-disruptive, partially disruptive, and null-like if no tested
interactions were perturbed, some tested interactions were perturbed, or all tested
interactions were perturbed, respectively. PSPH interactions with CIRBP and SHC1
were detected using PCA. No significant change in PCA signal intensity was
detected between any WT or mutant PSPH interactions with CIRBP and SHC1 and
therefore all mutant PSPH interactions with CIRBP and SHC1 were scored as non-
disrupted. Interaction disruption data for all tested ExAC variants, COSMIC
somatic mutations, and HGMD disease-associated mutations can be found in
Supplementary Data 2–4, respectively.

DUAL-FLUO assay to measure SNV impact on protein stability. In order to
screen for variants that destabilize protein expression, we first screened for stably
expressed GFP-tagged WT proteins. To do this, we transferred WT ORFs into
pDEST-DUAL by Gateway LR reactions. HEK293T cells (ATCC, CRL-3216) were
then seeded onto black 96-well flat-bottom dishes (Costar, 3603). HEK293T cells
were maintained in complete DMEM medium supplemented with 10% FBS. All
cell incubation steps were performed at 37 °C under air with 5% CO2. Cells were
grown to 60% confluency then co-transfected using 150 ng sample DNA in
pDEST-DUAL and 1.0 µL of 1 mg/mL PEI (Polysciences Inc, 23966) mixed thor-
oughly with 20 µL OptiMEM (Gibco, 31985-062). Four replicates of empty pDEST-
DUAL and four replicates of empty pcDNA-DEST47 were also transfected per 96-
well plate as positive controls for mCherry expression and negative controls for
GFP expression, respectively. After 72 h incubation, stably expressed WT GFP-
tagged proteins were identified using a Tecan M1000 plate reader. Samples that
resulted in GFP and mCherry expression significantly above background were
confirmed by automated fluorescence microscopy using an ImageXpress system. In
this manner, we identified 202 WT genes corresponding to 278 ExAC variants.
Single clones for ExAC variants were then transferred into pDEST-DUAL by
Gateway LR reactions for further screening.

WT and mutant ORF pairs in pDEST-DUAL were transfected into 293T cells in
the same fashion as described for our first WT screen, including eight total pDEST-
DUAL and pcDNA-DEST47 controls per plate. Mutant ORFs corresponding to a
particular WT ORF were always partitioned onto the same plate. After 72 h
incubation, GFP and mCherry fluorescence readings using a Tecan M1000 plate
reader were measured for all samples and imaged by automated fluorescence
microscopy using an ImageXpress system. Mutant proteins were then processed
into stable, moderately stable, and unstable categories of protein expression as
follows: if the ratio between mutant and WT stability scores fell below 0.5,
indicating that the mutant protein is still expressed but at markedly reduced levels,
we categorized the mutant protein as moderately stable. If mutant protein
expression dropped below plate reader detection thresholds, as indicated by a
mutant stability score < 0, we instead categorized the mutant protein as unstable.
Mutant proteins above both thresholds are scored as stable (Supplementary Note
3). Stability data for tested ExAC variants are reported in Supplementary Data 5.

Retesting disrupted and non-disrupted interactions by PCA. To confirm that
variant-disrupted protein–protein interactions are reproducible across a different
assay, we systemically selected a subset of Y2H-tested mutant protein interactions
for retesting by PCA. We provide background for applying this method towards

retesting interaction perturbations in Supplementary Note 6. Bait ORFs in
pDONR223 for disruptive and non-disruptive variants were transferred into F1
Venus fragments while prey ORFs for corresponding interaction partners were
transferred into F2 Venus fragments using Gateway LR reactions for a total of 192
Y2H-disrupted mutant interaction pairs and 205 non-disrupted Y2H mutant
interaction pairs. Bait and prey ORF pairs from both sets were then randomly
scrambled across 87 PRS and 90 RRS ORF pairs previously described in refs. 34,35

to minimize detection bias across different 96-well plates. As a quality control
measure, interaction pairs in which either a bait or prey ORF did not amplify by
PCR using F1 Venus- or F2 Venus-specific primers, respectively, were removed
from PCA analysis.

To perform PCA, HEK293T cells (ATCC, CRL-3216) were seeded onto black
96-well flat-bottom dishes (Costar, 3603). HEK293T cells were maintained in
complete DMEM medium supplemented with 10% FBS and incubated at 37 °C
under air with 5% CO2. Cells were grown to 60–70% confluency then co-
transfected using 100 ng bait vector plus 100 ng prey vector with 1.0 µL of 1 mg/mL
PEI (Polysciences Inc., 23966) mixed thoroughly with 20 µL OptiMEM (Gibco,
31985-062) per transfection. After 72 h incubation at 37 °C, a Tecan M1000 plate
reader was used to measure PCA fluorescence (excitation= 514 nm; excitation=
527 nm) for all samples. A manually adjusted gain was applied to ensure all
measurements were performed within a constant linear range. Detection thresholds
were selected such that ORF pairs resulting in a signal greater than the threshold
were scored as detected while scores that fell below the threshold were scored as
undetected. The fraction of recovered pairs represents the proportion of ORF pairs
that scored above a given threshold over the total set of ORF pairs tested per
category. Results are reported in Supplementary Data 6.

Constructing vectors for DUAL-FLUO screen and Western blot. Gateway LR
reactions were used to transfer ORFs into mammalian expression vectors. The
pDEST-DUAL vector for our dual-fluorescence screen was constructed by inserting
an mCherry cassette independently driven by a minCMV promoter into pcDNA-
DEST47 (Invitrogen, 12281-010), which features a C-terminal GFP tag. PSPH WT,
D32N, T152I, and T149M were transferred into a pQCXIP (ClonTech, 631516)
vector modified to include a Gateway cassette featuring a C-terminal 3 × FLAG tag.
SEPT12 WT, G169E, and D197N were transferred also into this same modified
pQCXIP 3 × FLAG vector. SEPT1 was transferred into a modified pcDNA3.1
(Invitrogen, V79020) vector featuring a C-terminal 3 × HA tag. AKR7A2 WT and
A142T were transferred into pcDNA-DEST40, which includes a V5 tag (Invitro-
gen, 12274-015).

Cell culture for Western blotting. HEK293T cells (ATCC, CRL-3216) were
maintained in complete DMEM medium supplemented with 10% FBS and incu-
bated at 37 °C under air with 5% CO2. Cells were grown in 6-well dishes to 70–80%
confluency then transfected using 2 μg of vector with 10 µL of 1 mg/mL PEI
(Polysciences Inc., 23966) mixed thoroughly with 150 µL OptiMEM (Gibco, 31985-
062). After 24 h incubation, cells were gently washed three times in 1× PBS and
then resuspended in 200 µL cell lysis buffer [10 mM Tris–Cl pH 8.0, 137 mM NaCl,
1% Triton X-100, 10% glycerol, 2 mM EDTA, and 1× EDTA-free Complete Pro-
tease Inhibitor tablet (Roche)] and incubated on ice for 30 min. Extracts were
cleared by centrifugation for 10 min at 16,000×g at 4 °C. Samples were then treated
in 6× SDS protein loading buffer (10% SDS, 1 M Tris–Cl pH 6.8, 50% glycerol, 10%
β-mercaptoethanol, 0.03% Bromophenol blue) and subjected to SDS–PAGE. Pro-
teins were then transferred from gels onto PVDF (Amersham) membranes. Anti-
FLAG (Sigma, F1804) at 1:3000, anti-V5 (Invitrogen, R960-25) at 1:5000, anti-HA
(Sigma, H3663) at 1:3000, anti-GFP (SCBT, sc-9996) at 1:1000, anti-GAPDH
(Proteintech, 60004-1-Ig) at 1:3000, and anti-γ-Tubulin (Sigma, T5192) at 1:3000
dilutions were used for immunoblotting analyses. Uncropped western blots are
presented in Supplementary Figures 6–8.

Protein purification of recombinant PSPH and AKR7A2. Gene-specific primers
were used to clone BamHI and XhoI restriction endonuclease digestion sites onto
the 5′ and 3′ ends, respectively, of ORFs for WT, D32N, T152I, and T149M clones
of PSPH by PCR. PCR products as well as a pET28a-based, custom generated pET-
6 × His-SUMO expression vector were then digested overnight using BamHI (NEB,
R3136) and XhoI (NEB, R0146) restriction endonucleases. All digested products
were cleaned up by gel extraction. PCR products were then ligated into double-
digested pET-6 × His-SUMO vector by 10 μL T4 ligase (NEB, M0202) reactions
using a 3:1 ratio of insert to template incubated for 30 min at RT. Ligated products
were then transformed into competent cells and plated to isolate single colonies.
Properly ligated colonies were validated by colony PCR. Colony PCR-validated
pET-6 × His-SUMO PSPH constructs were then transformed into Rosetta strain
competent bacteria cells (Novagen, 71401-3).

To purify recombinant WT and mutant PSPH proteins, single colonies of
transformed Rosetta strain bacteria were inoculated overnight for use as starter
cultures. Starter cultures were used to inoculate 1.0 L LB media including
kanamycin and chloramphenicol and incubated for 2–4 h at 37 °C, shaking at 250
rpm until OD600= 0.6. 200 μL of 1 M IPTG was then added to induce protein
expression. Induced cultures were incubated for 18 h at 18 °C, shaking at 250 rpm.
After incubation, cultures were centrifuged at 4000×g for 20 min at 4 °C.
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Supernatant was discarded and pellet was resuspended in 35 mL Resuspension
Buffer (500 mM NaCl, 50 mM Tris–base pH 8.0) on ice. Unless stated otherwise, all
steps moving forward were performed on ice or at 4 °C. Resuspended pellet was
sonicated to lyse cells and then centrifuged at 16,000×g for 45 min. Supernatant
was then run through a column prewashed with Wash Buffer (20 mM NaCl, 20
mM Tris pH 7.5) and loaded with Cobalt agarose beads (GoldBio, H-310) for
purification of 6× His-tagged protein. Purified samples bound to Cobalt beads were
then treated overnight with lab-purified Ulp1 protease for SUMO tag cleavage.
Afterwards, samples were again run through a column prewashed with
Resuspension Buffer and eluted samples were collected. Lastly, purified protein
samples were fractionated by FPLC and samples lacking detectable SUMO
expression by Coomassie gel were used for experiments.

WT and mutant A142T recombinant proteins were prepared in the same
manner as PSPH except for the following changes: (1) AKR7A2 gene-specific
primers were used for PCR, followed by EcoRI (NEB, R3101) and XhoI (NEB,
R0146) double digestion of PCR product and pET-6 × His-SUMO vector; (2) after
induction with 200 μL of 1M IPTG, cultures were incubated for 5 h at 37 °C,
shaking at 250 rpm.

Phosphatase activity measurements for PSPH variants. WT and mutant PSPH
activity were measured using a malachite green assay as follows: Malachite Green
Reagent Stock was prepared by combining 30 mL Malachite Green (Sigma, M9636)
with 20 mL 4.2% ammonium molybdate (Sigma, 277908)/4 M HCl and mixing for
>30 min. Malachite Green Reagent Stock was filtered through a 0.2 μm filter unit
and stored at 4 °C. Malachite Green Working Reagent was then prepared by adding
Tween-20 to a final concentration of 0.01% in Malachite Green Reagent Stock.
Using a 96-well plate (Costar, 3696), A620 for sodium phosphate in Malachite
Green Working Reagent at concentrations of 10, 15, 20, 25, 30, 35, and 40 μM at
pH 7.4 was then measured using a Tecan M1000 plate reader to generate a stan-
dard curve. Next, 100 ng of purified recombinant PSPH protein was added to 20 μL
total of Assay Buffer (30 mM HEPES at pH 7.4, 1 mM EGTA, 1 mM MgCl2 and
100 μM phosphoserine) and mixed with 80 μL Malachite Green. Negative controls
lacking recombinant protein or phosphoserine substrate were also included. After
plate incubation at 37 °C for 5 min, A620 was measured for all samples. Percent
change in phosphatase activity for mutant PSPH was measured as the ratio of mean
mutant PSPH activity to mean WT PSPH enzymatic activity over three replicates.

Kinematic measurement of SSA turnover by AKR7A2. Using UV-transmitting
96-well plates (Greiner, 675801), A340 for NADPH (Cayman, 9000743) at con-
centrations of 2000, 1000, 500, 250, 125, 62.5, 31.3, 15.6, and 0 μM in 100 μM
sodium phosphate buffer at pH 8.0 was measured with a Tecan M1000 plate reader
to generate a standard curve. To measure NADPH-dependent turnover of SSA to
γ-hydroxybutyrate (GHB) for AKR7A2 WT and mutant A142T, 3.0 μg of purified
AKR7A2 protein was added to SSA aliquoted to individual wells in a 96-well plate
at concentrations of 0.50, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 mM in 100 μM sodium
phosphate buffer at pH 8.0. Reactions were started simultaneously by adding in
NADPH at an initial concentration of 0.5 mM and incubated at 37 °C. Negative
controls lacking recombinant protein, NADPH, or SSA were also included. OD320

measurements were taken every 60 s for a total of 15 min. AKR7A2 WT and A142T
experiments were performed over three replicates.

Defining duplicate genes and functionally similar proteins. Duplicate genes
were obtained from the Duplicated Genes Database44, which lists 3543 duplicate
genes across 945 different gene groups. In order to compare the robustness of
duplicate gene definitions across many different cutoffs, we additionally defined
our own metric for protein similarity by running a BLAST of the human proteome
against itself and eliminating all pairs of proteins with <40% sequence identity. The
remaining pairs were scored using a weighted combination of the pair’s percent
identity and the coverage with respect to each protein. In Supplementary Fig. 3b,
we flexibly defined duplicate genes as all pairs of genes whose score met a minimal
duplication threshold tested across all valid ranges (where 0 for Duplication
Threshold represents no appreciable similarity and 1 represents perfect identity).
Score is calculated as:

Score ¼α � PercentIdentity � CoverageAvg þ 1�αð Þ � CoverageAvg ð3Þ
where α=0.95 and CoverageAvg is the average coverage between both proteins.

Enrichment of disruptive mutations on interaction interfaces. We examined the
positions of ExAC variant residues relative to protein–protein interaction inter-
faces. On interface was defined as either at an interface residue or in the interface
domain, while away from interface was defined as neither at an interface residue
nor in the interface domain. Solvent accessible surface area calculations were used
to define interface residues. Briefly, surface residues whose relative solvent acces-
sibilities change by more than 1 Å2 (between bound and unbound states) are
defined to be interface residues. Pfam domains that (1) are known to mediate
protein–protein interactions based on 3did69 or iPfam70, and (2) contain at least
five interface residues are defined as interacting domains. The fraction of inter-
actions disrupted by variants on the interface or away from the interface was then
calculated.

Metrics for evolutionary site conservation at variant sites. Jensen–Shannon
Divergence (JSD) scores were obtained by first performing PSI-BLAST to search
for homologs corresponding to proteins tested in this study. The highest scoring
homolog by e-value per organism is retained, using an E-value cutoff of 0.05. A
multiple sequence alignment is constructed using the original sequence and
retained homolog sequences using Clustal Omega. For all queried proteins with at
least 50 homologs, we then calculated JSD scores across all positions in the queried
proteins sequence.

phyloP scores were obtained using the Table Browser of the UCSC Genome
Browser and inputting the hg19 coordinates for each tested variant. To measure the
average global allele frequency across different JSD or phyloP scores, cutoff scores
of 0.2, 0.3, …, 1.0 were applied and the global allele frequencies per tested ExAC
variant were averaged cumulatively across each cutoff score.

Signals of positive selection for disruptive alleles. Fay and Wu’s H was cal-
culated genome-wide with 1 kb sliding windows using the 1000 Genomes Phase 3
dataset46. Analyses were conducted in the merged global population as well as in
AFR, EUR, EAS, and SAS populations individually. Genomic regions with a Fay
and Wu’s H statistic at or below the 5th percentile were considered statistically
significant. Among all variants that occurred in regions with a measurable Fay and
Wu’s H statistic, the number of disruptive variants that occurred in regions with a
significant H statistic was recorded.

Comparing disruption profiles for disease-associated SNVs. Interaction per-
turbation data for disease-associated mutations measured here were combined with
interaction perturbation data from ref. 19 and then filtered for mutations listed as
DM in HGMD (Public release version 2017), resulting in interaction perturbation
data for 495 mutations. Mutation pairs were deemed to cause the same disease if
strings for their corresponding disease phenotypes listed in HGMD were equal.
Mutations were compared pairwise and had to share at least one interaction in
common in order to be compared. If one or more interactions was found in
common, mutation pairs were categorized by either sharing two or more disrupted
interaction in common, one or more disrupted interactions in common, or no
disrupted interactions in common.

Calculating LD between ExAC-tested variants and GWAS SNPs. To examine
whether ExAC variants that are in strong linkage disequilibrium (LD) with GWAS
SNPs are more likely to be disruptive, we first extracted all SNPs associated with
phenotypes in the UK Biobank GWAS Atlas71. We then calculated R2 values
between all ExAC variants in our dataset and the UK Biobank GWAS SNPs, using
1000 Genomes Phase 3 data.

ExAC variants in strong LD with GWAS SNPs had a disruption rate that was
not significantly different from the overall disruption rate (Supplementary Fig. 5a).
Results were robust across multiple R2 thresholds using either African or European
allele frequencies (Supplementary Fig. 5a, c). Since most GWAS SNPs occur at
MAF ≥ 0.1% and a sizable fraction of our tested variants are rare, we also repeated
our analysis restricted for variants at MAF ≥ 0.1% but still found no significant
trend (Supplementary Fig. 5b, d). As a control, we also repeated these same
analyses using SNPs from the NCBI GWAS Catalog72 and found the exact same
trends as those for the UK Biobank GWAS Atlas (Supplementary Fig. 5e–h).

Developing a dataset of drug-relevant disruptive SNVs. We provide back-
ground for how our disruptive variant data can be applied to finding drug-relevant
disruptive SNVs, including annotation sources for all human enzymes and drug
target genes examined, in Supplementary Note 5. Among the SNVs that we tested,
350 were on enzymes, and 84 of them disrupted at least one interaction. More
specifically, 54 SNVs were tested on drug-metabolizing enzymes and 12 of them
were disruptive. In addition, 227 SNVs were tested on drug targets, 66 of which
disrupted at least one interaction. Lastly, five SNVs were tested on drug trans-
porters and three of them were disruptive. As a potential resource to pharmaco-
genomics and toxicogenomics, we provide a table of all disruptive SNVs that may
be relevant to drug action in Supplementary Data 7.

Generation of mice using CRISPR-Cas9 genome editing. All animal use was
conducted under protocol (2004-0038) to J.C.S. and approved by Cornell Uni-
versity’s Institutional Animal Use and Care Committee, affirming that we complied
with all relevant ethical requirements for treatment and use of laboratory mice.
Optimal guide sequences were evaluated and selected based on high on-target and
low off-target scores using Benchling. Previous work has shown that two or more
mismatches strongly reduces cutting efficiency, even more so if a PAM site is not
present73. We note that the closest off-target sequence found with a PAM site had
three mismatches and was not found in a gene.

To generate the sgRNA, we used a previously published PCR overlap method73

described as follows: briefly, overlapping PCR primers, together encoding the T7
promoter, 20-nucleotide guide sequence, and RNA secondary structure sequence,
were ordered from IDT. The DNA template was reverse-transcribed using Ambion
MEGAshortscript T7 Transcription Kit (cat#AM1354) and resulting sgRNA was
purified using Qiagen MinElute columns (cat#28004). For pronuclear injection, the
sgRNA (50 ng/µL), ssODN (50 ng/μL, IDT Ultramer Service), and Cas9 mRNA (25
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ng/µL, TriLink) were co-injected into zygotes (F1 hybrids between strains FVB/NJ
and B6(Cg)-Tyrc-2J/J) then transferred into the oviduct of pseudopregnant females.
Founders carrying at least one copy of the desired alteration were identified and
backcrossed into FVB/NJ. Initial phenotyping was done after one backcross
generation and additional phenotyping was done with mice backcrossed at least
two or more generations.

While we did not specifically check homozygous Sept12G169E mice for potential
off-target edits, we note that in addition to using appropriately selected guides
designed to minimize the off-target rate of CRISPR editing in mice, founder mice
that contained our desired edit were also bred multiple generations before
intercrossing to form homozygous Sept12G169E mice. As such, the probability that
an unlinked off-target mutation would happen to persist after backcrossing and
then be rendered homozygous only in mice homozygous for the Sept12G169E allele
would be extremely low. We73 and others74 have extensively sequenced CRISPR-
edited mice before using this approach and have found no requirement for off-
target sequencing when the expected phenotype matches the introduced edit.

Genotyping Sept12 mice. A brief diagram of the CRISPR/Cas9 desired editing site
and mice genotyping is provided in Supplementary Fig. 9. For genotyping, we
collected toes from 8 to 14-day-old mice and created a crude DNA lysate75. PCR,
using the following two primers: 5′- GAGATGGGATGACAGGACTATTG-3′ and
5′-GTGGATGAGTGAGGGAAGAAAG-3′, was performed using EconoTaq and
associated PCR reagents (Lucigen) with 3 μL of crude DNA lysate. The PCR cycle
used for Sept12G169E was: 95 °C for 5 min, 30 cycles of 95 °C for 30 s, 64 °C for 30 s,
72 °C for 30 s, and final elongation at 72 °C for 5 min. To distinguish between WT
and G169E, PCR amplicons were digested by MscI to yield WT fragments of 180
and 138 bp, whereas the G169E allele remained uncut.

Fertility test. WT, heterozygous, and homozygous males and females were bred to
WT counterparts starting at 2 months until 7–15 months of age. The litter size and
sex of pups were recorded.

Sperm motility. Both epididymides were harvested from adult males, washed in
PBS, and placed in a puddle of in vitro fertilization media (Cook Medical). A slit
was cut along each epididymis and sperm were allowed to swim out for 2 min at 37
°C. Next, 10 μL of sperm was moved to a glass slide for motility assessment.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All mutant clones generated in this study and listed in Supplementary Data 2–4 are
available upon request. Please address requests to Haiyuan Yu (haiyuan.yu@cornell.edu).
The source data underlying Figs. 1b, 2a, b, d–g, 3c–f, 4a–e, 5b, and f, and Supplementary
Figs. 1b–e, 2a, b, 3a, b, 4a, b, and 5a–h are provided as a Source Data file.
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