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Abstract

Viruses in the rhinovirus C species (RV-C) are more likely to cause severe wheezing ill-

nesses and asthma exacerbations in children than related isolates of the RV-A or RV-B.

The RV-C capsid is structurally distinct from other rhinoviruses and does not bind ICAM-1

or LDL receptors. The RV-C receptor is instead, human cadherin-related family member

3 (CDHR3), a protein unique to the airway epithelium. A single nucleotide polymorphism

(rs6967330, encoding C529Y) in CDHR3 regulates the display density of CDHR3 on cell

surfaces and is among the strongest known genetic correlates for childhood virus-induced

asthma susceptibility. CDHR3 immunoprecipitations from transfected or transduced cell

lysates were used to characterize the RV-C interaction requirements. The C529 and Y529

variations in extracellular repeat domain 5 (EC5), bound equivalently to virus. Glycosylase

treatment followed by mass spectrometry mapped 3 extracellular N-linked modification

sites, and further detected surface-dependent, α2–6 sialyation unique to the Y529 format.

None of these modifications were required for RV-C recognition, but removal or even dilu-

tion of structurally stabilizing calcium ions from the EC junctions irreversibly abrogated virus

binding. CDHR3 deletions expressed in HeLa cells or as bacterial recombinant proteins,

mapped the amino-terminal EC1 unit as the required virus contact. Derivatives containing

the EC1 domain, could not only recapitulate virus:receptor interactions in vitro, but also

directly inhibit RV-C infection of susceptible cells for several virus genotypes (C02, C15,

C41, and C45). We propose that all RV-C use the same EC1 landing pad, interacting with

putative EC3-mediated multimerization formats of CDHR3.

Author summary

The RV-C species was first identified in 2006 and is a major cause of severe respiratory ill-

nesses in children and hospitalization for asthma exacerbations. Refractive to growth in

standard tissue culture, RV-C uses a receptor that is distinct from the RV-A or RV-B spe-

cies, which we identified as CDHR3 in 2015. Here, we developed and used in vitro pull-
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down assays to the determined biochemical and structural features of CDHR3 that are

important for virus binding. Additionally, we purified soluble recombinant CDHR3 pro-

teins that could directly bind virus and inhibit RV-C infection. The assays and biological

materials reported here are promising and useful tools for RV-C-specific antiviral drug

development.

Introduction

Rhinoviruses (RV) are a large group of non-enveloped, single-stranded, positive-sense RNA

viruses in the Enterovirus genus of the Picornaviridae family. There are more than 160 geno-

types, more or less synonymous with serotypes, classified into three species, the RV-A, RV-B,

and RV-C. Collectively, RV are the primary etiological agents of upper respiratory tract com-

mon colds, but many also induce more severe lower respiratory tract illnesses, including bron-

chitis and pneumonia [1–3]. The RV-A and RV-C isolates are known to cause more severe

wheezing illnesses compared to those of the RV-B, but the RV-C are of additional clinical

interest because of their close association with acute asthma exacerbations in children [4–8].

The RV-C were first described in 2006 [9], but not grown in culture until 2011 [10]. Ini-

tially, virus propagation was restricted to sinus mucosa organ tissues or to airway epithelial

air-liquid-interface cultures (ALI) because the isolates proved refractive to standard cell culture

[11,12]. These labor-intensive, low virus-titer systems did allow the determination that RV-C

growth required a cellular receptor component distinct from intercellular adhesion molecule 1

(ICAM-1) or the low-density lipoprotein receptor (LDLR) used by the RV-A/B species

[10,13,14]. Gene expression profiles from susceptible and non-susceptible cells subsequently

identified cadherin-related family member 3 (CDHR3) as the missing cell-surface constituent

[15].

CDHR3 belongs to the cadherin superfamily of transmembrane calcium-dependent adhe-

sion proteins. The better-described classical cadherins are expressed in a variety of tissues,

where they mediate cell-cell interactions, usually through homologous protein contacts, or

where they participate in cell signaling, epithelial polarity, and tissue development and organi-

zation [16–19]. CDHR3 expression, in contrast, is generally restricted to airway tissues, with

protein display primarily on the apical surfaces of ciliated epithelial cells [20,21]. The biological

role of CDHR3 in lung development or function is unknown. Although the gene locus generi-

cally shows a high degree of sequence conservation among all animal genomes, comparative

human genetics records a unique non-synonymous single nucleotide polymorphism (SNP)

RS6967330 [22], converting a strongly conserved ancestral residue, Tyr529 (TAT, Y529) to

cysteine (TGT, C529). Transfected cells, or primary cultures derived from homozygous or het-

erozygous human allele carriers differentially display these sequences, with the Y529 protein

observed at a higher surface density than C529, for the same amount of gene expression [23].

The Y529-encoding allele, even though it is ancestral [24], is the minor frequency sequence in

modern humans. The 3–15% of carriers, especially children, have significantly stronger genetic

associations with severe asthma exacerbations, and in particular, those trigged by RV-C infec-

tions [22,25].

A defining feature of all cadherins is their distinctive rod-like arrangement of linear tan-

dem-repeat extracellular domains (EC). Collectively or individually, these units mediate the

various cis and trans contacts needed for adhesion specificity [26]. Each domain of about 110

amino acids is distinct in sequence, but they typically configure into similar 7-stranded, anti-

parallel “Greek key” motifs. The linked repeat units (usually 5) are preceded by a signal
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sequence and followed with a short transmembrane segment and a cytoplasmic tail. Calcium

ions (2 or 3) chelated by multiple acidic residues, are set into each EC junction, and required

for relative domain orientation as well as the overall rigidity of the long, slightly curved, rod-

like conformations. Homotypic and heterotypic cadherins interact in cis (parallel orientation,

same cell) and/or trans (anti-parallel orientation, opposing cell) by reciprocal ionic contacts

on their various EC surfaces to provide adhesion functions [27]. The CDHR3 sequence (885

amino acids) encodes six EC repeats with the usual, easily defined amino and carboxyl exten-

sions (Fig 1). The Y529/C529 dichotomy is in EC5, predicted structurally at the interface with

EC6, possibly affecting the calcium stability of that junction [23]. A correlate protein docking

model relying on the recent structure resolution of RV-C15a [28] suggested that CDHR3 may

interact with this virus exclusively through contacts in the first two domains, assuming a bind-

ing orientation that could putatively accommodate receptor monomers or trans-dimers [15].

These predictions, though, are strictly computational. Validation of any model, in lieu of an

authentic co-structure, required formal characterization of actual RV-C interactions with mul-

tiple native and recombinant formats of CDHR3. We report here the development of relevant

biochemical pull-down assays, leading to determination of the minimum forms of CHDH3

capable of direct virus interactions. As soluble recombinant materials, the required protein

units, rEC1, rEC1-2, rEC1+3(Δ2) or rEC1-3, when properly folded in the presence of Ca++,

could recapitulate virus:receptor binding interactions and could inhibit RV-C infection of sus-

ceptible cells for at least 4 different virus genotypes.

Results

Virus binding to cell-expressed CDHR3

RV-C will bind and infect HeLa cells that are transfected or transduced for surface expression

of full-length CDHR3 sequences [15]. During transfections however, the exterior protein

Fig 1. Mapping RV-C binding domains in CDHR3. (A) Design of CDHR3 EC deletion constructs. (B) Cell lysates of HeLa cells transfected with these cDNAs were

reacted with sucrose purified C15 virus (107 PFUe) as described in Methods. Western assays after immunoprecipitation with an α-His mAb detected CDHR3 (via α-

FLAG) and captured virus (α-C15). Binding % is the observed C15 signal pixel count normalized to the CDHR3 protein (α-FLAG) signal in the panel above (Total Lab

100) relative to the WT CDHR3 lane (bold face).

https://doi.org/10.1371/journal.ppat.1007477.g001
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presentation and therefore formal virus access is dependent on each individual cell’s cDNA

uptake as well as that sequence’s innate display potential (e.g. C529 vs Y529). Transduced cells

introduce additional surface variabilities by the very nature of clonal selection. A reproducible

assay for virus binding, dependent only on the introduced CDHR3 sequence, was achieved by

reacting C15 virus with whole-cell lysates, after transfection or transduction of preferred

cDNAs. Except for the CDHR3 glycosylation status (see below) there was no indication in any

experiment of virus preference for intra- or extracellular protein pool locales. Indeed, even the

predominantly non-surface C529 materials readily interacted with virus, if given the chance as

lysate extracts (e.g. see Fig 2a).

The initial application of this assay tested the overall EC domain requirements (Fig 1).

Immunoprecipitations (IP) with mAbs to the CDHR3 carboxyl His tag (α-His) readily

extracted virus if the transfections were with full-length, wild-type (WT) sequences. In agree-

ment with the predicted interaction model, engineered removal of the entire gene segment

downstream of EC1-2, including EC3-6, the TM and cytoplasmic domains, produced protein

fragments (EC1-2), which remarkably, were still capable of reacting with virus. Consistent

with this, internal deletions targeting the precise, short inter-domain linkers that removed just

EC1 (i.e.ΔEC1), or just EC2 (i.e. ΔEC2), but not EC3 (i.e. ΔEC3), created proteins that failed to

extract virus. When the IP antibody was switched to α-FLAG, reactive with the amino-proxi-

mal sequences, no tested protein co-extracted virus, although all were recognized by the mAb

(Fig 1b). Therefore, while the first two extracellular domains (EC1-2) alone were sufficient to

facilitate C15 binding, the process could be interfered with if the chosen IP mAb was sterically

Fig 2. CDHR3 mutations. (A) Lysates from HeLa cells transfected with full-length CDHR3 cDNAs encoding the

specified point mutations were reacted with C15 virus. Immunoprecipitation and protein detection used an α-CDHR3

mAb reactive with the cytoplasmic domain. Captured virus was quantitated as in Fig 1. (B) PyMol depiction of

computed model by Robetta [23,56] of rEC1-3 segments show putative locations of mutations. Green spheres predict

calcium binding sites, red depicts Asp+Glu sequences.

https://doi.org/10.1371/journal.ppat.1007477.g002
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close to EC1, or in this case, the 8 amino acids adjacent upstream. A similar distance down-

stream of EC2 was apparently not inhibitory if bound by the α-His mAb.

Looking more closely at this region, the RV-C binding model suggested that within the

EC1-2 sequence, Asn186 (N186) was a likely candidate for a putative sugar ligand contribu-

tion. Initially, this was considered of special importance because the C15a virion structure dif-

fers from RV-A/B, in that it has an unusual, species-conserved surface pocket, seemingly

analogous to the sialic acid interaction site used by enterovirus D68 to mediate that receptor

recognition [28,29]. Accordingly, N186 and 5 other amino acids modeled as putative EC1-2

surface features were tested in the lysate-binding assay (Fig 2). The Asn site, when replaced

with Ala or Gln, gave proteins that reacted poorly with virus (reduced to 11% and 19% respec-

tively). The same was true for EC1 domain K43A and EC2 domain R166A changes (to Ala),

where binding was also markedly diminished (to 46% and 16%). Other changes though, like

F152A and R182A (EC2), and particularly W76A (EC1), if anything, promoted virus IP. The

W76A enhancement in particular, was repeatable in multiple experiments and CDHR3 con-

texts, usually averaging ~50–80% more virus pull-down than comparable WT sequences. Clas-

sical cadherins multimerize by intercalation of an amino-proximal conserved Trp into a

hydrophobic pocket of the homotypic or heterotypic partner [30–32]. The CDHR3 W76,

while not amino-terminal, is the only tryptophan within EC1-4. The precise quaternary

arrangement of full-length CDHR3 in cells (or lysates) is difficult to assay at present. If

CDHR3 W76 also participated in multimeric contacts, IP enhancement could well indicate

that RV-C prefers lower order monomer or dimer receptor formats. This point was probed

further in the design and subsequent testing of bacterial produced recombinant proteins.

CDHR3 glycosylation

The N186 mutation data fit the binding model’s putative expectations that glycosylation at this

site might contribute to virus interactions. Almost all classical cadherins are post-translation-

ally modified with glycans [31,33–35]. The sequence of CDHR3 predicts 6 possible N-linked

sites (Fig 3). O-linked sites cannot be projected with reliability. FLAG-CDHR3 Y529 protein

from transfected HeLa cells was gel-fractionated before and after treatment with PNGaseF.

Fig 3. CDHR3 glycosylation. HeLa cell lysates from cells transfected with cDNA for full-length CDHR3 (Y529) were gel fractionated. The

CDHR3 band was treated (or not) with PNGaseF before trypsin digestion and analysis by mass spectrometry. Identified peptides are indicated:

(+) deamide form of peptide; (+/-) amide and deamide forms. NetNGlyc strength is according to primary sequence data (� is low, ��� is high).

Protein numbering is from GenBank AIC58018, with EC delineation from the current structure model [23].

https://doi.org/10.1371/journal.ppat.1007477.g003
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Mass spectrometry then identified the trypsin-dependent peptide differences. PNGaseF reac-

tions deaminate culpable Asn to Asp in the process of removing glycans so the peptide charge

relative to sequence and new peak appearance are diagnostic of prior glycosylation [36]. The

recovered CDHR3 peptides analyzed this way recapitulated ~80% of the sequence, definitively

identifying N186, N384, and N624 as N-linked glycosylation sites. Fragments for N308 and

N417 did not respond to enzyme treatment, nor was their amination status changed, indicat-

ing that at least for transfection-derived materials, these sites are not glycosylated. The modifi-

cation status of N257 could not be determined because the appropriate fragment (40 amino

acids) was not recovered from either treatment condition.

CDHR3 human protein variants Y529 and C529 from transfected HeLa cells migrate iden-

tically during gel fractionation (Fig 2a), as does His529 (H529), a naturally occurring posi-

tional mutation found in a few other mammalian genomes like mice and horses [23,24].

Despite a differential surface exposure on intact cells [15] the co-migration of transfected Y529

and C529 was mirrored by equivalent band shifts after PNGaseF treatment of ~8 kDa (Fig 4a)

Fig 4. Virus binding and CDHR3 glycosylation. Lysates from HeLa cells transfected (A) or transduced (B) with full-length cDNAs encoding

Y529 or C529 CDHR3 proteins were reacted with C15 virus in the presence or absence of PNGaseF or neuraminidase as described in Methods.

Immunoprecipitation and protein detection used an α-CDHR3 mAb reactive with the cytoplasmic domain. Captured virus was quantitated as

in Fig 1. (C) As in B, transduced cell lysates were treated (or not) with biotinylated Sambucus nigra (S) or Maackia amurensis (M) lectins before

extraction with streptavidin agarose beads and protein detection with α-CDHR3. (D) Plated stably transduced HeLa cells expressing

FLAG-Y529 or C529 CDHR3 were biotinylated and labeled cell surface proteins were isolated with streptavidin agarose beads.

https://doi.org/10.1371/journal.ppat.1007477.g004
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strongly suggestive of similar glycosylation patterns, and consistent with 3–4 N-linked sites.

Both full-length sequences (Y529 and C529), in lysate format, bound C15 virus (Fig 4a), pre-

sumably through the same EC1-2 contacts. Surprisingly though, PNGaseF treatment did not

affect this process. De-glycosylation, which certainly removed the N186 modification, did not

prevent subsequent virus interactions.

Unlike transfected cells, transduced cells expressing CDHR3 Y529 (fCR3Y) show 2 forms

of protein upon Western analyses (Fig 4b). The lower band (~100 kDa) was similar in size to

that produced in transfected cells, or from C529 materials in any format (e.g. fCR3C trans-

duced cells or C529 transfection). The upper band (~108 kDa) shifted when treated with neur-

aminidase indicating it displayed additional post-translational modification(s) involving

supplemental sialylation. This shift was unique to CDHR3 Y529 when this protein was

expressed constitutively in fCR3Y cells, instead of transiently (i.e. transfections). Sialic acids

are frequently added or rearranged at the termini of N- and O- linked oligosaccharides, via

α2–3 or α2–6 linkages [37,38]. The extra attachment(s) in Y529 was tested by the addition of

biotinylated Maackia amurensis lectin II (MAL II) or biotinylated Sambucus nigra lectin

(SNA), which respectively label proteins carrying α2–3 or α2–6 sialylated moieties. The Y529

upper band, when reacted with SNA-biotin was readily extracted with streptavidin beads,

while very little protein was extracted with MAL II-biotin labeling (Fig 4c). Neither lectin

extracted the CDHR3 Y529 lower band or any C529 material from the stably transduced cells.

Therefore, the standard CDHR3 glycosylations (i.e. at N186, N384, N624) in transduced or

transfected cells do not initially terminate in sialic acids, although one or more glycan branch

termini, and perhaps as many as 20 (by estimated molecular weight), subsequently become sia-

lylated by α2–6 linkages, when the Y529 sequence is transduced into cells. The extra sialic acid

modifications in Y529 transduced cells are surface dependent, because when intact fCR3Y

cells were labeled with biotin, the slower migrating, upper form of CDHR3 was observed only

in the extracellular (biotin-labeled, bound) protein fraction and not in the intracellular (unla-

beled, unbound) fraction (Fig 4d). Still, regardless of these modifications or how they origi-

nate, neither PNGaseF nor neuraminidase digestion of any expressed CDHR3 protein variants

inhibited C15 binding (Fig 4b). The predicted glycan binding site on the C15a virion surface,

apparently does not capture any N-linked or sialic acid glyco-moiety contributed by CDHR3.

Virus binding to recombinant CDHR3 proteins

The lysate binding assays mapped the segments and sequences of CDHR3 required for virus

pull-down. In a formal sense though, those experiments could not preclude contributory part-

ner interactions from other lysate components. Full-length CDHR3 proved insoluble when

expressed in bacteria and not readily refolded. Accordingly, the next experiments focused on

the EC1-3 domains. Like the successful lysate materials, the recombinant proteins were

designed with amino-terminal FLAG-tags and carboxyl-terminal His-tags. The first construc-

tions expressed native CDHR3 residues 20–345 (rEC1-3#). The amino-terminal signal

sequence (residues 1–19) was not included because it prevented high-level protein expression

in bacteria. Produced this way, >90% of the bacterial inclusion body material was the desired

protein, which upon denaturation (urea) and refolding (see Methods) was capable of binding

virus (Fig 5a). These first iterations though, had occasional solubility issues when residue

C345, within rEC3-4 linker region, allowed spurious disulfide interactions. Shortening (-5aa)

or lengthening (+10aa) the protein beyond this point was not nearly as effective, in terms of

the tested virus binding efficiency, as a simple mutation of C345 to A345 within the plasmid

backbone (e.g. rEC1-3). This context, after refolding and especially when augmented with an

additional W76A mutation, was sufficient and highly effective in IP reactions (i.e. in buffer
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alone without other exogenous proteins), for purified C15 virus extractions. As with HeLa-

produced proteins, W76A changes captured 50–60% more virus than the WT sequence

(Fig 5b). K43A again proved inhibitory (22%), but surprisingly, in this recombinant format,

where there was a denaturation and refolding protocol, N186A retained most of its reactivity

with virus (85% of WT).

The next plasmid series assayed domain requirements, successively eliminating EC1, EC2

and EC3 (Fig 5c). The only inactive protein was that lacking EC1 [rEC2+3(Δ1)]. When the

first domain was expressed alone or partnered with EC2 and/or with EC3, there was effective

virus binding. The EC1 W76A mutation again seemed to improve virus binding whenever

EC1 was linked to EC2 (rEC1-2) or to EC2 and EC3 together (rEC1-3), but not when EC1 was

expressed by itself. Size exclusion experiments (S1 Fig) with Sephacryl S200 showed the rEC1

protein ran as single monomer whether or not W76 was mutated, suggesting that W76 may

not behave like the characteristic tryptophans of classical cadherins and “strand-swap” to

Fig 5. Recombinant CDHR3 proteins. Bacterially produced CDHR3 fragments (100 pmol) with the indicated C-terminal extensions

(A), point mutations (B), or rEC deletions (C) were incubated with C15 virus (107 PFUe). Immunoprecipitation with an α-His mAb

was followed by Western analysis for bound proteins (α-His for CDHR3, and α-C15). As labeled here, “rEC1-3#” refers to a peptide

with CDHR3 residues 20–345; “rEC1-3” is similar except these fragments also have a C345A substitution. (D) Similar to A, the α-His

extracted complexes were treated with standard (137 mM) or high (500 mM) NaCl conditions before collection and Western analyses.

Each panel (ABCD) is a separate experiment. Binding % is the observed C15 signal pixel count normalized to the recombinant protein

(α-His) signal in the panel above (Total Lab 100) relative to positive control (100) in each unit.

https://doi.org/10.1371/journal.ppat.1007477.g005
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mediate EC1-dependent trans-dimerization. Interestingly though, all proteins containing an

EC3 domain [rEC1-3, rEC2+3(Δ1), or rEC1+3(Δ2)] were completely excluded from the

Sephacryl filtration and probably of multimeric order. The rEC1-2 WT and W76A proteins

showed both monomers and higher order oligomers in these analyses. Since we consistently

observed better virus-binding efficiency to rEC1 and rE1-2 (100 and 87%), which are mono-

mers, relative to rEC1-3 or rEC1+3(Δ2) (61% or 68%), which form higher order oligomers, it

is probable that the virus may prefer to bind monomers of CDHR3 when interacting with

cells, too.

The virus captured in these assays was not by weak interactions, because for EC1 containing

proteins, it resisted disruption with 500 mM salt (Fig 5d). Collectively, the results show that a

direct interaction between purified virus and purified CDHR3 protein fragments does not

require exogenous components, including glycosylation, and further suggest this binding is

primarily mediated by the EC1 domain. N186 in EC2, and in fact, the whole EC2 domain itself,

were not apparent contact requirements, but K43 (in EC1) undoubtedly plays a participating

role.

To resolve why prokaryotic (bacteria) and eukaryotic (transfections) expressed proteins

showed apparently different virus interaction requirements for the EC2 domain and for N186,

transfection plasmids encoding EC1-3 (N186 or N186A), and EC1+3(Δ2), were introduced

Fig 6. Misfolding of EC2. Lysates from HeLa cells transfected with cDNAs (B) as in Fig 1 were extracted with α-His

mAb by IP to recover CDHR3 materials. (A) The recovered protein was refold (+) or not (-) according to the refolding

protocol in Methods, then reacted with C15 virus. Immunoprecipitation and protein detection were with α-His mAb.

Binding % for each protein pair is relative to the pixel count (Total Lab 100) of observed C15 signals normalized to the

α-His protein levels (bold face).

https://doi.org/10.1371/journal.ppat.1007477.g006
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into HeLa cells (Fig 6b). The expressed proteins, extracted and recovered from cell lysates via

their C-terminal His tags were reacted with C15 virus before and after a denaturation and

refolding step, identical to that used for the bacterial materials. Refolding not only rejuvenated

the EC1-3 protein (to 213%), it gave new activity to both other cell-expressed sequences. The

ΔEC2 deletion, the N186A mutation, and presumably also R166A, as transfected lysates were

inactive in these short contexts, and likely also in their full-length contexts (Fig 1) because they

were somehow improperly configured. Allowed to refold, they then bound virus. The slight

migration shift (~2 kDa) between EC1-3 with and without N186A is that expected if these pro-

teins differed by a single glycosylation unit. Therefore, in HeLa cells, the N186 glycan linkage

may be required for proper domain folding.

A requirement for calcium

The rod-like arrangement of EC domains in classical cadherins is dependent upon calcium

binding to multiple acidic clusters at the inter-domain junctions. Removal of calcium causes

the proteins to collapse into more condensed structures [31,39,40] and can also affect the olig-

omerization status when the domains no longer orient properly [41,42]. The CDHR3 structure

model predicts analogous acidic clusters at each EC junction [23], but modeling cannot accu-

rately anticipate the exact ion placement or count. In the lysate assay with full-length HeLa-

produced CDHR3, the addition of EDTA or EGTA reduced the virus binding to background

levels (Fig 7a). Remarkably, the same effect was achieved by simply diluting the lysate into a

buffer lacking calcium (Fig 7b). This was also observed with recombinant proteins, in that

EDTA, EGTA (Fig 7c) or simple omission of calcium (Fig 7d, “0 initial”) prevented virus

extraction by IP. This suggests that one or more of the required ions must be able to diffuse

from the EC junction(s), leading to a conformational change in the protein, or its oligomeric

state, as required by the virus. When E-cadherin, is depleted of calcium, the protein collapse is

reversible [39]. When calcium was added back (for 2 hrs) to soluble rEC1-3 or rEC1-2 that had

been diluted into a calcium-free buffer, these proteins still could not bind C15 (Fig 7d). How-

ever, virus binding to rEC1 could be restored upon re-addition of calcium. Likely, the diffus-

ible, stabilizing calcium(s), normally at the interface of EC1 and EC2 can be rebound if EC1 is

a monomer, and not linked to EC2. The calcium site must become sterically impaired by

depletion-induced conformational changes at this junction when EC1 is linked to EC2 (or

EC3).

Recombinant CDHR3 inhibition of RV-C infection

Soluble ICAM-1 and LDLR materials can bind their appropriate RV-A and RV-B isolates to

inhibit virus infection of susceptible cells [43–45]. The soluble recombinant CDHR3 protein

panel was tested for its ability to inhibit C15 infection of stably transduced fCR3Y cells. When

pre-incubated with virus before inoculation of cell monolayers, all recombinant proteins con-

taining EC1 inhibited infection in a dose dependent manner (Fig 8a). Native cadherin proteins

commonly form dimers or higher order oligomers on the surfaces of cells [18,46]. Although

small amounts of the active proteins were inhibitory, the observed recombinant CDHR3

effects were highest when up to 5 μM of protein were added to each sample (106 plaque form-

ing unit equivalent (PFUe) of C15). Thus, the mode of observed inhibition could have been

due to recombinant protein blocking of CDHR3 receptor sites on each particle, or to direct

association of these proteins with the native CDHR3, perhaps through oligomerization, mask-

ing the good receptors on the cell surface. The possibilities were distinguished by pre-incuba-

tion directly with cells, or directly with virus, before infectivity was tested. Pretreatment of

fCR3Y cells with any recombinant protein at any of 3 concentrations, did not protect them
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from subsequent C15 infection (Fig 8b). Inhibition required the virus to be pretreated with sol-

uble CDHR3, and that protein needed to encode EC1. The same was true when the tests used

additional strains of RV-C (Fig 8c). Just like C15, C02, C41, and C45 infections were inhibited

by soluble CDHR3 rEC1 and rEC1-3, in a dose dependent manner. Finally, we tested the abil-

ity of soluble CDHR3 to protect airway epithelial cells, which naturally express CDHR3 and

are the primary site of RV infection, by using differentiated nasal epithelial ALI cultures. In a

preliminary single-replicate experiment, C15 infection of these cells was also reduced by 1 μM

rEC1, rEC1-2, and rEC1-3 (Fig 8d).

Discussion

The binding of a virus to accessible external receptor(s) is an initiating step in host cell entry.

CDHR3 cell surface display, mediated by the Y529 variant SNP of this gene, is required for

Fig 7. Dependence of CDHR3 and C15 binding on calcium. Lysates transfected with cDNAs encoding Y529 CDHR3

protein were reacted with C15 virus in buffer with 2mM calcium, 2mM EDTA or EGTA (A), or in calcium-free buffer

(B) and immunoprecipitated with an α-CDHR3 mAb reactive with the cytoplasmic domain. (C) Purified rEC1-3 protein

(100 pmol) was reacted with C15 virus in buffer with 2mM CaCl2 or 2 mM EDTA or EGTA. (D) rEC1-3, rEC1-2, and

rEC1 (100 pmol) protein were first reacted with C15 virus in buffer with or without 2 mM CaCl2 for 1 h at 25 and then

incubated another 2 hrs following the addition of 5 mM CaCl2 to designated samples. Immunoprecipitation was with an

α-His mAb. Each panel (ABCD) is a separate experiment. Binding % is the observed C15 signal pixel count normalized

to the CDHR3 protein (α-His) signal in the panel above (Total Lab 100) relative to positive control (100) in each unit.

https://doi.org/10.1371/journal.ppat.1007477.g007
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optimal RV-C entry into cells [15]. The dominant human allele, encoding C529, shows much

lower protein surface expression in transfected cells and consequently poorer cell-binding

interactions with virus. For homozygous or heterozygous Y529 human carriers, especially chil-

dren, there is a correlate higher rate of virus-induced asthma exacerbations [25]. The current

study examined three important questions concerning these observations. First, we asked if

there might be measurable discrepancies between the Y529 and C529 proteins, in addition to

surface display, that could influence virus interactions? Second, if RV-C did bind directly with

either or both proteins, could we devise reproducible assays to map the elements of CDHR3 or

its glycosylation format that might be required for this interaction? Third, assuming CDHR3

like the ICAM-1 and LDLR receptors of the RV-A and RV-B could be isolated in a cell-free

format, would such materials independently react with virus and potentially inhibit infections?

Cadherin proteins share a common architecture in that the tandem repeat EC domains

(EC1-6 for CDHR3) assume a rigid, slightly curved elongated structure, anchored like a wav-

ing stalk in the cell membrane. The C-proximal cytoplasmic domain does the anchoring. The

N-proximal distal domains (e.g. EC1-3) usually confer adhesion properties by mediating

dimer formation or higher order arrangements [26]. The linked EC orientations and even the

folding of individual EC units depend on multiple calcium ions bound at various Kd, between

the EC junctions. The first challenge in examining CDHR3 was to devise a virus-binding assay

Fig 8. Inhibition of RV-C infection. (A) C15 virus was preincubated with increasing amounts of the specified recombinant protein (0.05–5 μM) before

infection of fCR3Y cells. Cells were washed after attachment and samples collected 24 hpi (triplicate). Virus titers (PFUe) were measured by qPCR. (B)

fCR3Y cells were preincubated with or without the specified recombinant protein (5–20 μg) before being washed and infected with C15 virus, or with C15

virus pretreated with rEC1-3 (right lanes). Samples (duplicate) were collected 24 hpi and viral loads measure by qPCR. (C) fCR3Y cells were infected with

C02, C41, or C45 virus (107 PFUe) that had been pretreated with the indicated recombinant protein as in A. Error bars are average of duplicate samples

collected 24 hpi. (D) C15 (106 PFUe) was preincubated (1h) with or without 1 μM of the specified recombinant protein (in 50 μL) before infection of

differentiated nasal epithelial ALI cultures. Single replicate samples were collected 24 hpi for measurement of viral loads (qPCR).

https://doi.org/10.1371/journal.ppat.1007477.g008
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that was not cell surface dependent. In transfected or stably transduced cells, the intracellular

protein pools are frequently much larger than that which is membrane anchored [15]. Clari-

fied cell lysates proved a ready source of assay materials, and we found no CDHR3 sequences,

fragments or conditions that required cell anchoring for demonstrable reactivity with virus.

Tested this way, C529, Y529 and H529 proteins were equivalently capable of virus IP (Fig 2a).

The H529 sequence was tested as a curiosity because it is one of the only (non-human) varia-

tions of the highly conserved ancestral Y529 allele [24].

The basic N-linked glycosylation sites of human C529 and Y529, mapped to N186 (EC2),

N384 (EC4), and N624 (EC6). These proteins migrated equivalently on gels by molecular

weight, indicating both must undergo similar Golgi transport and modification pathways on

the way to the cell surface. But once there, the Y529 abides, and can be labeled with biotin,

while the C529 somehow withdraws, or undergoes a faster surface cycling pattern and is not

labeled with biotin. In mature, plated stably transduced cells (fCR3Y), the presumed longer

surface “hang time” of constitutively expressed protein apparently then permits Y529 to

undergo additional multiple sialyations with α2–6 linkages. Transfected cells, even for Y529

do not have detectable amounts of these modifications, perhaps because the signal strength is

masked by the much larger cytoplasmic pool created by overexpression, or because Y529 does

not have time to fully surface-mature within 24 hrs post-transfection.

Surprisingly, none of these parameters proved relevant to virus binding. Whether the mate-

rials were from transfections, transductions, or bacterially produced, virus could be extracted

with almost any CDHR3 format, including after de-glycosylation, as long as a properly recon-

stituted EC1 domain was present. In fact, EC1 alone was sufficient to bind virus (Fig 5c). Ini-

tially, a caveat to this was, that when expressed after transfection, ΔEC2, as well as EC2 point

mutation derivatives N186A and N186Q also did not react with virus. Yet in a recombinant

bacterially-derived format, rEC1+3(Δ2) was entirely active. This dichotomy, quite clearly had

its origin in cell-dependent protein folding. During cell expression and Golgi maturation, EC2

and its glycosylation status at N186 must help the native EC1-2 segments fold. The bacterially-

produced recombinant proteins (Fig 5), or similar sequences synthesized in HeLa cells, all pre-

sented a virus-acceptable EC1 if they underwent an artificial refolding step through denatur-

ation and dialysis (Fig 6).

The R166A mutation, also in EC2, models immediately adjacent to the EC1-EC2 junction,

a region predicted to have 11 Asp and Glu calcium-chelating residues within 5–9 Å of its loca-

tion (Fig 2b). Virus binding proved exquisitely sensitive to the presence of calcium, whether

the CDHR3 materials were derived from cells or bacteria (Fig 7). Not only could EDTA or

EGTA prevent interactions, a simple dilution into calcium-free buffer had an equivalent effect.

This property is characteristic of cadherins. E-cadherin binds 3 calcium ions between the EC1

and EC2 domains, two at 330 μM Kd and a third at a much higher 2 mM Kd, a value close to

the extracellular calcium concentration [41,47]. For E-cadherin, calcium depletion and conse-

quent protein unfolding is reversible [39], but this does not appear to be true for CDHR3

because rEC1-3 and rEC1-2 could not adopt a virus-acceptable conformation when calcium

was added back after dilution into a calcium-free buffer (Fig 7d). Interestingly, the readdition

of calcium did facilitate proper protein refolding of the singular rEC1 protein. Presumably,

CDHR3 needs calcium to fold properly, maintain that fold, and at least 1 or more crucial ion

(s) at the EC1-2 junction are irreversibly lost by simple diffusion, likely due to conformational

changes in EC2 that sterically prohibit proper calcium re-coordination. This point has also

been proposed as functionally germane to the C529/Y529 surface display phenotypes [23].

Similar to R166 at the EC1-2 junction, Y529 is part of the EC5-6 junction. If conversion to

C529 were to influence the inter-domain calcium binding and the consequent topography of

stalk, an improperly configured protein would be withdrawn from the cell surface, as are
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similar calcium-depleted cadherins in their natural cycle [48,49]. We are currently testing this

hypothesis by determining the NMR structures of cadmium-labeled CDHR3 rEC4-6 domains.

An innate property of all cadherins on cell surfaces or in solution is to find dimeric and/or

oligomeric partners. Most certainly the EC3 domain of our proteins promotes self-association

because, although soluble upon refolding, proteins containing this domain flow directly

through a Sephacryl S200 column and therefore are of dimer or higher order (S1 Fig). There is

only one native, internal CDHR3 cystine disulfide, linking C566 to C592 within EC6 [23], but

the rEC1-3 proteins formed spurious, exogenous disulfides upon refolding, unless C345 was

mutated. Even with this change, the protein panel of rEC fragments was still capable of self-

assembly. We are currently working with several physical sorting and crystallographic tech-

niques to define the exact nature, order and residue contributors of these self-interactions.

Consistent with what is known for other cadherins, we presumed the W76A mutation acts

positively by reducing (trans) oligomer states, thereby freeing more EC1 units for productive

virus binding. However, the rEC1 protein appears to be monomeric with or without this muta-

tion. While W76 may not mediate EC1-EC1 dimerization like the tryptophans of other cadher-

ins, it could still be involved in inter-protein interactions with other CDHR3 EC domains.

Alternatively, W76 may lie within or near the virus-contact interface, and elimination of the

bulky aromatic side chain may allow tighter virus binding. Ongoing (NMR and cryoEM)

structural studies with rCDHR3 proteins should provide some insight on the positive effects

we observe for the W76A mutant.

When the panel of recombinant proteins was tested in infectivity inhibition assays, all

inhibited virus replication in fCR3Y cells in a dose-dependent manner except rEC2+3(Δ1)

(Fig 8a), which also could not IP virus. We have initiated a collaborative cryoEM determina-

tion of the C15 virus complexed with rEC1-3 (with W76A) and rEC1. It will take time for

those data collections to achieve sufficient resolution, although we expect they will confirm the

protein interactions and format predictions described here. Our original computational dock-

ing model suggested elements of both EC1 and EC2, including an N186 glycan, made virus

contact [28]. We now know only the EC1 part of this prediction is true. It is more likely that

dimers of CDHR3, probably mediated by EC3 cis interactions, present dual EC1 domains to

the virus. The unique EC1 contacts, perhaps including K43, are the primary determinants.

EC2 is not required, nor is its glycosylation, except perhaps to help the protein fold properly.

Apparently, soluble recombinant proteins contributed in this format are sufficient to inhibit

infection of stably transduced fCR3Y HeLa and differentiated nasal epithelial ALI cultures.

The observed inhibition phenomenon was common to 4 tested genotypes of virus, indicating

that all RV-C virions likely share the same receptor landing pad and would respond to these

soluble recombinant CDHR3 sequences in a similar manner. We believe these new reagents

have great potential utility in RV-C research as useful tools for investigating CDHR3 biology

and function, possibly with future antiviral applications.

Materials and methods

Eukaryotic expression plasmids and transfections

Plasmids for transient eukaryotic expression of FLAG-tag-CDHR3 C529 and Y529 variants

(pCDHR3-FLAG-C529 and pCDHR3-FLAG-Y529), which have a FLAG-tag (DYKDDDDK)

inserted between the CDHR3 signal sequence (residues 1–19) and its EC1 (residue 20), were

previously described [15]. The protein numbering system is from GenBank: AIC58018. Addi-

tional plasmids encoding single point mutations (K43A, W76A, F152A, R166A, R182A,

N186A, N186Q, and Y529H) were engineered by two-step PCR into the

pCDHR3-FLAG-Y529 plasmid. Analogous units for the expression of various FLAG-tag
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CDHR3 EC deletion mutants, which included additional carboxy-terminal 6x His tags, were

engineered within pHLsec vectors (generously provided by Yue Liu, Michael Rossmann)

based on pLEXm plasmid backbones [50]. Pilot experiments indicated that when this

vector’s innate secretory sequence was linked to the native CDHR3 signal sequence, protein

expression was inhibited in transfected cells. Therefore, the 5’ regions of the CDHR3 EC

deletion sequences, encoded only the native signal sequence and its inserted FLAG-tag,

as engineered into pHLsec vector backbones between BamHI and KpnI restriction sites.

pHL-FLAG-CDHR3-His constructs included: WT (CDHR3 residues 1–885, Y529), ΔEC1

(1–885, Δ27–124), ΔEC2 (1–885, Δ129–231), ΔEC3 (1–885, Δ230–334), EC1-6 (1–689), EC1-3

(1–345), EC1-2 (1–237). Transfection protocols used 3 μg cDNA reacted with lipofectamine

2000 (3 μL, Invitrogen) in Opti-MEM media (Invitrogen) according to manufacturer’s recom-

mendations, and plated HeLa cells (ATCC CRL-1958 in Eagle’s medium, 10% NBCS; 6-well

dishes; 37˚C) grown to 80% confluence. The cells were incubated 24 h (37˚C under 5% CO2)

before collection, lysis and immunoprecipitation assays.

Transformed cell lines

Amplicons containing the C529 and Y529 FLAG-tagged variants of CDHR3 were amplified by

PCR from pCDHR3-FLAG cDNAs and then ligated into MIGR1-based IRES-neo retroviral

plasmids (NG) which express neomycin resistance [51,52]. Viral vector generation required

293T cell transfection with pNG-FLAG-CDHR3 plasmids (4 μg), pMDGag-Pol (4 μg, packag-

ing plasmid), and a vesicular stomatitis virus G protein-encoding (VSV-G) envelope plasmid

(2 μg) in 500 μL of Opti-MEM with 20 μL of polyethylenimine. The transfection medium was

replaced 12 h post-transfection, then subsequently harvested and filtered (0.45 μm, at 48 h).

After infection of HeLa cells (ATCC CRL-1958) with this material by spinoculation [53]

and incubation for genome integration, stably transformed cells were selected with G418

(400 μg/mL, Geneticin) and cloned. The cells were maintained in suspension culture [37˚C;

Eagle’s medium, 10% newborn calf serum (NBCS), 2% fetal bovine serum (FBS) under 5%

CO2]. The final transduced HeLa cell lines expressing full-length C529 and Y529 FLAG-tagged

variants of CDHR3 were designated fCR3C and fCR3Y, respectively.

CDHR3 N-linked glycosylation

Cells (2x106) transfected with pCDHR3-FLAG-Y529 were lysed in PBS (100 μL, 0.5% SDS and

40 mM DTT) and then heated (10 min, 95˚C). The denatured lysate was diluted 2-fold into

PBS and 1% NP40 and then equivalent samples were incubated with or without PNGaseF

(1U, 1 h, 37˚C, Sigma F8435). The proteins (25 μL lysates) were fractionated by SDS-PAGE

and visualized by Coomassie Brilliant Blue staining. Bands corresponding to glycosylated

(~100 kDa) and de-glycosylated (~93 kDa) CDHR3 gel regions were cut out and submitted for

analysis to the Mass Spectrometry/Proteomics facility at the University of Wisconsin Biotech-

nology Center for MS/MS analysis after in-gel trypsin digestion.

Recombinant CDHR3

Bacterial plasmids for the expression of various CDHR3 rEC domains, linked to amino-termi-

nal FLAG-tags and carboxy-terminal 6x His tags, were constructed. The rEC1 segment

encoded residues 20–130, rEC1-2 encoded residues 20–237, rEC1-3 encoded residues 20–345,

rEC2+3(Δ1) encoded residues 20–345 (Δ27–124), rEC1+3(Δ2) encoded residues 20–345

(Δ129–231), rEC1-3(+10aa) encoded residues 20–355, and rEC1-3(-5aa) encoded residues 20–

340. These units were amplified by PCR from the pHL-FLAG-CDHR3-His cDNAs described

above and then ligated into pET11a vectors between the NheI and BamHI restriction sites. To
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prevent spurious disulfide formation, most plasmids encoding EC3 segments had a point

mutation converting Cys345 to Ala345 (C345A). Additional point mutations were engineered

by standard, primer-directed two-step PCR. Escherichia coli BL21(DE3) LysS cells, trans-

formed with each plasmid were induced with IPTG (isopropyl-β-d-thiogalactopyranoside) for

recombinant protein expression. The cells were collected by centrifugation, resuspended in

lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, 1% Triton-X100), and sonicated. The majority

of recombinant material was insoluble and collected by centrifugation (20,000 × g for 45 min

at 4˚C). The pellets were washed (1 M NaCl, then 1 M urea, then water) and solubilized (6 M

urea, 20 mM Tris, pH 8.0, 137 mM NaCl for 1 h at 25˚C or O/N at 4˚C). After clarification

(20,000 × g for 45 min at 4˚C), the supernatant of rEC1 and rEC1-2 proteins were purified

under denaturing conditions (6 M urea, 20 mM Tris, pH 8.0, 137 mM NaCl) on HisTrap FF

columns (GE Healthcare). After elution with 200 mM Imidazole, the proteins were diluted (to

0.1–0.2 mg/mL) in the solubilization buffer (above) supplemented with 3 mM CaCl2 and then

dialyzed (4 times, 8–12 hrs each, against 20 mM Tris, pH 8.0, 137 mM NaCl, 3 mM CaCl2, 2

mM β-mercaptoethanol). Proteins containing the EC3 domain [rEC1-3, rEC2+3(Δ1), and

rEC1+3(Δ2)] bound poorly to the HisTrap FF columns even under denaturing conditions so

the clarified supernantants were diluted and refolded as described above. Refolded proteins

were concentrated using Amicon Ultra centrifugal filters.

Viruses

Recombinant RV-C isolates C02, C15, C41, and C45 were produced by transfecting full-length

T7 RNA transcripts synthesized in vitro (Ribomax, Promega) from linearized plasmid cDNAs

into HeLa cells [54]. The C02 and C45 sequence encoded a D41K substitution in protein 3A,

to increase virus replication in these cells. In contrast to the more prolific, HeLa-adapted C15a

sequence, these recombinants do not encode a T125K substitution in capsid protein VP1.

Therefore, like their parental clinical isolates, they do not bind heparan sulfate and their cell

interactions are entirely dependent upon CDHR3 presentation [54]. Virus purification was by

centrifugation of cell lysates through 30% sucrose cushions as described [55].

Virus binding/Immunoprecipitation assays

CDHR3 proteins expressed in transfected or stably transformed HeLa cells (~ 2 x106 cells

scraped, collected in PBS, pelleted) were harvested 24 h after transfection or plating. The cells

were pelleted (1.5 min at 1500 × g), resuspended and then lysed (350 μL, 20 mM Tris, 137 mM

NaCl, 2 mM CaCl2, 2 mM PMSF, 1% Triton x-100). The lysates were clarified (16,000 × g, 20

min) and then incubated with sucrose purified C15 virus (107 PFUe) and with antibody (0.8 μL,

α-CDHR3, HPA011218, Sigma; or 1 μg α-His Tag, HIS.H8, Millipore) overnight at 4˚C before

being reacted with protein-G sepharose beads (1 h, 25˚C). When required, glycosylases PNGa-

seF (1U, Sigma F8435) or neuraminidase (0.04U, Sigma 10269611001) were included during

the overnight incubations. After reaction and collection, the beads were washed (3x, lysis

buffer) and bound proteins eluted with SDS (boiling), before SDS-PAGE fractionation and

visualization by Western blot analysis. For experiments with bacterially-expressed materials,

the refolded protein samples (100 pmol) were incubated with virus (107 PFUe, 1 h, 25˚C) and

with the α-His Tag antibody (350 μL, 20 mM Tris, 137 mM NaCl, 2 mM CaCl2, 1% Triton x-

100) before reactions with protein-G sepharose beads and treatment as above.

Biotinylation assays

The sialylation status of CDHR3 expressed in fCR3Y or fCR3C was tested by incubating (1h,

25˚C) cell lysates (~ 2 x106 cells in 300 μL, PBS 1% TritonX-100) with 5 μg biotinylated

CDHR3 interactions with RV-C

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007477 December 10, 2018 16 / 21

https://doi.org/10.1371/journal.ppat.1007477


Sambucus nigra lectin (SNA) or Maackia amurensis lectin II (MAL II, Vector Labs) before

addition to streptavidin beads (1 h, 25˚C). Collected beads were washed (3x PBS) before the

bound protein was eluted (in 30 μL 2% SDS, with boiling), fractionated by SDS/PAGE and

then visualized by Western blot analysis. Extracellular expression of CDHR3 was examined by

treating plated cells (~ 2 x106 per sample) with EZ-Link Sulfo-NHS-Biotin (2 mM, Thermo-

Fisher, in PBS for 1 h at 25˚C). The cells were then washed (3x, 50 mM Tris, pH 8.0; 3x PBS),

harvested, lysed (300 μL, PBS 1% TritonX-100). The clarified lysates were reacted with strepta-

vidin beads (1h, 25˚C). The bound samples were processed for protein detection as above.

Western analyses

After SDS-PAGE resolution, proteins were electro-transferred to polyvinylidene difluoride

membranes (Immobilon-P, Millipore). The membranes were blocked (1 h, 10% NFD milk in

TBST: 20 mM Tris pH 7.6, 150 mM NaCl, 0.5% Tween20) then incubated with a primary

antibody (1% NFD milk in TBST, overnight, 4˚C) before washing (3x TBST) and reaction with

an appropriate secondary antibody (1 h, 20˚C). Commercial antibodies included: α-CDHR3

(rabbit Ab HPA011218 IgG, Sigma, 1:2000), α-FLAG (rabbit mAb F2555, IgG, Sigma, 1:2000),

α-His Tag, (murine mAb HIS.H8 IgG, Millipore, 1:4000), HRP-conjugated α-mouse IgG (goat

Ab A1068, Sigma (1:4000), and HRP-conjugated α-rabbit IgG (goat Ab A0545, Sigma, 1:4000).

α-C15 (18C4 and 30C12, 1:5000) are custom murine mAbs (1 mg/mL,GeneScript) raised to

the VP1 “finger” peptide sequence [28] characteristically exposed on the surface of this RV-C

virion structure. For band visualization, the membranes were rinsed (3x, TBST), incubated

(1 min) with enhanced chemiluminescence substrate (GE healthcare) and then exposed to

film.

Infection inhibition assays

Typically, virus (3x106 PFUe) was incubated (1 h, 25˚C) with or without refolded recombinant

CDHR3 protein (0.01 to 5 μM) in binding buffer (100 μL, 20 mM Tris pH 8.0, 137 mM NaCl,

2 mM CaCl2) before dilution into Eagle’s medium (250 μL). Inoculation was onto plated, sta-

bly transformed fCR3Y cells. After attachment (30 min at 25˚C, 15 min at 34˚C), the cells were

washed (2x with PBS) to remove unattached virus and incubated (24 h at 34˚C) before harvest

(lysis in 350 RLT buffer, Qiagen) and assessment of virus replication. Alternatively, the cells

were directly incubated with recombinant CDHR3 protein (0–20 μg in 100 μL binding buffer,

diluted into 250 μL Eagle’s medium, 30 min 25˚C, then 15 min 34˚C) and then washed (2x,

PBS) before being exposed to virus as above. The cells were washed (2x with PBS) to remove

unattached virus, before incubation (24 h at 34˚C), harvest and virus measurements. Viral

loads (PFUe) were determined by RT-qPCR according to standardized RNA preparations

after total RNA extraction from harvested cells (RNeasy Mini kits, Qiagen). The RT-qPCR

reactions used Power SYBR Green PCR mix (Life Technologies) and RV-C specific primers as

previously described [10]. For experiments with differentiated primary nasal epithelial cells,

cells were obtained from nasal turbinates using ASI Rhino-Pro curette (Arlington Scientific)

and cultured at air-liquid interface in collagen-coated Transwell polycarbonante inserts as pre-

viously described [10,11]. Fully differentiated cultures (2 months old) were washed with PBS

and inoculated with C15 virus (106 PFUe) preincubated (1 h, 25˚C) with or without 1 μM

recombinant CDHR3 protein (50 μL 20 mM Tris pH 8.0, 137 mM NaCl, 2 mM CaCl2). After

attachment (30 min at 25˚C, 15 min at 34˚C), the cells were washed (3x with PBS) to remove

unattached input virus and incubated (24 h at 34˚C) before harvest for assessment of virus rep-

lication as described above.
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Supporting information

S1 Fig. Gel filtration chromatography of rEC CDHR3 proteins. (A) Chromatogram of Gel-

Filtration standards: Blue Dextran 2000 (1 mg, D4772, Sigma), BSA (0.5 mg, 23209, Thermo

Scientific), Ovalbumin (0.8 mg, A7642, Sigma), Carbonic Anhydrase (1 mg, C2273, Sigma),

Cytochrome C (1 mg, C7150, Sigma) separated on HiPrep 16/60 Sephacryl S200 column (GE

Healthcare). (B) Chromatograms of the specified refolded rEC CDHR3 protein preparations

(0.5–1.5 mg) run on HiPrep 16/60 Sephacryl S200 column. All standards and samples were

run at 1 mL/min in 20 mM Tris (pH 8.0), 137 mM NaCl, and 2 mM CaCl2.

(TIF)
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