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Predicting chemotherapy
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lung cancer via computed
tomography radiomic features:
Peritumoral, intratumoral,
or combined?
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Medical University, Shenyang, China, 4Department of Oncology, Shengjing Hospital of China
Medical University, Shenyang, China, 5Department of Radiology, The Fifth Affiliated Hospital of
Guangzhou Medical University, Guangzhou, China
Purpose: This study aims to evaluate the ability of peritumoral, intratumoral, or

combined computed tomography (CT) radiomic features to predict

chemotherapy response in non-small cell lung cancer (NSCLC).

Methods: After excluding subjects with incomplete data or other types of

treatments, 272 (Dataset 1) and 43 (Dataset 2, external validation) NSCLC

patients who were only treated with chemotherapy as the first-line treatment

were enrolled between 2015 and 2019. All patients were divided into response

and nonresponse based on the response evaluation criteria in solid tumors,

version 1.1. By using 3D slicer and morphological operations in python, the

intra- and peritumoral regions of lung tumors were segmented from pre-

treatment CT images (unenhanced) and confirmed by two experienced

radiologists. Then radiomic features (the first order, texture, shape, et al.)

were extracted from the above regions of interest. The models were trained

and tested in Dataset 1 and further validated in Dataset 2. The performance of

models was compared using the area under curve (AUC), confusion matrix,

accuracy, precision, recall, and F1-score.

Results: The radiomicmodel using features from the peritumoral region of 0–3

mm outperformed that using features from 3–6, 6–9, 9–12 mm peritumoral

region, and intratumoral region (AUC: 0.95 versus 0.87, 0.86, 0.85, and 0.88).

By the fusion of features from 0–3 and 3–6 mm peritumoral regions, the

logistic regression model achieved the best performance, with an AUC of 0.97.

This model achieved an AUC of 0.85 in the external cohort. Moreover, among

the 20 selected features, seven features differed significantly between the two

groups (p < 0.05).
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Conclusions: CT radiomic features from both the peri- and intratumoral

regions can predict chemotherapy response in NSCLC using machine

learning models. Combined features from two peritumoral regions yielded

better predictions.
KEYWORDS

non-small cell lung cancer, Computed Tomography (CT), chemotherapy response,
radiomics, peritumoral features, area under curve
Introduction

Lung cancer remains the leading cause of cancer-related

deaths, with a 2-year relative survival rate of 36% (1).

Histologically, non-small cell lung cancer (NSCLC) is the most

common type of lung cancer, and locally advanced NSCLC

patients comprise approximately 30% of newly diagnosed

patients (2–4). Clinically, patients received surgery,

chemotherapy, radiation, or targeted drug therapies as the

first-line treatment according to related clinical guidelines. As

the standard first-line treatment of advanced-stage NSCLC

patients with no specific gene mutations, chemotherapy has

been and will still be a cornerstone in the near future (5).

However, owing to the heterogeneity of tumors, different

patients may have extremely different therapeutic effects on

chemotherapy, and the adverse reaction may even have a

significant impact on the survival rate of NSCLC patients (6–10).

Radiomic features, extracted from computed tomography

(CT) images, can quantitatively express crucial information

regarding the physiology of the entire tumor, including the

intra-tumor and its surroundings (11–13). Owing to the

spatially and temporally heterogeneous nature of tumors, these

features can quantify the phenotypic differences from a high-

dimensional space that cannot be distinguished by the naked

eye. Therefore, these features and the resulting radiomic models

are of important guiding significance for precision oncology and

can improve decision support in prognosis and therapeutic

response prediction at a low cost (14, 15).

Recently, many studies have begun investigating the role of

radiomics features of the surrounding area of the lesion

(peritumoral region) in disease screening, prediction of

treatment response, and prognosis. The microenvironment

and habitat surrounding the tumor may play an extremely

important role in predicting prognosis. Many studies have

found that the pathogenesis and progression of lung cancer

are closely related to tumor-infiltrating lymphocytes and tumor-

associated macrophages all over the tumor microenvironment

(Maeda et al) (16–18). Algohary et al. studied 231 prostate

cancer patients and extracted radiomic features from the intra-
02
and peri-tumoral region of interest (ROI) to distinguish prostate

cancer risk categories as defined by the D’Amico Risk

Classification System, with an area under the receiver

operating characteristic curve (AUC) of 0.84 (19). Shan et al.

constructed a model based on peritumoral radiomic signatures

from CT images of 156 patients to predict the early recurrence of

hepatocellular carcinoma after curative treatment and obtained

an AUC of 0.80 (20).

Many radiomics studies have also been applied to the

treatment of NSCLC. Khorrami et al. collected 125 NSCLC

patients to identify the role of radiomics texture features from

regions both within and outside the nodule in predicting

response to chemotherapy and overall survival; they obtained

an AUC of 0.82 (21). Braman et al. analyzed intra- and

peritumoral regions of 117 patients with breast cancer to

predict pathological complete response to neoadjuvant

chemotherapy and obtained an AUC of 0.78 (22).

However, the ability of peritumoral, intratumoral, or

combined CT radiomic features to predict chemotherapy

response in NSCLC has not been well studied. In this study,

we established different CT radiomic models using features from

different peritumoral, intratumoral, or combined regions and

evaluated their performance in predicting chemotherapy

response in NSCLC.
Materials and methods

Patient characteristics

This study was approved by the ethics committee of

Shengjing Hospital of China Medical University and the Fifth

Affiliated Hospital of Guangzhou Medical University, and the

requirement for informed consent was waived because this was a

retrospective study. A total of 605 patients with NSCLC were

enrolled between 2015 and 2019 at Shengjing Hospital of China

Medical University. Of these 605 patients, 272 NSCLC patients

who were treated with chemotherapy alone as first-line

treatment were included in this study (Dataset 1).
frontiersin.org
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Supplemental Figure S1 shows the two steps of the exclusion

criteria. Using the same criteria, 43 patients from the Fifth

Affiliated Hospital of Guangzhou Medical University were

selected and used as the external validation cohort (Dataset 2).

The clinical characteristics of the patients are presented in

Table 1. Pathologic stage was characterized according to the

seventh edition of the American Joint Committee on Cancer

TNM staging system. For each patient, non-contrast CT images

were acquired before and after chemotherapy. The parameters

used for CT image acquisition are listed in Supplemental

Table S1.

According to the response evaluation criteria in solid tumors

(RECIST, version 1.1) (23), clinical responses were categorized

into four parts by comparing CT images collected before and

after chemotherapy: (I) complete response (CR): all target

lesions disappeared; (II) partial response (PR): the target

lesions decreased by at least 30% in the sum of the diameters;

(III) progressive disease (PD): the target lesions increased by at

least 20% in the sum of the diameters; (IV) stable disease (SD):

neither sufficient shrinkage to qualify for PR nor sufficient

increase to qualify for PD. The interval between CT scans

before and after chemotherapy was 4.56 ± 1.41 and 3.87 ±

2.04 treatment courses in response and nonresponse groups

(each treatment course takes three weeks) of Dataset 1. The

interval was 3.87± 1.58 and 3.24± 1.06 treatment courses in the

two groups of Dataset 2.

In this study, clinical response was defined as “response” and

“nonresponse” based on the radiologist’s evaluation via RECIST

and clinical manifestations. The response group included

patients with CR and PR, while the non-response group

included patients with PD and SD.
Frontiers in Oncology 03
Overview of the study procedure

Figure 1 shows a brief procedure of this study. First, the 272

NSCLC patients (148 responses and 124 nonresponses) were

randomly divided into a training cohort of 189 patients (105

responses and 84 nonresponses) and an independent test cohort

of 83 patients (44 responses and 39 nonresponses). Second, all

lesions were segmented from the pre-treatment CT images, and

then the peritumoral regions (0–3 mm, 3–6 mm, 6–9 mm, and

9–12 mm) around the lesion. Third, radiomics features were

extracted from the segmented regions, and discriminative

features were selected. Finally, different models were trained

using radiomic features, validated, and compared.
Segmentation of intra- and
peritumoral regions

First, to eliminate interference factors, all pre-treatment

CT images of the NSCLC patients were interpolated into

voxels of 1×1×1 mm. Thereafter, intratumoral regions were

semi-automatically segmented from these CT images by two

radiologists with more than 15 years of experience using 3D

Slicer software (24). By adding seed points and applying the fast

marching method, the lesions could be quickly segmented

automatically. If necessary, the errors were corrected by

radiologists manually. To compare the segmentation by the

two radiologists, the Dice coefficient and over– and under–

lesion segmentation errors were calculated.

Next, four morphological dilation operations were applied

with the number of pixels of 3, 6, 9, and 12, respectively. These
TABLE 1 Clinical characteristics of NSCLC patients.

Dataset 1 Dataset 2

Characteristics Response
group

Non response
group

p-
value

Response
group

Non response
group

p-
value

No. of patients 148 124 – 24 19 –

Gender Male 81 69 3.843a 22 15 4.987a

Female 67 55 2 4

Age, median (SD), y 63.76 (11.30) 64.86 (10.65) 0.453b 66.42 (9.86) 62.36 (14.58) 0.629b

Smoking status Ever 50 69 1.021a 17 12 1.235a

Never 98 55 7 7

Histological
type

Adenocarcinoma 121 101 2.241a 13 11 3.244a

Squamous cell
carcinoma

27 23 11 8

TNM Stage II 22 16 1.232a 1 2 2.065a

III 118 103 0.863a 20 15 0.983a

IV 8 5 1.528a 3 2 1.024a

Courses, median (SD) 4.56 ± 1.41 3.87 ± 2.04 0.002b 3.87± 1.58 3.24± 1.06 0.688a
fronti
ap value of Chi-square test; bp value of two-sample t-test.
SD, standard deviation; TNM, tumor node metastasis classification.
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operations were based on a 3D morphology algorithm in the

skimage package (https://scikit-image.org). After subtraction,

four peritumoral regions of 0–3 mm, 3–6 mm, 6–9 mm, and

9–12 mm were obtained. Supplemental Figure S2 shows the

details of these regions.
Radiomic features extraction
and selection

First, an open-source PyRadiomics Python package was

applied to extract 1688 radiomic features from each

segmented region. To establish a reference standard for

radiomics analysis, PyRadiomics provides an open-source

platform for easy and reproducible radiomic feature

extraction (25). The original CT images and derived 19

categories of images (LoG with five sigma levels, one level

of wavelet decompositions yielding eight derived images and
Frontiers in Oncology 04
images derived using square, square root, logarithm,

exponential, gradient, and local binary pattern filters) were

utilized to extract the features. 1896 radiomics features

including the first order (380), shape-based (16), gray-level

co-occurrence matrix (480), gray level run length matrix

(320), gray level size zone matrix (320), neighboring gray

tone difference matrix (100), and gray level dependence

matrix (280) were obtained. After removing the unusable

ones, 1688 features were retained.

Next, for each intra- or peritumoral region, 20

discriminative radiomics features were selected using the least

absolute shrinkage and selection operator (LASSO) algorithm.

The LASSO algorithm adds a penalty term (l) to the loss

function (optimization target); therefore, l is considered in the

process of training and solving parameters. As shown in

Supplemental Figure S3, with an increase in l, the mean

square error decreases gradually to the lowest point. This

point corresponds to the optimal parameter of l. Meanwhile,
FIGURE 1

Overview of the whole study procedure.
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the coefficient of the less influential feature will decrease to 0,

and finally, only the most important features are retained (26).

At the optimal l, features with non-zero coefficients will be

retained and ranked by the absolute value of the coefficient. To

decrease the overfitting risk and avoid the dimensionality curse,

only the top 20 features are finally selected as the discriminative

features according to the rule of thumb that each feature

corresponds to 10 samples in a binary classifier (27).
Model construction, validation,
and comparison

To clarify the performance of models using features from

different peri- and intratumoral regions, four groups of

comparative experiments were conducted.
Fron
I. To investigate features from which peritumoral

regions perform best, the four models corresponding

to 0–3 mm, 3–6 mm, 6–9 mm, and 9–12 mm are

compared.

II. To investigate whether the fusion of peritumoral

features and images improves the performance,

models using the feature and image fusion of 0–3

mm and 3–6 mm were compared (28–30).

III. To consider whether peritumoral features outperform

intratumoral features, a model using features from the

intratumoral region was studied.

IV. To explore whether the fusion of peri- and

intratumoral features and images improves the

performance, the models using the feature and image

fusion of intratumoral and 0–3 mm peritumoral

regions were compared.
Feature fusion implies that 1688 features from each region

are combined into 3376 features, and the top 20 features are

selected according to the same method described previously.

Image fusion implies that the two regions are combined, 1688

features are extracted, and the top 20 are maintained in the

same way.

Different models were constructed using three

representative machine-learning classifiers: random forest

(RF), support vector machine (SVM), and logistic regression

(LR). Each optimal hyper-parameter of the models was

calculated using a grid search algorithm and 10-fold cross-

validation. This implies that every grid of hyper-parameters is

evaluated by the average of 10-fold cross-validation, and a

combination of optimal hyper-parameters is obtained after

traversing all grids. The model with optimal hyper-

parameters was retrained using all training data (n=189), and

then the generated model was evaluated in an independent test

cohort (n=83). The aim of dividing Dataset 1 into a training
tiers in Oncology 05
cohort and a test cohort is to obtain the optimal hyper-

p a r ame t e r s i n mach in e - l e a rn i n g c l a s s ifi e r s a nd

simultaneously avoid information leakage. Dataset 2 was

used as an external validation cohort to know the

generalizability of the model developed in Dataset 2. The two

datasets were collected from different hospitals and by different

CT scanners.

Specifically, we used a grid search with cross-validation

(GridSearchCV) to traverse the hyper-parameters within a

certain range and with a specific interval. In SVM, the kernel

parameter was set as “linear” or radial basis function (“rbf”); the

parameter C was set as 0.001, 0.01, 0.1, 1, 10, 100 or 1000; the

gamma parameter was set as 0.0001, 0.001, 0.005, 0.01, 0.1, 0.5, 1,

3, 5, 10 or 100. In RF, n_estimators parameter ranged from 20 to

2000 with an interval of 10, max_features parameter was set as 2

or 3, min_sample_leaf ranged from 1 to 50 with an interval of 1

and ranged from 100 to 500 with an interval of 50. In LR, the C

parameter was set as 0.001, 0.01, 0.1, 1, 10, or 100; the penalty

item was set as L1 or L2.
Model evaluation and statistical analysis

For each model, the performance was evaluated by the area

under the receiver operating characteristic curve (AUC) with

95% confidence interval (CI), confusion matrix, accuracy,

precision, recall, and F1-score. The cut-off was determined

using Youden’s index and the shortest distance from the

coordinate (0, 1) on the ROC curve.

A two-sample t-test was used to compare the age and

number of treatment courses between the response and non-

response groups. The chi-square test was used to compare the

gender, histological type, and smoking status of the two groups.

The ROC curves of the different models were compared using

the Delong test. If p<0.05, a significant difference was considered

to be statistically significant.
Results

Performance of features from different
peritumoral regions

In the independent test cohort, the predictive performance

of the three machine-learning models in each peritumoral region

is shown in Figure 2. It was found that among the three machine

learning classifiers, the LRmodel presented the highest AUC and

performed best in every peritumoral region (Figure 2A). The

ROC curve and confusion matrix of LR models using features

from four peritumoral regions are summarized in Figures 2B, C,

respectively. The AUC of 0–3, 3–6, 6–9, and 9–12 mm

peritumoral regions were 0.95, 0.87, 0.86, and 0.85,
frontiersin.org
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respectively. The peritumoral region of 0–3 mm had the

highest AUC.

The other performance measures are listed in Table 2. For

the 0–3 mm peritumoral region, the accuracy, precision, recall,

and F1-score were 87.9%, 0.89, 0.85, and 0.87, respectively, while

the cut-off value was 0.83. For the 3–6 mm peritumoral region,

the measures were 79.5%, 0.82, 0.72, and 0.77, while the cut-off

value was 0.69. For the 6–9 mm peritumoral region, the

measures were 84.3%, 0.86, 0.80, and 0.83, while the cut-off

value was 0.70. For the 9–12 mm peritumoral region, the
Frontiers in Oncology 06
measures were 75.9%, 0.76, 0.72, and 0.74, respectively, while

the cut-off value was 0.67.
Performance of different methods of
fusing peritumoral regions

In the independent tes t cohort , the predict ive

performance of models using the feature and image fusion

of 0–3 mm and 3–6 mm peritumoral regions were compared
B C

A

FIGURE 2

Comparison of models using different peritumoral regions in the independent test cohort: (A) ROC curves of models using different peritumoral
regions and machine learning methods; (B) ROC curve of models using different peritumoral regions and logistic regression; (C) Confusion
matrix of models using different peritumoral regions and logistic regression.
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(Figure 3). As shown in Figure 3A, the LR model

outperformed the SVM and RF models in both feature

fusion and image fusion. For the LR model, the feature

fusion and image fusion were compared using the ROC

curve and confusion matrix (Figures 3B, C). The AUC of

feature fusion of 0–3 and 3–6 mm peritumoral regions was

0.97, higher than that of image fusion (AUC of 0.89). The LR

model using feature fusion of 0–3 and 3–6 mm peritumoral
Frontiers in Oncology 07
regions can correctly predict 36 of 39 nonresponse patients

and 41 of 44 response patients.

The other performance measures of these two models are

listed in Table 2. The model of feature fusion achieved an

accuracy of 92.7%, precision of 0.92, recall of 0.92, an F1-score

of 0.92, and a cut-off value of 0.88. For the image fusion model,

the four measures were 80.7%, 0.85, 0.72, and 0.78, respectively,

while the cut-off value was 0.69.
B

C

A

FIGURE 3

Comparison of models with different fusion methods of 0–3 and 3–6 mm peritumoral regions in the independent test cohort: (A) ROC curves
of models of two fusion methods and three machine learning methods; (B) ROC curves of models of two fusion methods and logistic
regression; (C) Confusion matrix of models of two fusion methods and logistic regression.
TABLE 2 Predictive performance of different regions in the independent test cohort.

ROI AUC Accuracy Precision Recall F-score

0-3 mm 0.95 87.9% 0.89 0.85 0.87

3-6 mm 0.87 79.5% 0.82 0.72 0.77

6-9 mm 0.86 84.3% 0.86 0.80 0.83

9-12 mm 0.85 75.9% 0.76 0.72 0.74

Image fusion (0–3 and 3–6 mm) 0.89 80.7% 0.85 0.72 0.78

Feature fusion (0–3 and 3–6 mm) 0.97 92.7% 0.922 0.92 0.92

Intratumoral region 0.88 81.9% 0.85 0.74 0.80

Image fusion (Intra and 0–3 mm) 0.88 81.9% 0.82 0.80 0.81

Feature fusion (Intra and 0–3 mm) 0.92 91.5% 0.94 0.87 0.91
fronti
ROI, region of interest; AUC, area under the curve.
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Performance of intratumoral region

The ROC curve and confusion matrix of models using CT

radiomic features from the intratumoral region are shown in

Supplemental Figure S4. Among the three models, the LR model

performed the best, with an AUC of 0.88. In the independent test

cohort, 29 of 39 non-response patients and 39 of 44 response

patients were correctly predicted by the LR model. The cut-off

value was 0.71, and the accuracy, precision, recall, and F-score

were 81.9%, 0.85, 0.74, and 0.80, respectively (Table 2).
Performance of different methods of
fusing intra and peritumoral regions

Supplemental Figure S5 shows the performance of radiomic

models using different methods of fusing intra and 0–3 mm

peritumoral regions. Similar to the previous results, the LR model

outperformed the SVM and RF models for both fusion methods

(image and feature) (Supplemental Figure S5A); the AUC was 0.88

for the LR model using the image fusion method and it was 0.92

using the feature fusion (Supplemental Figures S5B, C). Feature

fusion yields better performance than image fusion. For the LR

model using the image fusion method, the accuracy, precision, recall,

and F-score were 81.9%, 0.82, 0.80, 0.81, and 0.67, respectively, while

the cut-off value was 0.83. For the LRmodel using the imagemethod,

it was 91.5%, 0.94, 0.87, and 0.91, while the cut-off value was 0.83.

The p values in the Delong test of ROC curves of nine

different models are shown in Figure 4. The AUC of the LR
Frontiers in Oncology 08
model using the 0–3 mm peritumoral region was significantly

higher than that of the three models using the 3–6, 6–9, and

9–12 mm peritumoral regions and that of the model using the

intratumoral region (Delong test, p<0.05). Feature fusion of

0–3 and 3–6 mm peritumoral regions produced an AUC

significantly higher than that in the six cases of 3–6, 6–9,

and 9–12 mm peritumoral regions, intratumoral regions,

image fusion of 0–3 and 3–6 mm peritumoral regions, and

image fusion of intratumoral and 0–3 mm peritumoral

regions (Delong test, p<0.05). Although the AUC of the

model using feature fusion of 0–3 and 3–6 mm peritumoral

regions was higher than that of the other two cases of 0–3 mm

peritumoral region and feature fusion of intratumoral and 0–

3 mm peritumoral regions, no significant difference was

observed (Delong test, p>0.05).
Radiomic features over traditional
clinical features

Supplemental Figure S6 shows the performance of models

with radiomics features and clinical features (gender, age,

histological type, TNM stage, smoking status and the number

of treatment courses). The AUC of the model with only clinical

features was 0.55. While using both radiomics and clinical

features, the model achieved an AUC of 0.96, even lower than

that only using radiomic features (0.97). It demonstrates that

clinical features had no improvement in predicting

chemotherapy in this research.
FIGURE 4

p values of Delong test between ROC curves of different models.
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Performance in the external
validation dataset

Figure 5 shows the performance of the model using 0-3 and 3-6

peri-tumoral features in the external validation dataset. The AUC

was 0.85 (95% CI: 0.81-0.89) and 13 of 19 non-response patients and

23 of 24 response patients were correctly predicted by the LR model.
Segmentation agreement and
characteristics of radiomic features

For the segmentation agreement by two radiologists, the

Dice coefficient is 0.85 ± 0.06, and the over- and under-

segmentation errors of segmented tumor volume are 0.22 ±

0.14, 0.28 ± 0.03, respectively.

Feature fusion of 0–3 and 3–6 mm peritumoral regions had

the highest AUC in all nine cases. In this case, the 20

discriminative radiomic features (13 from 0–3 mm, 7 from 3–

6 mm) included five first-order features, one shape feature, and

14 texture features. Seven radiomic features were significantly

different between the response and nonresponse groups [two

features with p<0.001(★★) and five features with p<0.05(★)].

Figure 6 shows the unsupervised hierarchal clustering of

radiomic features in the training set, where the x-axis

represents the training cohort of patients (n = 189) and the y-

axis represents the 20 radiomic features.
Discussions

In this study, the ability of peritumoral, intratumoral, or

combined CT radiomic features to predict chemotherapy

response in NSCLC was evaluated. It was found that the

radiomic model using features from 0–3 mm peritumoral
Frontiers in Oncology 09
region outperforms that using features from 3–6 mm, 6–9

mm, 9–12 mm peritumoral region, and intratumoral region,

with the highest AUC of 0.95. By fusing features from 0–3 mm

and 3–6 mm peritumoral regions, the AUC can be further 0.97.

Two over-represented features in the response group indicated

higher heterogeneity of NSCLC tumors.
Is the peritumoral region predictive?

Our results demonstrated that CT radiomic features from

peritumor regions are predictive of chemotherapy response in

NSCLC. The prognosis of lung cancer is not only reflected in the

lesion but also the surrounding normal tissues; thus, the

microbial environment also has great predictive potential for

the response to clinical treatment (31). The microenvironment

of the peritumoral region of breast malignancy is related to

aggressiveness (22). The capillaries and various cells around the

tumor border might be more active than those inside the tumor;

thus, their immune response to cancer and response to the

prognosis, such as chemotherapy, is probably more severe.

Algohary et al. studied the density of stromal macrophages,

epithelial cells, and lymphocytes in the peritumoral region and

found it to be related to metastasis of prostate cancer risk.19

Matsumura et al. collected 1069 resected NSCLC patients with

lymphatic permeation located in intra-, peritumoral, or absent to

determine the survival impact, and found that lymphatic canals

present in peritumoral regions have a significantly higher overall

survival rate than the other two groups (32).
Which peritumoral region is optimal?

Similar to the recommended negative surgical margin in the

clinic, the different ranges of the peritumoral region contribute
BA

FIGURE 5

Performance of the model using 0-3 and 3-6 peri-tumoral features in the external validation dataset: (A) ROC curve; (B) Confusion matrix.
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significantly to the prediction of prognostic response. We have

found that the features from the 0–3 mm peritumoral region are

more predictive of the chemotherapy response of NSCLC than

those from 3–6 mm, 6–9 mm, and 9–12 mm peritumoral

regions. Some previous studies have indicated that the region

beyond 15 mm around the lung tumor lesion has no

contribution to predicting the recurrence or remission (21,

33). Beig et al. showed that low and middle frequencies of

Gabor filters had a higher response at 5 mm around the

adenocarcinomas lesion (23). Braman et al. found that features

from the 2.5–5.0 mm region surrounding the breast tumor are

predictive of the pathological complete response to neoadjuvant

chemotherapy (22). Algohary et al. have found that Haralick

from 3–6 and 6–9 mm peritumoral rings and CoLlAGe texture

features from 6–9 mm ring were over- and under-expressed,

respectively, in high-risk prostate cancer lesions (19).
Is the peritumoral region superior to the
intratumoral region?

Our study has shown that the peritumoral region is superior

to the intratumoral region in predicting chemotherapy response

in NSCLC. A growing number of studies have proven that the

tissues and microenvironment around the tumor can provide

unique effects on radiomic analysis, sometimes exceeding the
Frontiers in Oncology frontiersin.or10
intratumoral region (34). Braman et al. analyzed the tumor and

its surroundings of breast cancer and found that the peritumoral

region performed better in estimating the response to HER2-

targeted neoadjuvant therapy (35).
Does the combination of regions
improve prediction?

In this study, we investigated models using different

methods of fusing two peritumoral regions. The model

using feature fusion of 0–3 and 3–6 mm peritumoral

regions achieves an AUC of 0.97, which is higher than that

of the model using the 0–3 mm peritumoral region (0.95),

although there was no significant difference (Delong test,

p=0.19). The feature fusion of the 0–3 mm peritumoral

region and intratumoral region even decrease the AUC

from 0.95 (only using features from 0–3 peritumoral

region) to 0.92. However, Jiang et al. have reported that a

combination of intra- and peritumoral features of gastric

cancer can improve the prediction of chemotherapy

response (36). Chen et al. also found that incorporating

peritumoral radiomic analysis of hepatocellular cancer with

intratumoral features can improve the immunoscore

estimation of hepatocellular cancer (37). Hu et al. have

shown that the combination of intra- and peritumoral
FIGURE 6

Heat map and dendrogram of the top 20 radiomic features in response and nonresponse groups of the training set (★ indicates p < 0.05, ★★
indicates p < 0.001).
g

https://doi.org/10.3389/fonc.2022.915835
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chang et al. 10.3389/fonc.2022.915835
features can improve the performance in estimating

pathologica l complete response af ter neoadjuvant

chemoradiation in patients with oesophagal squamous cell

carcinoma (38). Therefore, we thought that whether the

combination of regions improves prediction might depend

on two aspects: discriminative and supplementary. If the

features from different regions are both discriminative and

supplementary, the combination will improve the prediction.

Otherwise, the results of the combination are uncertain.

Moreover, we found that feature fusion was better than

image fusion for prediction. This might be because each feature

extraction method might have an upper limit of capability. After

the combination of images from different regions, the 1688

extracted features are representative of the entire region.

However, the feature fusion method combines features

extracted from two regions into a set of 3376 features and

then uses feature selection methods to obtain the

discriminative features. Therefore, complementary features

from two different regions can remain. This might be the

reason why most previous studies have adopted feature fusion

methods (36–38).
Does higher heterogeneity in the
peritumoral region correspond
to response?

In the response group, run length non-uniformity

normalized (RLNN) and size zone nonuniformity normalized

(SZNN) features were overrepresented (i.e., higher than that in

the nonresponse group). The RLNN measures the similarity of

run lengths throughout the image, with a lower value indicating

greater homogeneity among run lengths in the image. SZNN

measures the variability of size zone volumes throughout the

image, with a lower value indicating greater homogeneity among

the zone size volumes in the image.

One constructive finding of this research is that in the

peritumoral region of NSCLC lesions, the response group had

higher heterogeneity than the nonresponse group. Specifically,

SZNN and RLNN were overrepresented. This finding provides

further evidence that the heterogeneity of the microenvironment

in both the tumor and the area around the tumor is predictive of

the prognosis of lung cancer. This heterogeneity might be

reflective of genomic and genetic heterogeneity and be

reflected in pretreatment CT images (6, 39, 40). Some findings

have shown that tumor heterogeneity is a predictor of survival in

patients with NSCLC (6, 41).
Limitations and further works

There are some limitations to this study. First, the

sample size was small. This made the extensive stratified
Frontiers in Oncology 11
analysis unfeasible, such as investigating the difference

between adenocarcinoma and squamous cell carcinoma.

Second, the segmentation of intra-and peritumoral regions

is semi-automatic, and some features might be dependent on

segmentation results. Automatic segmentation by deep

learning and extraction of features from the bounding box

may address this problem (42). Third, only machine

learning methods are employed. Deep learning can be

utilized as a powerful end-to-end solution or classifier

(43–46).
Conclusion

Non-contrast CT radiomic features from both the peri-

and intratumoral regions can predict chemotherapy response

in NSCLC via machine learning models. The 0–3 mm

peritumoral region presented better performance than the

peri- and intratumoral regions. The combined features from

the two peritumoral regions may further improve the

prediction. With the further evaluation of generalizability,

the developed model and identified features may help

improve the management of patients with NSCLC in

precision medicine.
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