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Abstract

Background: The accumulation of deleterious mutations of a population directly contributes to the fate as to how
long the population would exist, a process often described as Muller’s ratchet with the absorbing phenomenon.
The key to understand this absorbing phenomenon is to characterize the decaying time of the fittest class of the
population. Adaptive landscape introduced by Wright, a re-emerging powerful concept in systems biology, is used
as a tool to describe biological processes. To our knowledge, the dynamical behaviors for Muller’s ratchet over the
full parameter regimes are not studied from the point of the adaptive landscape. And the characterization of the
absorbing phenomenon is not yet quantitatively obtained without extraneous assumptions as well.

Methods: We describe how Muller’s ratchet can be mapped to the classical Wright-Fisher process in both discrete
and continuous manners. Furthermore, we construct the adaptive landscape for the system analytically from the
general diffusion equation. The constructed adaptive landscape is independent of the existence and normalization
of the stationary distribution. We derive the formula of the single click time in finite and infinite potential barrier
for all parameters regimes by mean first passage time.

Results: We describe the dynamical behavior of the population exposed to Muller’s ratchet in all parameters
regimes by adaptive landscape. The adaptive landscape has rich structures such as finite and infinite potential, real
and imaginary fixed points. We give the formula about the single click time with finite and infinite potential. And
we find the single click time increases with selection rates and population size increasing, decreases with mutation
rates increasing. These results provide a new understanding of infinite potential. We analytically demonstrate the
adaptive and unadaptive states for the whole parameters regimes. Interesting issues about the parameters regions
with the imaginary fixed points is demonstrated. Most importantly, we find that the absorbing phenomenon is
characterized by the adaptive landscape and the single click time without any extraneous assumptions. These
results suggest a graphical and quantitative framework to study the absorbing phenomenon.

Background
Muller’s ratchet proposed in 1964 is that the genome of
an asexual population accumulates deleterious mutations
in an irreversible manner. It is a mechanism that has
been suggested as an explanation for the evolution of sex
[1]. For asexually reproducing population, without
recombination, chromosomes are directly passed down

to offsprings. As a consequence, the deleterious muta-
tions accumulate so that the fittest class loses. For sexu-
ally reproducing population, because of the existence of
recombination between parental genomes, a parent car-
rying high mutational loads can have offspring with fewer
deleterious mutations. The high cost of sexual reproduc-
tion is thus offset by the benefits of inhibiting the ratchet
[2]. Muller’s ratchet has received growing attention
recently. Most studies of Muller’s ratchet are related to
two issues. One is that without recombination, the
genetic uniformity of the offspring leads to much lower
genetic diversity, which is likely to make it more difficult
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to adapt [3]. So its adaptiveness arouses concern. The
other is that population lacking genetic repair should
decay with time, due to successive loss of the fittest indi-
viduals [4,5]. So the fixation probability arouses concern.
In addition, Muller’s ratchet is relevant to some replica-
tors [6,7], endosymbionts [8], and mitochondria [9]. In
order to assess the relevance of Muller’s ratchet, it is
necessary to determine the rate (or the time) for the
accumulation of deleterious mutations [10]. It is widely
recognized that the rate of deleterious mutations being
much higher than that of either reverse or beneficial
mutations results in a serious threat to the survival of
populations at the molecular level [4]. Because models
proposed must rest on the biological reality, which must
be analyzed on their own without any injection of extra-
neous assumptions during the analysis [11]. Overall, it
has been a long interest to develop a suitable and quanti-
tative theory for the ratchet mechanism and the inciden-
tal absorbing phenomenon.
Biologists have suggested [12,10] that a quantitative fra-

mework is needed. The potential evolutionary importance
of Muller’s ratchet makes it desirable to carry out careful
quantitative studies [12]. And the incidental absorbing
phenomenon is investigated quantitatively in broad litera-
ture. The simplest and earliest mathematical model is the
pioneering work in Ref. [13]. It described the same evolu-
tionary process on the condition of deterministic muta-
tion-selection balance according to the Wright-Fisher
dynamics. And it indicated numerical evidence of relation
between the total number of individuals and the average
time between clicks of the ratchet, but it did not focus on
the absorbing phenomenon. It treated the pioneering
model as a diffusion approximation [14], and produced
more accurate predictions over the relatively slow regime.
It noted that the increasing importance of selection coeffi-
cients for the rate of the ratchet for increasing values of
the total number of individuals. But it is represented as
stochastic differential equations and did not get the pre-
dictions over all parameters regions. It employed simula-
tion approaches to Muller’s ratchet [15] and estimated
how different between the distribution of mutations within
a population and a Poisson distribution. But it did not
emphasize the absorbing phenomenon. In Ref. [2] it
obtained diffusion approximations for three different para-
meter regimes, depending on the speed of the ratchet. The
model shed new light on [14]. But it mainly focused on
the property of the solution for these stochastic differential
equations. In Ref. [10] it mapped Muller’s ratchet to
Wright-Fisher process, and got the prediction of the rate
of accumulation of deleterious mutations when parameters
lie in the fast and slow regimes of the operation of the
ratchet. But it put the constraints of Dirac function on the
boundary.

Previous works mainly focused on the parameter
regimes with lower or higher mutation rates. And models
are represented as stochastic differential equation. In Ref.
[16] authors imagined the population evolved on an adap-
tive landscape, but they could not analytically construct it.
It described discrete birth-death model and its corre-
sponding diffusion manner by the adaptive landscape [17].
But it did not discuss the absorbing phenomenon. The
concept of adaptive landscape is proposed by Sewall
Wright to build intuition for the complex biological phe-
nomena [5]. In the present article, inspired by [16,10], we
model Muller’s ratchet as a Wright-Fisher process, analyti-
cally construct the adaptive landscape, where the non-nor-
malizable stationary distribution occurs. Here the adaptive
landscape is analytically quantified as a potential function
from the physical point of view [18]. We give the adaptive
and unadaptive states for the whole parameters region by
the adaptive landscape. We give the formula for the single
click time of Muller’s ratchet in the face of infinite and
finite potential. In addition, we can handle the absorbing
phenomenon without extraneous assumptions.
The key concept in constructing the adaptive landscape

is of potential function as a scalar function. There is a
long history of definition, interpretation, and generaliza-
tion of the potential. Such potential has also been applied
to biological systems in various ways. The usefulness of a
potential reemerges in the current study of dynamics of
gene regulatory networks [19], such as its application in
genetic switch [20-23]. The role of potential is the same
as that of adaptive landscape. In this article, we do not
distinct them.
We now make the obvious advance to Muller’s ratchet.

We analytically construct the adaptive landscape. We
demonstrate the position and adaptiveness of fixed points.
This makes the dynamical behaviors of the population to
be investigated. In addition, we give the area with imagin-
ary fixed points. This makes the explaining for the imagin-
ary fixed points biologically possible. Infinite potential
barriers can be crossed over under some cases. We handle
the absorbing phenomenon without any extraneous
assumptions under the condition of diffusion approxima-
tion. Inversely, we demonstrate the power of the adaptive
landscape.

Methods
Discrete model and absorbing boundary
We consider here in population genetics an important and
widely applied mechanism- Muller’s ratchet. It is the pro-
cess by which the genomes of an asexual population accu-
mulate deleterious mutations in an irreversible manner
[24,25]. It corresponds to the repeated irreversible loss of
the fittest class of individuals because of the accumulation
of the deleterious mutations, the effective absence of
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beneficial mutations, without any recombination, but with
the random drift [25,12]. Consider a population of haploid
asexual individuals with discrete generations t = 0,1, 2,....
The common point in a generation is regarded as an adult
stage, after all selection has occurred and immediately
prior to reproduction. New mutations occur at reproduc-
tion and all mutations are assumed to deleteriously affect
viability but have no effect on fertility. Supposed popula-
tion size is fixed for each generation. The viability of a
newly born individual is taken to be determined solely by
the alleles they carry. This allows us to divide the popula-
tion into different classes with different genotypes.
Here in one dimensional case, we consider one locus with

two alleles (for example, A and a), that is, there are two
classes in the haploid asexual population, one class with
allele A while the other with allele a, supposed mutation
from allele A to a is deleterious. We assume fixed popula-
tion size of N, which means we have N alleles in all. We
also assume that N >1. Generations are non-overlapping.
The lifecycle of the individuals in the population is from
adults to juveniles, during which we consider irreversible
mutation, selection, and random drift. The frequency of the
allele A for generation t is p̄ while that of allele a is 1 − p̄ .
Let μ be the probability that an offspring of an adult with
allele A is an individual with allele a, labeled byM1,0, that is
M1,0 = μ. Analogously, M0,0 = 1 - μ, M0,1 = 0, M1,1 = 1. The
relative viability of individuals with allele A is ν0 = 1 while
that of individuals with allele a is ν1 = 1 - s. Where s can
be treated as an effective selection coefficient associated
with deleterious mutations. So the values of parameters for
μ and s are from 0 to 1. Then in generation t + 1, when
selection and deleterious mutation are active, the probabil-
ity that the offspring of a parent with allele A is chosen to
be with allele a is μp̄(1 − σ ) , the probability that the off-

spring with allele A is (1 − μ)p̄ , the probability that the
offspring of a parent with allele a is still with allele a is
(1 − σ )(1 − p̄) . So the frequency of allele A in generation
t + 1 is

p̄(t + 1) =
(1 − μ)p̄(t)

1 − σ + σ (1 − μ)p̄(t)
. (1)

Eq.(1) describes the deterministic process that ignores
random drift. Under the mutation-selection balance, the
fixed points is

p̄1(t = ∞) = 0, (2)

p̄2(t = ∞) =
σ − μ

σ (1 − μ)
. (3)

This means the population ultimately arrives at the
state with allele frequency p̄1 or p̄2 and no transition

between the two states occur. It is evident that selection
rates s is greater than mutation rates μ. But populations
always evolve randomly. Since each individual is
assigned a parent independently, if by generation t the
average value of allele frequency is pn,t, we have that
the transition probability from p̄n,t to p̄n,t+1 by generation
t + 1 is

Wnm =
N!

m!(N − m)!
(p̄n,t)m(1 − p̄n,t)N−m n, m = 0, 1, 2, . . . , N. (4)

The matrix of transition probabilities is W which is
composed of elements Wnm. The dynamical rule can be
written as the matrix Eq.(5)

P(t + 1) = WP(t). (5)

Where P(t) represents the probability distribution of
allele A. It is composed of N + 1 elements
p̃n(t), n = 0, 1, . . . , N , where p̃n(t) denotes the probabil-
ity that allele A has the frequency n/N in generation t in
the presence of deleterious mutation, selection and ran-
dom drift. The matrix of transition probabilities is

W =
(

1 vT

0 w

)
. (6)

Here vT means the transpose of vector v. Then Eq.(5)
can be expressed as the following(

p̃0(t + 1)
p(t + 1)

)
=

(
1 vT

0 w

)(
p̃0(t)
p(t)

)
. (7)

Where 0 is a column vector with N vanishing compo-
nents, and v is a column vector with N non-zero ele-
ments given by υm = W0m, where m is from 1 to N. The
column vector w is an N × N matrix with elements wnm

= Wnm, where n and m run from 1 to N. By spectrum
decomposition we can derive the maximum eigenvector
for w, this corresponding vector is the quasi-stationary
probability density of allele A. The following is its deri-
vation process.

p(t + 1) = wp(t), (8)

p̃0(t + 1) = p̃0(t) + vTp(t), (9)

Eq.(8) has the solution

p(t) = wtp(0). (10)

Because the leading large time behavior is determined
by the eigenvalue of matrix w. From Perron-Frobenius
theory this issue is transformed to solve the leading
large eigenvalue of w and corresponding eigenvector.
But
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p̃0(t) = 1 −
N∑

n=1

p̃n(t)

= 1 − ITP(t)

= 1 − ITwtp(0).

(11)

Where IT= (1,..., 1), there are N elements 1 of this vec-
tor. If we denote the leading large eigenvalue of w is l1,

1 − p̃0(t) = ITwtp(0)

α λt
1.

(12)

We can describe Eq.(8) as

p(t) ≈ [1 − p̃0(t)]q(t), (13)

where

q(t) =
wtp(0)

ITwTp(0)
. (14)

Then the probability density is derived by

q = lim
t→∞

wtp(0)

ITwTp(0)
. (15)

Where l1 is determined by 1 − p̃0(t). But
1 − p̃0(t + 1) ≈ (1 − vTq)[1 − p̃0(t)] . In the end we get
l1 = 1-vTq.
Populations evolution is a natural and random pro-

cess. We model the process as the discrete form. The
boundary of the discrete model is determined by its
transition matrix. Generally, The transition probabilities
from generation t to generation t + 1 for the allele fre-
quency are expressed as

N!
m!(N − m)!

(
(1 − μ)p̄n,t−1

1 − σ + σ (1 − μ)p̄n,t−1

)m(
1 − (1 − μ)p̄n,t−1

1 − σ + σ (1 − μ)p̄n,t−1

)N−m

. (16)

From the expression of transition probability, it can be
seen that the transition probabilities are zero for any
frequency p̄n,t−1 under the condition of parameter s = 1.
It means the population stays at its initial state. In addi-
tion, the transition probabilities from the boundary 0 to
its next are (1,0,..., 0)T. This means boundary 0 can not
output any probability flow to its next, it only absorbs
probability from next. We call absorbing phenomenon
occurring at the boundary 0.

Continuous model and adaptive landscape
Diffusion approximation
Here we briefly outline the diffusion approximation from
the discrete to continuous models. At generation t the fre-
quency of allele A is i/N, after evolutionary force, at gen-
eration t + 1 the allele frequency becomes j/N. Here δt =
1, the probability that allele frequency becomes j/N is

p̃j(t + 1) =
N∑

i=0

Wijp̃i(t). (17)

Where Wij is the transition probability. Diffusion
approximation is a description of the process, valid
when N is large, where the allele frequency n/N are
replaced by real number x, 0 ≤ x ≤ 1. Given that A
starts out at gene frequency x0. Let p̃(x − δx, t) be the
probability for allele frequency A after t generations.
And p̃(x, t + 1) be the probability of allele A after t + 1
generations, then

p̃(x, t + δt) =
∑
δx

W(x, t + δt|x − δx, t)p̃(x − δx, t). (18)

Letting p̃(x, t) = ρ(x, t)/N , among this r(x,t) is the
probability density. Define M(x) as the probability that x
increases by systematic force that include mutation and
selection. And define V(x) as the probability that x
changes because of random drift, either decreasing by
amount δx with the probability V(x)/2 or increasing by
the amount δx with the probability V(x)/2.

M(x, t) = lim
δt→0

1
δt

∫ 1

0
δxW(x, t + δt|x − δx, t)d(δx),(19)

V(x, t) = lim
δt→0

1
δt

∫ 1

0
(δx)2W(x, t + δt|x − δx, t)d(δx).(20)

In any time interval δt, the probability that x remains
at x is 1 - M(x) - V(x). The changes in states are only to
δx or -δx. So δx is 0, positive or negative.

ρ(x, t+δt) = (1−M(x)−V(x))ρ(x, t)+M(x−δx)ρ(x−δx, t)+
1
2

V(x+δx)ρ(x+δx, t)+
1
2

V(x−δx)ρ(x−δx, t), (21)

and we can treat Eq.(21) as the following

ρ(x, t + δt) − ρ(x, t) = −[M(x)ρ(x, t) − M(x − δx)ρ(x − δx, t)]

+
1
2

[V(x + δx)ρ(x + δx, t) − V(x)ρ(x, t)

−V(x)ρ(x, t) + V(x − δx)ρ(x − δx, t)],

(22)

that is

ρ(x, t + δt) − ρ(x, t)
δt

= −δ[M(x)ρ(x, t)
δx

+
1
2

δ(δ[V(x)ρ(x, t)])
δ(δx)

. (23)

Because the function about the change of allele fre-
quency in one generation is continuous and smooth

enough, under the condition that
∣∣p̃j,t+1 − p̃i,t

∣∣ > 1/N is

of order of magnitude small than O(1) in one genera-
tion. Put it differently the change of allele frequency is
not more than 1/N, and the probability density is
smooth enough during the time scale of one generation.
So we represent the process as the following
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approximated diffusion equation

∂

∂t
ρ(x, t) = − ∂

∂x
[M(x)ρ(x, t)] +

1
2

∂2

∂x2
[V(x)ρ(x, t)], (24)

and according to the definition of M(x) and V(x), the
explicit expressions of them are

M(x) =
(1 − μ)x

1 − σ + σ (1 − μ)x
− x

=
x[(σ − μ) − σ (1 − μ)x]

1 − σ + σ (1 − μ)x
,

(25)

V(x) =
x(1 − x)

N
. (26)

Among this M(x) is the symbol for the change in
allele frequency [26,11] that occurs in one generation
due to systematic force. The function V(x) is the var-
iance in allele frequency after one generation of bino-
mial sampling of N alleles [27].
Adaptive landscape
Under the general diffusion approximation, frequency
pn,t is treated as continuous quantities x, and this leads
to the distribution of the frequency for the allele A
being the probability density. Let r(x,t) be the probabil-
ity density of the frequency for the allele A being x at
time t. The diffusion process can be expressed by the
following symmetric equation

∂tρ(x, t) = ∂x[εD(x)∂x − f (x)]ρ(x, t) (27)

with

f (x) = M(x) − εD
′
(x),

2D(x) = V(x).
(28)

With a prime denoting differentiation of a function
with respect to its argument such as D’(x) = ∂xD(x).
Where M(x) and V(x) is from Eqs.(25) and (26) respec-
tively. Adaptive landscape is directly given when we
consider natural boundary as Feller’s classification. It is

	(x) =
∫

f (x)
D(x)

dx. (29)

The symmetric Eq.(27) has two advantages. On the
one hand, the adaptive landscape is directly read out
when the detailed balance is satisfied. On the other
hand, the constructive method is dynamical, indepen-
dent of existence and normalization of stationary distri-
bution. We call f(x) directional transition rate,
integrating the effects of M(x) and the derivative of V
(x). Directional transition rate can give equilibrium
states when it has the linear form.

When the process lies at stationary state, the probabil-
ity flux of the system is zero, and probability flux flows
in x ∊ [0,1]. In general, the stationary distribution for
the diffusion approximation satisfying natural boundary
condition is given by

ρ(x, t = ∞) =
1
Z

exp
(

	(x)
ε

)
.

Z =
∫ +∞

−∞
exp

(
	(x)

ε

)
dx.

It has the form of Boltzmman-Gibbs distribution [28],
so the scalar function F(x) naturally acquires the mean-
ing of potential energy [19]. The value of Z determines
the normalization of r(x, t = ∞) from the perspective of
probability, and the finite value of Z manifests the nor-
malization of r(x,t = ∞). The stationary distribution is
not true in the face of infinite Z. It demonstrates
absorbing phenomenon occurs at the boundary.
Together with the flux at the boundary, the true station-
ary distribution could be got. The constant ∊ holds the
same position as temperature of Boltzmman-Gibbs dis-
tribution in statistical mechanics. But it does not hold
the nature of temperature in Boltzmman-Gibbs
distribution.
We are interested in the dynamical property of adap-

tive landscape, so we treat F and F/∊ no difference in
this respect, that is, for convenience we can take ∊ = 1
of ∊D(x). So according to Eq.(29), we have adaptive
landscape as the following

	(x) =
2Nμ(1 − σ )

1 − σμ
ln(1 − x) − ln x(1 − x)

+
2N(1 − μ)

1 − σμ
ln(1 − σ + xσ (1 − μ)).

(30)

From the expression of adaptive landscape F(x), we
may find there are two singular points 0 and 1 of adap-
tive landscape, characterized by infinite value, infinity
means adaptiveness or unadaptiveness of the system.
Here the adaptive landscape is composed of three terms.
The first term and the third term quantify the effect of
the effect of irreversible mutations and selection respec-
tively, the second term quantifies the effect of random
drift.
The stationary distribution can be expressed as

ρ(x, t = ∞) ∝ exp
(

σμ − 1 − 2Nμ(σ − 1)
1 − σμ

ln(1 − x)

− ln x +
2N(1 − μ)

1 − σμ
ln(1 − σ + xσ (1 − μ))

)
.
(31)
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Results
Fixed points and their adaptiveness
To understand the mechanism of Muller’s ratchet, a full
characterization of dynamical process is a
prerequisite for obtaining more accurate decaying

time. Here we study the dynamical behaviors by
investigating the position and adaptiveness of all fixed

points. We further derive the parameter regions for all
possible cases.
According to general analysis of a dynamical system,

letting

	
′
(x) = 0, (32)

we get

2σ (1 − μ)(N − 1)x2 + (2N(μ − σ ) + 3σ − σμ − 2)x + (1 − σ ) = 0. (33)

We solved the Eq.(32) and found two fixed points. If
we denote

α = 2 − 3σ + σμ + 2Nσ − 2Nμ, (34)

β = 8σ (1 − μ)(N − 1)(1 − σ ). (35)

They are

x1,2 =
α ∓

√
α2 − β

4σ (1 − μ)(N − 1)
. (36)

For two singular points x = 0,1, if x ® 1, and s ∊(μ,
(2Nμ - 1)/(2Nμ - μ)), F(x) ® -∞. So the population is
unadaptive at x = 1. When x ® 1, and s ∊ ((2Nμ - 1/
(2Nμ - μ), 1), F(x) ® +∞. So the population is adaptive
at x = 1. For x ® 0, F(x) ® +∞ in almost parameters
regimes except s = 1. So the population is always adap-
tive at x = 0. When s = 1, the viability of the sub-fittest
class is zero, so populations stay at the initial state, the
corresponding minimum of adaptive landscape demon-
strates the state with allele frequency x = 0.
Here we address dynamical behavior by the positions

of two real inequivalent fixed points x1 < x2 first.
I) We find two different real fixed points in the regimes

of μ ∈ (0, 2/(2N − 1 + 2
√

N(N − 1))) and s ∊ (μ, 1); in

the regimes of μ ∈ (2/(2N − 1 + 2
√

N(N − 1)), 1) and
σ ∈ ((2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)

√
N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2, 1)

except the regime of με[(2N-1)/4N(N-1)], and δ = (2Nμ-
1)/(2Nμ-μ). We discuss the position between them and
the boundary points 0, 1 and adaptiveness of them in the
following.
i) 1< x1 < x2
In the regimes of μ ∈ (1/(2N − 1), 2/(2N − 1 + 2

√
N(N − 1))]

and s ∊ (μ, (2N μ - 1)/(2Nμ - μ)); in the regimes of
μ ∈ (2/(2N − 1 + 2

√
N(N − 1)), (2N − 1)/4N(N − 1)) , (2N - 1)/

4N(N - 1)) and s ∊ ((2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)
√

N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2, (2Nμ−
1)/(2Nμ − μ)) ,

(2Nμ-1)/(2Nμ-μ)), the fixed points satisfy 1< x1 < x2. At
the same time the singular point x = 1 is adaptive.
There is one adaptive state with allele frequency x = 0
in the system. Populations tend to evolve to the adaptive
state.
ii) 1 = x1 < x2
In the regions of μ ∊ (1/(2N - 1), (2N - 1)/4N(N - 1))

and s = (2Nμ - 1)/(2Nμ - μ), the two fixed points satisfy
x1 = 1, 1< x2. The state with allele frequency x = 1 is
unadaptive. There is one adaptive state with allele fre-
quency x = 0 in the system.
iii) 0 < x1 <1< x2
In the regimes of μ ∊ (0,1/(2N - 1)) and s ∊ (μ, 1); in

the regimes of μ ∊ (1/(2N - 1), 1) and s ∊ ((2Nμ - 1)/
(2Nμ - μ), 1), the fixed points satisfy 0 < x1 <1, 1< x2.
The fixed point x1 is unadaptive. There is only one una-
daptive state with allele frequency x = x1 in the system,
and two unadaptive states with allele frequency x = 1
and x = 0 occur in the system. Populations tend to
evolve to the adaptive states dependent on the position
of the initial state. If the initial state with allele fre-
quency is greater than x1, populations tend to evolve to
the adaptive state with allele frequency x = 1.
iv) 0 < x1 < x2 <1
In the regimes of μ∊ ((2N - 1)/4N(N - 1), (2N - 1)/(4N -

3)) and s ∊ ((2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)
√

N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2, (2Nμ−
1)/(2Nμ − μ)) ;

in the regimes μ ∊ ((2N - 1)/(4N - 3), 1) and s ∊
((2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)

√
N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2, (2Nμ−

1)/(2Nμ − μ)) ,
the fixed points satisfy 0 < x1 < x2 <1. The state with allele
frequency x1 is unadaptive while that with allele frequency
x2 is adaptive. There are two adaptive states with allele fre-
quency x = 0 and x = x2 and two unadaptive states with
allele frequency x = 1 and x = x1 in the system. Popula-
tions evolve to which adaptive states dependent on the
initial position.
v) 0 = x1 <1< x2
In the regime of μ ∊ (0,1) and s = 1, the fixed points

satisfy x1 = 0, 1< x2. When selection rate s = 1, the pro-
cess lies at the initial state because for this case, the via-
bility of the sub-fittest class is zero.
vi) x1 <0 or x2 <0
The case x1 <0 is impossible, and the case x2 <0 is

impossible.
II) Then we discuss the case of two equivalent real

fixed points x2 = x1.
In the regimes of μ ∈ (2/(2N − 1 + 2

√
N(N − 1)), 1)

and
σ = (2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)

√
N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2 ,

we find two same fixed points

x1,2 =
α

4σ (1 − μ)(N − 1)
. (37)

Jiao and Ao BMC Systems Biology 2012, 6(Suppl 1):S10
http://www.biomedcentral.com/1752-0509/6/S1/S10

Page 6 of 13



i) 1 < x1,2
In the regimes of μ ∈ (2/(2N − 1 + 2

√
N(N − 1)), (2N − 1)/4N(N − 1))

and σ = (2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)
√

N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2,
there are two same fixed points satisfy 1 < x1,2, and they
are unadaptive. There is one adaptive state with allele
frequency x = 0 in the process.
ii) 1 = x1,2
At the two points of ((2N - 1)/4N(N - 1),2N/(2N - 1)2)

and ((2N−1)/(4N−3), (4(N−1)(3−6N+4N2)+8(N−1)(4N−3)
√

N(N − 1)/(4N − 3))/(2N − 1)2) ,
there are two same fixed points satisfy x1,2 = 1, and they
are unadaptive. There is one adaptive state with allele
frequency x = 0 in the process.
iii) 0 < x,1,2 <1
In the regime of μ ∊ ((2N - 1)/4N(N - 1), (2N - 1)/(4N -

3)), σ = (2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)
√

N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2; in
the regimes of μ ∊ ((2N - 1)/(4N - 3), 1) and
σ = (2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)

√
N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2 ,

there are two same fixed points satisfy 0 < x1,2 <1, and
they are unadaptive. There is one adaptive state with allele
frequency x = 0 in the process.
III) Finally we consider two imaginary fixed points |x1| <

|x2|. Where the |.| denotes the length for an imaginary
points.

In the regime of μ ∈ (2/(2N − 1 + 2
√

N(N − 1)), 1)
and σ ∈ (μ, (2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)

√
N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2),

there are two imaginary fixed points in the system.
There is only one adaptive state with allele frequency x
= 0. Populations always evolve to the adaptive state.
Especially F’(x) = 0 is a linear equation, the fixed

point is read out from the expression of f(x). We can
measure the adaptiveness by the value of adaptive land-
scape. The bigger the value of adaptive landscape is, the
more adaptive the corresponding state would be. The
corresponding area of the fixed points in parameters
plane is the Figure 1.

Irreversible mutation, selection and random drift balance
Concretely we divide mutation rates into three regimes.
One is with mutation rates μ ∊ (0,1/(2N - 1)) and selection
rates s ∊ (μ, 1). Another is mutation rates μ ∊ (1/(2N - 1),
(2N - 1)/(4N(N - 1))) and selection rates s ∊ (1/(2N - 1),
(2Nμ - 1)/(2Nμ - μ)). Another is with mutation rates μ ∊
((2N - 1)/4N(N - 1), 1) and selection rates s ∊ (2N/(2N -
1)2, (2Nμ - 1)/(2Nμ - μ)). The first parameter regimes, a
part of regions of I iii), corresponds to the case that muta-
tion rates lie in the lower regime. And the adaptive

Figure 1 Relation of fixed points and parameters for the system in all regimes. The regime represented by III i) with parameters regions s

∊ (s1, s2) and μ ∈ (2/(2N − 1 + 2
√

N(N − 1)), 1) has two imaginary fixed points. The red curve denoted by II) with parameters

satisfying s = s2 and μ ∈ (2/(2N − 1 + 2
√

N(N − 1)), 1) has two equivalent fixed points. The three cases of II) occur in the intervals.

The regimes denoted by I) with parameters satisfying s ∊ (s2,s5) and μ ∈ (2/(2N − 1 + 2
√

N(N − 1)), (2N − 1)/4N(N − 1)) ;
satisfying s ∊ (s2, s5) and μ ∊ ((2N - 1)/4N(N - 1), 1); satisfying s ∊ (s 1,s5) and μ ∊ (0,1/(2N - 1)); satisfying s ∊ (s 1,s5) and

μ ∈ (1/(2N − 1), 2/(2N − 1 + 2
√

N(N − 1))) have two real fixed points. The five cases of I) occur in the regions.
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landscape is U-shape. The second parameters regime,
same of I i), is the middle regime. Adaptive landscape with
these parameters demonstrates the monotonic decreasing.
The third parameters region, same of I iv), demonstrates
the clicking process. The adaptive landscape of full para-
meter regimes is visualized as Figure 2. From the expres-
sion and visualization of adaptive landscape F(x), we may
find there are two singular points 0 and 1 of adaptive land-
scape, characterized by infinity values in Figure 2. Singu-
larity from the maximum of adaptive landscape indicates
the population being adaptive while singularity from the
minimum of adaptive landscape indicates the population
being unadaptive. Figure 2 demonstrates the whole pro-
cess of the population evolution including the forming
and losing the fittest class except s = 1. Because the viabi-
lity of the class with allele a is not zero and deleterious
mutation is arbitrary. The adaptive state under the condi-
tion of the parameter s = 1 only means the initial states.
With increasing selection rates the fittest class A forms
quickly while with increasing mutation rates the fittest
class A loses. In the lower mutation rates regime black

dotline describes the population is likely to move to the
fittest class with increasing selection rates, the process is
dominated by selection. Dashed line and black line mani-
fest the losing process of allele A. Because the mutation
rates are lower, selection rates dependent of mutation
rates are lower, these factors result in the change of fittest
class is not easy. In the end there are two adaptive states
in the process. In the higher mutation rates regime, black
dotline and black line describe the population is likely to
move to the fittest class so that the population exists in
the form of coexistence of A and a. Because deleterious
mutation rates are higher, as a consequence allele a
occurs. Selection rates dependent of mutation rates tends
to survive allele A. But the evolutionary process is domi-
nated by the irreversible mutations, the fittest class A
loses. There are two adaptive states in the process under
the balance of irreversible mutation and selection. In the
middle mutation rates and selection rates it demonstrates
the losing process. So we can draw the conclusion that the
click process occurs when there are two stable states in
the process.

Figure 2 Adaptive landscape against allele frequency x with mutation rates and selection rates in all regimes. x label represents allele
frequency μ label represents mutation rates while vertical label is corresponding value of F. Assume population size is constant N=50. The
lower regime corresponds to a part of I iii). In the region fixed points satisfy 0 < x1 <1< x2, dashed line represents μ=0.000005, s=0.00005, black
dotline stands for μ=0.000005, s=0.01010, black line represents μ=0.01, s=0.01012. The medium mutation rates regime corresponds to the
region I i) with fixed points satisfy 1< x1 < x2, black dotline represents μ=0.0101015, s=0.010102, dashed line stands for μ=0.0101015, s=0.0102,
black line investigates μ=0.0101015, s=0.01015. The higher mutation rates regime corresponds to the region I iv) with fixed points satisfy 0 < x1
< x2 <1, black dotline represents μ=0.4, s=0.9, dashed line stands for μ=0.02, s=0.1, black line describes the case for μ=0.02, s=0.05.
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Characterization of the single click time
We visualize the adaptive landscape, then one may wonder
about how the population moves from one peak to
another and how long it might be to move from one maxi-
mum to another. The process was first visualized by
Wright in 1932. In addition, the problem of transition
from metastable states is ubiquitous in almost all scientific
areas. Most of previous works encounter finite potential
barriers from the physical point of view. Interesting issue
here is that we touch upon infinite potential barriers
under the circumstance of well defined two adaptive
states. Then we manifest the derivation of a single click
time. The time of a click of the ratchet is recognized as
the random time of loss of the fittest class [10]. The single
click time is well defined when there are two fittest classes
in the process. It means the interval time between extinc-
tion of the two fittest classes. The corresponding processes
are that there are two well-defined adaptive states in the
system. Corresponding graphs of adaptive landscape is
Figure 3. To evaluate the single click time and show the
further power of adaptive landscape, in the following we
will demonstrate how the single click time from one adap-
tive state to another is derived in this framework.
After straightforward calculation, backward Fokker-

Planck equation corresponding to Eq.(27) can be
expressed with the property of time homogeneous in
the following form [29,30]

∂tρ(x, t) = (f (x) + εD
′
(x))∂xρ(x, t) + εD(x)∂2

x ρ(x, t).(38)

General single click time dependent on initial Dirac
function satisfies

(f (x) + εD
′
(x))∂xT(x) + εD(x)∂2

x T(x) = −1. (39)

With

T
′
(1) = 0.

T(0) = 0.
(40)

Above treatment is valid. Because populations evolu-
tion is according to Muller’s ratchet, that is in the
presence of deleterious mutation, without any recombi-
nation, but with selection and random drift. And the
model in discrete manner demonstrates the transition
probabilities are 0 from the boundary x = 0 to its next.
So the boundary x = 0 only absorbs flux from its next,
the boundary is absorbing. The probabilities from
boundary x = 1 is not zero because μ ≠ 0 and μ, < s ≠
1. And the population can not be out of the boundary x
= 1. So the boundary x = 1 is reflecting. The general
solution corresponding to Eq.(39) is

T(x) =
∫ 0

x

1
εD(y)

exp(−	(y))dy
∫ y

1
exp(	(z))dz, (41)

here F(x) = ∫x(f(x’)/D(x’))dx’(∊ = 1).
Here the evolutionary process occurs when x ∊ [0,1].

We are more interested in the transition time between
the two adaptive states x = 0 and x = 1. In the process,
there are two important states x*, x∗

0 Interval (0,1) con-
tains a potential well at x* and a potential barrier at x∗

0 .
The single click time is composed of two elements, one
denotes forming process of fittest class, the other
describes losing process of fittest class. In general, the

Figure 3 Adaptive landscape with two adaptive states. N=50, blue line represents μ=0.02,s=0.05 corresponding the case for I iv) while green
line stands for μ = 0.000005, s=0.00005 corresponding the case for I iii).
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time spent on forming process is much smaller than
that spent on losing process. So the transition time
approximates to the time spent on losing process.
Because we assume that near x∗

0 we can write

	(x) ≈ 	(x∗
0) − 1

2
(
x − x∗

0

α′ )2. (42)

and near x*

	(x) ≈ 	(x∗) − 1
2

(
x − x∗

β ′ )2. (43)

At the same time, if the central maximum of F(x) is
large compared with 1/N, then exp(F(z)) is sharply
peaked at x∗

0 , while exp(-F(y))/D(y) is very small near
y = x*. Eq.(41) is evaluated as

T1→0 ≈
∫ 0

x∗

1
D(y)

exp(−	(y))dy
∫ x∗

0

1
exp(	(z))dz

≈ 2παβ exp(	(x∗
0) − 	(x∗))

D(x∗)

∝ 1
D(x∗)

exp(	(x∗
0) − 	(x∗)).

(44)

From the expression of Eq.(44), the single click time is
not sensitive to the assumption of Eq.(40). In the higher
mutation rates regime, where x∗

0 approximates to a
adaptive state which is near enough to 1, x* corresponds
to the unadaptive state that the population lies between
the adaptive states 0 and x∗

0 . The potential barrier is
finite. According to classical derivation corresponding to
Eq.(44) the single click time approximates to

T1→0 ≈ lim
x→1

∫ x

0

1
εD(y)

exp(−	(y))dy
∫ 1

y
exp(	(z))dz

≈ 2N
∫ x∗

0

(1 − y)2Nμ(σ−1)/(1−σμ)

(1 − σ + yσ (1 − μ))2N(1−μ)/(1−σμ)
dy

×
∫ 1

x∗
0

z−1(1 − z)(σμ−1−2Nμ(σ−1))/(1−σμ)

× (1 − σ + σ z(1 − μ))2N(1−μ)/(1−σμ)dz

≈ 1
D(x∗)

exp(	(x∗
0) − 	(x∗))

≈ N(N − 1)2
σ 2(1 − μ)2

(α −
√

α2 − β)(4σ (N − 1)(1 − μ) − α +
√

α2 − β)
.

(45)

Here x∗
0 is the fixed point x2, and x* is the fixed point

x1, parameters a, b is the same as Eqs.(34) (35) respec-
tively. The difference of potential is

	(x∗
0) − 	(x∗) =

2Nμ(1 − σ ) − 1 + σμ

1 − σμ
ln

(
1 − x2 − x1

1 − x1

)
− ln

(
1 +

x2 − x1

x1

)
+

2N(1 − μ)
1 − σμ

ln
(

1 +
σ (1 − μ)(x2 − x1)

1 − σ + x1σ (1 − μ)

)
=

2Nμ(1 − σ )
1 − σμ

ln

(
1 − 2

√
α2 − β

α −
√

α2 − β

)

− ln

(
1 − 4(α2 − β)

(α − √
α2 − β)2

)

+
2N(1 − μ)

1 − σμ
ln

(
1 +

2
√

α2 − β

4N − 6 − 6Nσ + 7σ − σμ + 2Nμ +
√

α2 − β

)
,

(46)

Where a and b are the same as Eqs. (34) and (35).
The approximated single click time varies with muta-
tion rates in Figure 4. The single click time T1®

increases with population size N in certain regime,
decreases with mutation rates μ and selection rates s in
the parameters regime μ ∊ (2N/4N(N - 1), 1) and s ∊

((2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)
√

N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2, (2Nμ−
1)/(2Nμ − μ)) .
Because in the regime, with selection rates increasing,
the difference of potential between two fixed points
decreases, the viability of sub-fittest class decreases,
populations evolve to the fittest class. These results in
the the single click time shorter. In another hand, with
deleterious mutation increasing, the population of sub-
fittest class increases, the difference of potential
between two fixed points decreases. These also results
in the single click time shorter.
For the lower mutation rates regime, where the poten-

tial barrier is infinite. The single click time can be esti-
mated also, x* corresponds to the fixed point x1 that the
population lies at the lowest potential.

T1→0 ≈ 2N
∫ x∗

0

(1 − y)2Nμ(σ−1)/(1−σμ)

(1 − σ + yσ (1 − μ))2N(1−μ)/(1−σμ)
dy

×
∫ 1

x∗
0

z−1(1 − z)(σμ−1−2Nμ(σ−1))/(1−σμ)

× (1 − σ + σ z(1 − μ))2N(1−μ)/(1−σμ)dz

≈ 1 − σμ

μ(1 − σ )
.

(47)

From expression of Eq.(47), the single click time goes
to infinity with mutation rates tends to zero in the para-
meters regimes of μ ∊ (0,1/(2N - 1)) and s ∊ (μ, 1).
From Figure 4, when parameters regions lie μ ∊ (1/(2N
- 1), 1) and s ∊ ((2Nμ - 1)/(2Nμ - μ), 1), the results of
the single click time is not sensitive to the population
size. Biologically if deleterious mutation accumulates,
the viability of sub-fittest class increases, these results in
the single click time longer.
Analogous to the derivation of T1®0, we can calculate

T0→1 = lim
x→0

∫ x

1

1
D(y)

exp(−	(y))dy
∫ 0

y
exp(	(z))dz

≈ lim
x→x∗ 2N

∫ x

1

(1 − y)2Nμ(σ−1)/(1−σμ)

(1 − σ + yσ (1 − μ))2N(1−μ)/(1−σμ)
dy

×
∫ 0

y
z−1(1 − z)(σμ−1−2Nμ(σ−1))/(1−σμ)

×(1 − σ + σ z(1 − μ))2N(1−μ)/(1−σμ)dz

= ∞.

(48)

Compared with the singular point x = 1, the difference
between two singular points x = 0 and x = 1 is the
mutation rates μ. This results in the power of (1-z) is
not negative, so the single click time is finite from it.
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The infinity of the single click time from x = 0 comes
from that the mutation from unfavored allele a to
favored allele A is zero. This results in the second inte-
gral nonintegrable because of the negative power of z.
Biologically because the absence of back mutation, the
accumulation of deleterious mutation, once the popula-
tion arrives at the state that almost individuals are with
allele a, the population is absorbed the state and can
not leave with high probability. Mathematically, because
the second integral is singular for the singular point x =
0. And the integrated function is a fraction respect to
argument x, but the highest power of denominator is
smaller than that of numerator. That results in the
power of x is 2N - 2. As a consequence the second inte-
gral is singular.

Discussion
We analytically construct adaptive landscape. The con-
structive method is independent on the existence and
normalization of stationary distribution. We demonstrate
the position and adaptiveness of all fixed points for the
whole parameters regimes under the condition of the dif-
fusion approximation. An interesting thing is the imagin-
ary fixed points occurring. We give the parameters
regions of their occurrence. However, we have not found

any study of Muller ratchet for the fixed points to give a
complete description. In addition, we give the description
of escape from infinite potential. However, intuitively
infinite potential means the population lies at adaptive
state. The transition from the adaptive state can not
occur. Here we find that the escape from infinite poten-
tial can not occur when the boundary is absorbing. So we
define the absorbing boundary by adaptive landscape and
the single click time without any extraneous assumptions.
The model with discrete manner describes the nature

of populations evolution. Here we give two special cases.
One is that the population lies at that state with allele fre-
quency x = 0, the other is that the population lies at the
state with allele frequency x = 1. We compare the model
with discrete and continuous manners to conclude the
definition of boundary conditions without any extraneous
assumptions. The model with continuous manner is
derived under the condition of enough small space
change δx in one generation, in another word, when
population size N is much bigger. The model with con-
tinuous manner can correspond to the model with dis-
crete manner.
When allele frequency x = 0, the matrix for transition

probabilities demonstrates that the population only
absorbs the flux from the next, and it can not output any

Figure 4 The approximated single click time decreases with mutation rates increasing in the regime μ ∊ (2N/4N(N - 1), 1) and
σ ∈ ((2+2μ−10Nμ+4N2μ+2Nμ2+4(1−μ)

√
N(N − 1)((2N − 1)μ − 1))/(μ − 2N + 1)2, (2Nμ−

1)/(2Nμ − μ)) denoted by I iv). Assume N=100, blue, black and dashed lines, corresponding high

mutation rates regime, represent μ=210/(400*99), μ=500/(400*99) and μ=1000/(400*99) respectively. Red and green lines, corresponding low
mutation rates regime, represent μ=210/(400*99) and μ=500/(400*99) respectively. The approximated single click time increases with mutation
rates increasing in the regime μ (1/(2N-1),1) and s ((2Nμ-1)/(2Nμ-μ),1) denoted by I iii). Green dotline represents this case.
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flux. In the model with continuous manner the value of
adaptive landscape with allele frequency x = 0 arrives at
the maximum except s = 1. This demonstrates the state
with allele frequency x = 0 is almost always adaptive. Then
we calculate the single click time from the boundary with
allele frequency x = 0. We find the single click time is infi-
nite. So we draw the conclusion that the state with allele
frequency x = 0 absorbs flux, and does not output flux.
The boundary is absorbing. When the allele frequency x =
1 in the model with discrete manner, the transition prob-
ability is

(N!(μ(1 − σ ))N−m(1 − μ)m)/(m!(N − m)!(1 − σμ)N),

that is, when μ >0, the transition probabilities are not
zero, the state with allele frequency x = 1 can input any
flux to its next state. The single click time from the
state is finite in the model with diffusion manner, how-
ever the potential at the state could be infinite, then we
draw the conclusion this boundary is not absorbing.
This is consistent with the biological understanding.
This article presents an approach to estimate the single

click time of Muller’s ratchet. Furthermore, it define the
absorbing phenomenon by the single click time without
any extraneous assumptions. Inspired by [16,10], we con-
nect Muller’s ratchet to one locus Wright-Fisher model
with asexual population including N haploid individuals.
And our model is represented as a Fokker-Planck equa-
tion. We give a complete description for the position and
adaptiveness of all fixed points in the whole parameters
regimes. This is first done bases on diffusion approxima-
tion. The investigated elements is at the allele level. This is
different from Ref. [10]. Our method does not need the
existence and normalization of the stationary distribution.
Our constructive method is independent of the stationary
distribution. Compared with the method based on diffu-
sion approximation [15,2], mathematically it is described
as stochastic differential equations. Our method investi-
gates the global dynamical property of the system, and
reduces the complexity of calculating stochastic differen-
tial equations. In addition, the boundary condition of
these stochastic differential equations is prescribed. Com-
pared with Ref. [10], They added Dirac function to the
boundary. But this is not appropriate for the adding non-
differential Dirac function to stationary distribution, and
stationary distribution should satisfy diffusion equation.
However, the treatment is convenient for computing the
stationary distribution. The stationary distribution of
theirs is equivalent to our adaptive landscape. They had
not given the shape of adaptive landscape when the muta-
tion rate lies in the lower regime. We use the model
defined in the interval (0, 1) to describe the absorbing
boundary. We check the biological phenomenon by the
model with both discrete and continuous manners. This is

a new method to handle the boundary condition. We
investigate the absorbing phenomenon by it without any
extraneous assumptions.
To summarize, we have obtained two main sets of

results in the present work. Most importantly, we find
that the absorbing phenomenon is characterized by the
adaptive landscape and the single click time without any
extraneous assumptions. First, we demonstrate the adap-
tive landscape can be explicitly read out as a potential
function from general diffusion equation. This not only
allows computing the single click time of Muller’s ratchet
straightforward, but also characterizes the whole picture
of the ratchet mechanism. The adaptive landscape has
rich structures such as finite and infinite potential, real
and imaginary fixed points. We analytically demonstrate
the adaptive and unadaptive states for the whole para-
meters regimes. We find corresponding parameters
regimes for different shapes of adaptive landscape. Sec-
ond, we give the formula about the single click time with
finite and infinite potential. And we find the single click
time increases with selection rates and population size
increasing, decreases with mutation rates increasing.
These results give a new understanding of infinite poten-
tial and allow us a new way to handle the absorbing phe-
nomenon. In this perspective our work may be a starting
point for estimating the click time for Muller’s ratchet in
more general situations and for describing the boundary
condition. Such demonstration suggests that adaptive
landscape may be applicable to other levels of systems
biology.
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