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ABSTRACT Understanding the protein-folding process is an outstanding issue in biophysics; recent developments in molec-
ular dynamics simulation have provided insights into this phenomenon. However, the large freedom of atomic motion hinders the
understanding of this process. In this study, we applied persistent homology, an emerging method to analyze topological fea-
tures in a data set, to reveal protein-folding dynamics. We developed a new, to our knowledge, method to characterize the pro-
tein structure based on persistent homology and applied this method to molecular dynamics simulations of chignolin. Using
principle component analysis or nonnegative matrix factorization, our analysis method revealed two stable states and one sad-
dle state, corresponding to the native, misfolded, and transition states, respectively. We also identified an unfolded state with
slow dynamics in the reduced space. Our method serves as a promising tool to understand the protein-folding process.
SIGNIFICANCE To understand the protein-folding process, protein forms must be presented in a comprehensible way.
In this article, we propose a method to represent the internal protein configuration using persistent homology, an emerging
data analysis technique based on topology. Using this method, we simplified the complex dynamics of chignolin and
identified two metastable and transition states as fixed points. Our method is applicable to other macromolecules and will
help to understand the functions and dynamics of biomolecules such as proteins and DNA.
INTRODUCTION

Since the proposal of Levinthal’s paradox in 1968, the
folding of biomolecules, including proteins, has attracted
the interest of numerous scientists (1). Molecular dynamics
(MD) simulations have contributed to the understanding of
the folding mechanisms (2). However, the atoms in the
MD simulations have a large degree of freedom, and the
essential folding dynamics must be extracted to comprehend
the protein dynamics. Therefore, several methods have been
proposed, such as principal component analysis (PCA) (3),
relaxation mode analysis (4), time-structure-based indepen-
dent component analysis (5,6), and manifold learning (7).

Previous studies attempted to identify the essential mo-
tion related to the large deformation that leads to protein
folding. However, the definition of ‘‘large deformation’’ is
ambiguous. For example, when a protein unfolds into nearly
a straight line, a small bend at the center of the molecule will
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cause a large dislocation of the atoms at the end of the chain.
In this case, the deformation in a Ramachandran plot (8) is
small, but it is large in atom Cartesian coordinates. More-
over, the importance of deformations also depends on the
protein structure. For example, in a small protein that has
only one b-sheet, a small change in the bond angle at the
hairpin of the molecule may disrupt the b-sheet structure.
Thus, this small change in the angle results in a large defor-
mation. Alternatively, if this protein is completely unfolded,
then a slight change in the hairpin region bond angle does
not cause a large deformation. These examples show the dif-
ficulties in defining a large deformation in a protein.

We propose using topological data analysis (TDA) to
characterize the structure and deformation of a protein. Us-
ing TDA, we investigated the topological signatures such as
loops or vacancies embedded in a data set. This approach
yields successful results in many fields, including RNA-
hairpin-folding analysis (9) or gene regulation networks
(10). TDA has several advantages compared with standard
protein structure analysis tools such as Ramachandran plots,
distance matrices, and the atomic Cartesian coordinates.
First, TDA captures changes in the global structure, whereas
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other methods such as Ramachandran plots only consider
local properties, such as bond angles. In contrast, ‘‘loops’’
or ‘‘vacancies’’ are formed by several atoms. Thus, TDA
captures the nonlocal structure. Second, topological changes
strongly depend on the atom conformation. For example, if a
protein forms a straight chain, then there are no loops. If a
small bend occurs at the center of this chain, then the atoms
at the end of the chain exhibit large dislocations; however,
loops do not form. Alternatively, a small change in the
bond angle at the hairpin of a b-sheet can break the loops
formed by the atoms in the b-sheet. Finally, TDA provides
intuitive insights into protein dynamics. For example, loop
emergence and disappearance are more clearly visualized
using TDA than using the coordinated atomic motion.

Here, we applied persistent homology (PH) analysis (11)
for TDA. PH is based on algebraic topology and has been
applied to many problems in physics, chemistry, biology,
and medicine (12–16). Although PH is a highly effective
tool for the analysis of nonlocal structures, it has several
inherent limitations. First, PH results are sometimes difficult
to interpret. In the original PH analysis, we obtain two
values called ‘‘birth’’ and ‘‘death’’ for each loop or cavity
and make decisions based on the distribution of these values.
Frequently, these two values are insufficient to understand
the physical relevance provided by PH. For example,
consider the folding of a protein that has two a-helices. If
the birth and death values obtained from these a-helices
are nearly identical, it is difficult to distinguish which a-he-
lix is created first in the folding process. Recently, Escolar
et al. developed a method to calculate ‘‘volume-optimal cy-
cles,’’ which enables identification of the atoms that form
loops or cavities (17,18). This method is useful to explain
PH results and has revealed hidden structures in glass and
amorphous polymers (15,16). Another difficulty of PH lies
in the fluctuation in the loop number. Even if the number
of atoms is constant, the number of loops obtained by PH
depends on the configuration of the atoms. However, stan-
dard machine-learning techniques such as PCA or k-means
clustering require that all of the input data have the same
dimension. These machine-learning techniques were
avoided in previous studies using PH to analyze biomole-
cular structures (12,13). To overcome this difficulty, several
methods such as persistent diagram vectorization (19),
kernel methods (20), and persistent landscapes (21) have
been proposed.

In this article, we propose a new, to our knowledge, tech-
nique to apply machine learning to PH analysis. The key
concept is to construct a ‘‘topological feature vector’’
(TFV) using volume-optimal cycles. In this approach, we
considered the volume-optimal cycles as the ‘‘text’’ that de-
scribes the protein structure. Each volume-optimal cycle is a
collection of simplices (edges or faces), similar to a text be-
ing a collection of words. This concept enables the use of
text-mining techniques. Next, we applied PCA and nonneg-
ative matrix factorization (NMF) to reduce the TFVs ob-
tained from MD simulations of chignolin. Finally, we
compared the result with analyses based on atom-position
and contact mapping. A previous study showed that chigno-
lin has native, misfolded, unfolded, and intermediate struc-
tures (4,7). Therefore, we performed a full atomic MD
simulation of chignolin in aqueous solution and analyzed
the result using TFV. We observed that NMF of TFV
provides essential information on protein structure and dy-
namics. Additionally, we found that the dynamics in the
reduced space yielded two stable- and one saddle-fixed
points, which correspond to native, misfolded, and transition
states, respectively. The unfolded state did not correspond to
a fixed point. However, the dynamics in the unfolded state
were extremely slow.

The remainder of the article is structured as follows: in
Methods, we describe the PH method, TFV construction,
and dimension reduction by NMF. We also describe the de-
tails of the chignolin MD simulation. In Results and Discus-
sion, we present the analysis results and compare them with
analysis based on Cartesian coordinates and contact map-
ping. PH provides an intuitive description of the folded, mis-
folded, transition, and unfolded states. The challenges to
overcome, as well as the future direction, are discussed in
Conclusions.
METHODS

Our analysis process is composed of three procedures. First, we performed

PH analysis and identified all loops with their volume-optimal cycles.

Second, we constructed a TFV, which stores the edge contributions to the

volume-optimal cycle formation. Third, we reduce the data set dimension-

ality using PCA or NMF. We explain each step in the following sections.

The data set and scripts we used are uploaded on Open Science Framework:

https://doi.org/10.17605/osf.io/hsp5w.
PH with volume-optimal cycles

The general mathematical definition of PH is described in terms of the

filtration of simplicial complexes (11) or quiver representation (22). In

this section, we explain the degree 1 PH of an a-complex composed of a

point cloud, which was used to analyze protein folding.

Consider there are n atoms at p1 ¼ (x1, y1, z1), p2 ¼ (x2, y2, z2), ., pn ¼
(xn, yn, zn) in a three-dimensional space (Fig. 1). The PH of the a-complexes

can be regarded as a topological structure when we place a ball of radius r at

p1, p2, ., pn. If r ¼ 0, all of the balls are disconnected (Fig. 1 a). As we

increase r, the balls coalesce, and a loop emerges at r ¼ b1 (Fig. 1 b). We

call b1 the ‘‘birth’’ of this loop, and the three edges, (p3p5), (p3p6), and

(p5p6), surround this loop. This loop shrinks as r increases, and at r ¼ d1,

the loop is fulfilled and disappears (Fig. 1 c). We call d1 the ‘‘death’’ of

this loop. In this case, the edges that surround the loop are unique; however,

they are not always uniquely determined. For example, in the case of Fig. 1

d, the loop that emerged at r¼ b2 is surrounded by five edges, (p1p2), (p2p4),

(p4p6), (p6p3), and (p3p1), as depicted by the solid line. However, we can

take another set of edges that surround this loop: (p1p2), (p2p4), (p4p6),

(p6p5), (p5p3), and (p3p1), depicted as dashed lines. To avoid the ambiguity

when defining the set of edges that surround the loop, the volume-optimal

cycle is defined as the loop that has a minimal number of triangles inside. In

our example, the first loop has five edges and can be divided into three tri-

angles: (p1p2p4), (p1p4p6), and (p1p6p3). Of course, there are many other
Biophysical Journal 118, 2926–2937, June 16, 2020 2927
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FIGURE 1 Example of PH analysis. If the radii of the balls are 0, then all atoms are disconnected (a). As we increase the size, the balls coalesce. At r¼ b1,

we obtain a loop surrounded by three edges: (p3p5), (p3p6), and (p5p6) (b). This loop is destroyed when we increase the size of the balls to r ¼ d1 (c). If we

increase r further, a new loop appears (d). In this case, we can take several sets of edges that surround the empty space, depicted as solid and dashed lines. In

this case, the volume-optimal cycle is (p1p2), (p2p4), (p4p6), (p6p3), and (p3p1), depicted by solid lines. This loop is destroyed at r ¼ d2 (e).
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ways to decompose this loop into triangles; however, the number of trian-

gles is uniquely determined. The second loop consists of six edges, and four

triangles are needed to construct this loop. Therefore, we choose the first

loop structure as the volume-optimal cycle.

We frequently designate loops that emerge in PH as ‘‘generators.’’ From

one atomic conformation, we obtain several generators. In PH, the gener-

ator birth and death distributions give important insights into the data set

structure. To visualize this distribution, we use the scatter plot of births

and deaths, which is called a persistence diagram. Another visualization

method is persistent barcodes, in which horizontal lines represent generator

births and deaths. We will present several barcode plots in Results and

Discussion.

As we have mentioned in the Introduction, the number of generators

strongly depends on the atom configuration. Even if the number of atoms

is the same, the number of generators can differ. This fact makes it difficult

to combine machine-learning techniques with PH. We attempted to over-

come this challenge by introducing a TFV composed of the volume-optimal

cycles (see below). The calculation of births, deaths, and volume-optimal

cycles was performed by HomCloud ver.1.2.1 (https://www.wpi-aimr.

tohoku.ac.jp/hiraoka_labo/homcloud/).

PH is strongly related to Betti numbers, which are topological invariants

in mathematics. In topology, the k-th Betti number is defined as the rank of

k-th homology groups. In our case, k ¼ 1, it is the number of loops. There-

fore, if we put balls with radius r at p1, p2, ., pn, the first Betti number of

this set is the number of generators whose births and deaths are smaller and

larger than r, respectively.

Before concluding this subsection, we discuss the use of higher-degree

PH. In homology, ‘‘degree’’ is the dimension of ‘‘boundaries,’’ and the

PH with degree 2 is used to investigate the vacancies surrounded by trian-

gles. Degree 2 PH often plays an important role in material science because
2928 Biophysical Journal 118, 2926–2937, June 16, 2020
it provides information on the voids. However, Xia and Wei found that PH

with degree 2 gives little information on protein structure (12). Further, they

revealed that both a-helices and b-sheets provide no void when analyzing

Ca atoms as a point cloud. The native chignolin structure contains only

one b-sheet and no tertiary structure. Thus, we choose to ignore higher-de-

gree PH in this study.
Construction of TFV

Using the loop information, we defined a TFV, v, which describes the point

cloud topology. First, for each edge E ¼ (pipj), we listed the generators gk,

whose volume-optimal cycles include E. We then calculated the ‘‘impor-

tance’’ of the edge E as the sum of the deaths of gk. If an edge was not

included in any volume-optimal cycles, we set the edge ‘‘importance’’ as

0 (Fig. 2). By this method, we obtained the TFV, whose dimension is

M ¼ n(n � 1)/2.

Feature vector construction was similar to the ‘‘bag of words’’ and ‘‘term-

frequency-inverse document frequency’’ methods, which are standard

methods used in natural language processing (23). These methods regard

a document as a multiset of terms and calculate the importance for each

term. In our approach, edges were defined as the terms that describe the pro-

tein shape.

There are several possible methods to construct a TFV from the volume-

optimal cycles. For example, we could create another TFV using births

instead of deaths. Lifetime, the difference between death and birth, is

also often used as an important PH variable. In this study, we examined

the results of birth-based and death-based TFV. These qualitatively yielded

the same result. Alternatively, we could use the products of deaths instead

of sums of deaths. In this study, we used the sum of deaths for simplicity.

https://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud/
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FIGURE 2 Schematic description of the TFV.
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Indeed, there may be more a complex and sophisticated definition of the

TFV (see Conclusions).
Dimension reduction by nonnegative matrix
factorization

The dimensions of a TFV are generally high, making dimension reduction

using PCA or another method useful. We primarily employed NMF to

reduce the dimensionality of TFV (24). We assumed that the M-dimen-

sional TFVs at time t ¼ t1, t2, ., tN are v1, v2, ., vN, where vi ¼ (v1i,

v2i, ., vMi)
t and (.)t represents the transverse of the matrix, respectively.

In NMF, we attempted to reduce the system into L-dimensional space, un-

der the assumption that both coefficients and bases are nonnegative. We

calculated M � L nonnegative matrix W ¼ (wij) and an L � N nonnegative

matrix H ¼ (hij) that minimized jjV � WHjj, where jj.jj represents the
Frobenius norm. Using this method, we can approximate vizPL

k¼1wkhki, where wk ¼ (w1k, wk2, ., wMk)
t are the bases of the reduced

space.

Compared with PCA, NMF has several advantages. First, when we re-

constructed TFVs from the information in reduced spaces, NMF consis-

tently generated nonnegative vectors. Both NMF and PCA attempt to

approximate the feature vector v by the linear combination of several bases

vectors ei: vz
P
i
ciei. In NMF, we set ci R 0 and ei to be nonnegative, and

approximated v was also nonnegative. Conversely, certain components inP
i
ciei can be negative in PCA. When v is defined as a nonnegative vector,

understanding large negative components in
P
i
ciei is difficult. Another

advantage of NMF is that the bases can capture important local features.

Though there is no theoretical explanation, the application of NMF to

face-recognition problems shows that NMF can extract localized character-

istics such as noses or eyes, whereas PCA captures nonlocal structures (24).

In the case of protein-folding analysis, the ability of NMF to capture local

structure is desirable. For example, we considered the folding of proteins

with several secondary a-helix and b-sheet structures. In this case, it is nat-

ural to assume that the secondary structure formation does not occur simul-

taneously. In NMF, we expected several bases to represent secondary

structures. However, if we used PCA for decomposition, each basis repre-

sents the complex structural change such as the disappearance of several he-

lices and appearance of several sheets. Therefore, we need further

investigation to understand the formation of these structures.

Though useful, NMF has several disadvantages. First, the NMF decom-

position is not unique. Suppose that W and H are nonnegative matrices. If

both A and A�1 are nonnegative matrices, then W0 ¼ WA and H0 ¼ A�1H

are nonnegative, and we obtain another decomposition V zW0H0. In prac-
tice, when the feature matrix is sparse and we initialize W and H by a

nonnegative double singular value decomposition, then optimization with

a coordinate descent solver generally yields small residue jjV � WHjj
with low computational costs (25). This method is deterministic and free

from the problem caused by the nonuniqueness of NMF decomposition.

Because our feature vector is sparse, we applied this initialization and opti-

mization method. NMF also has the ambiguity of ‘‘scales.’’ We can

‘‘rescale’’ the basis wi: w
0
i¼ aiwi and h

0
ij¼ a�1

i hij , where ai-values are pos-
itive constants, which provides another decomposition. Here, we scaled w-

values so that jjwjj ¼ 1. Thus, w can be assumed as a dimensionless vector,

and hij has the same dimension as births and deaths.

Another disadvantage of NMF is the need to determine the rank of

reduced space L a priori. Though there is no de facto standard to estimate

rank L, several methods are proposed (26,27). In our study, we used the

method proposed by Hutchins et al. (27), who showed that if the data set

is random, the residual sums of squares (RSS) between VandWH decreases

linearly with rank r, and proposed to use L at the inflection point. We per-

formed these calculations using scikit-learn 0.19.1 and NMF 0.21.0 (28,29).
Chignolin molecular dynamics simulation

Using the method described in Mitsutake and Takano (4), we conducted

MD simulations of aqueous chignolin near a transition temperature. We

placed one chignolin molecule, two Naþ atoms, and 3674 H2O molecules

in a cube and set the temperature and pressure at 450 K and 1 atm, respec-

tively. After energy minimization and equilibration for 50 ns, we performed

a 1-ms NPT-constant MD simulation. We captured snapshots of the mole-

cules every 10 ps to create 100,000 samples. In this simulation, we used

the ff99SB force field and TIP3P models for the water molecules. From

each snapshot, we obtained the coordinates of 10 Ca atoms in chignolin

and performed the PH analysis. The simulation was conducted using GRO-

MACS 16.4 (30).
RESULTS AND DISCUSSION

In this study, we performed PH analysis of a point cloud
composed of 10 Ca-atoms. We calculated the TFVs from
snapshots of chignolin and reduced the configuration into
low dimensional spaces by PCA and NMF.
Analysis using TFV

To carry out NMF analysis, we first determined the rank of
reduced space. To determine the rank, we calculated RSS to
determine the rank of reduced space L. To reduce the
computational cost, we randomly selected 1000 samples
from our data set and carried out NMF for L ¼ 1, 2, .,
10. The obtained RSS is shown in Fig. 3. In Fig. 3 a,
when we used births to construct the TFV, the RSS rapidly
decreased as L increased from 1 to 3 and slowly decreased
for L > 3. This result indicates that L ¼ 2 or 3 are the
best reduced space ranks. When we used deaths to construct
the TFV, the RSS shown in Fig. 3 b was obtained, again sug-
gesting that L ¼ 2 or 3 is the best rank of reduced space.
Biophysical Journal 118, 2926–2937, June 16, 2020 2929



FIGURE 3 Plot of RSS for rank L ¼ 1, 2, ., 10: (a) TFV is constructed from births. (b) TFV is constructed from deaths.
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To investigate the effect caused by changing L, we
compared the results obtained by TFVs constructed from
births and deaths for L ¼ 2, 3, and 4. Fig. 4 represents the
dynamics in the reduced space for t ¼ 0 to 100 ns. In this
figure, hk at time t represents the value of hki, where i is
the TFV index obtained from the snapshot at time t. Fig. 4
a shows the dynamics when L ¼ 2, and births were used
to construct the TFV. Clearly, there are two phases: the first
shows that 10 Å(h1( 30 Å, whereas h2( 10 Å; the other
shows that 10 Å (h2( 30 Å, whereas h1( 10 Å. We also
noted that short periods occur in which both 5 Å (h1; h2(
15 Å. Therefore, it seems that there are two or three phases.
This result is not modified when deaths are used instead of
births to define TFV, as shown in Fig. 4 b. The correlation
between h1 in Fig. 4, a and b was 0.9967, and the correlation
between h2 was 0.9968. Fig. 4, c and d show the plots when
L ¼ 3. When we compared Fig. 4, a and c, we found that at
the second phase in Fig. 4 a, in which h1( 10 Å and 10 Å
(h2( 30 Å, h2 in Fig. 4 c is large: 10 Å (h2 < 30 Å,
whereas h1; h3( 10 Å. Additionally, when 10 Å (h1(
30 Å in Fig. 4 a, h2( 10 Å in Fig. 4 c, although no clear
difference was observed between h1 and h3. Third, when
5 Å(h1; h2( 15 Å in Fig. 4 a, 10 Å(h1( 30 Å, whereas
h2; h3( 10 Å in Fig. 4 c. However, the third observation
seems controversial because of the short phase duration.
From these observations, we found no additional stable
phase by increasing the rank L from 2 to 3. However, the
analysis for L ¼ 3 may be useful to understand the details
of the phase in which both h1 and h2 are small in Fig. 4 a.
These observations are not modified when we set rank
L ¼ 4, shown in Fig. 4, e and f. Thus, we used rank L ¼ 2
and deaths to construct TFVs.

Fig. 5 a shows the TFV distribution in the reduced space
by NMF, L ¼ 2. We observed two large peaks at (h1, h2)
�(25 Å, 0 Å) and (0 Å, 25 Å), which we designated region
2930 Biophysical Journal 118, 2926–2937, June 16, 2020
A and B, respectively. The density was high along the
straight line connecting these peaks, with the minimum at
(h1, h2) �(10 Å, 15 Å). We also noted that the density in
the area around (h1, h2) �(5 Å, 0 Å) was high. This result
is consistent with the results obtained by PCA of TFVs
shown in Fig. 5 b. Here, we clearly identified two clusters,
which are distinguished by first principal components. The
correlation between first principle component and h1, h2
are 0.941 and �0.927, respectively. Therefore, the right
and left clusters in Fig. 5 b correspond to clusters at region
A and B in Fig. 5 a, respectively. Though NMF and PCA
gave qualitatively similar results, we only discuss the results
of NMF in the following sections of this article because they
more clearly reveal protein structures, whereas PCA indi-
cated only the ‘‘difference’’ of these two clusters. As
described in the Methods, we found negative components
when we reconstructed the TFV from PCA, which exacer-
bates the difficulty in understanding the protein structure.
The NMF result in Fig. 5 a indicates that the peaks of clus-
ters are nearly on the h1 and h2 axes, respectively. Thus, we
can infer the ‘‘typical’’ chignolin TFVs in each cluster by
checking w1 and w2 directly.

To investigate the structures at the two density peaks, we
examined the bases w1 and w2 obtained by NMF, as shown
in Fig. 6. Chignolin has 10 Ca atoms, and the TFV dimen-
sion is 45, which is the number of Ca atom pairs. In the
top panel of this figure, we plotted the value of each compo-
nent in w1 and w2. Darker squares represent that the corre-
sponding edge component is large. We omitted the
component in the lower left triangle. For example, in the
case of w1, the color at the second row, ninth column is
dark, which implies that the component of w1 that corre-
sponds to the Tyr2-Trp9 pair is large. From this figure,
when the protein was in region A in Fig. 5 a, the edge be-
tween Tyr2 and Trp9 made a large contribution to loop



FIGURE 4 Dynamics of the TFV in reduced

spaces. The ranks are as follows: (a) rank ¼ 2,

birth-based TFV; (b) rank ¼ 2, death-based TFV;

(c) rank ¼ 3, birth-based TFV; (d) rank ¼ 3,

death-based TFV; (e) rank ¼ 4, birth-based TV;

and (f) rank ¼ 4, death-based TFV.

Folding Analysis by Persistent Homology
formation because the corresponding feature vector was
well approximated by h1w1. In the bottom panel of this
figure, edges with corresponding components in w larger
than 0.2 are indicated by blue lines. We note that wi-values
are dimensionless, as discussed in Methods.

From this figure, we noted that the adjacent amino acid
pairs, such as Gly1-Tyr2 or Asp3-Pro4, made a large contri-
bution to the cycle formation. This is natural because the
distances between adjacent amino acids are short because
of chemical bonding. There was a large difference between
w1 and w2 on the components corresponding to Tyr2-Trp9,
Tyr2-Thr8, and Pro4-Gly7. In particular, the components
corresponding to Tyr2-Trp9 and Tyr2-Thr8 showed clear
differences; w1 (Tyr2-Trp9) ¼ 0.43, whereas that of w2

(Tyr2-Trp9) ¼ 0. w1 (Tyr2-Thr8) ¼ 0, whereas w2 (Tyr2-
Thr8) ¼ 0.47. Therefore, h1 becomes large if there is a
loop whose volume-optimal cycle includes Tyr2-Trp9, and
h2 becomes large when a loop forms whose volume-optimal
cycle includes Tyr2-Thr8. These results are depicted in the
bottom panel of this figure. To determine which state corre-
sponds to the native structure, prior knowledge of the native
state is needed. When we applied PH to the native structure,
we found that Tyr2-Trp9 was dominant in the native state.
The TFV component for Tyr2-Trp9 was 1.249, whereas
that for Tyr2-Thr8 was 0.130. Therefore, we conclude that
the cluster at region A in Fig. 5 a corresponds to the native
state, whereas the cluster at region B corresponds to the mis-
folded state. Concerning the state around (h1, h2) �(5.0 Å,
0 Å), we noted that a small h1 and h2 implies that there
are no loops. Because the feature vectors v were approxi-
mated as v � P

i

hiwi, h1¼ h2¼ 0 suggests that v� 0. There-
fore, we hypothesized that the state with a small (h1, h2) is
unfolded.

This hypothesis was supported by the molecule snap-
shots. In Fig. 7, we plotted examples of the chignolin config-
uration in the native, misfolded, and unfolded structures.
Biophysical Journal 118, 2926–2937, June 16, 2020 2931



FIGURE 5 Density of states in reduced spaces.

(a) shows the NMF reduction. (b) shows the PCA

reduction. To see this figure in color, go online.
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This figure presents results consistent with our hypotheses.
Fig. 7, d–f show the distance between amino acids in each
state. In this plot, we calculated the distance between Ca

atoms and inferred that this was the ‘‘distance’’ between cor-
responding amino acids. In the folded state, the distance be-
tween Tyr2-Trp9 is small, whereas the distance between
Tyr2-Thr8 is small in misfolded states. We also noted that
both the distances between Tyr2-Trp9 and Tyr2-Thr8 are
small enough to assume these amino acids are ‘‘contacted,’’
as discussed in the next subsection. In the unfolded state, the
distance map shown in Fig. 7 f has no clear structure.

Finally, we compared the TFV-based analysis and other
PH analysis. When applying PH to proteins, Xia and Wei
proposed the molecular topological fingerprint (MTF)
method (12,13) and claimed that ‘‘accumulated bar length’’
of persistent barcodes are useful in identifying protein struc-
ture. To investigate the MTF, we plotted a ‘‘barcodes’’ dia-
gram for the sample data in Fig. 7, g–i. In the barcode
plot, each cycle is represented by a horizontal line, which
begins at birth and ends at death. In this plot, cycles are
sorted in ascending birth order. At t ¼ 160 ns, we have eight
loops; however, several loops had lifetimes too short for
observation in Fig. 7 g. Fig. 7, h and i represent examples
of barcodes for misfolded and unfolded states, respectively.
In the misfolded state, we observed nine cycles; however, it
2932 Biophysical Journal 118, 2926–2937, June 16, 2020
was difficult to distinguish the native and misfolded states.
We observed four loops with very short lifetimes in the
unfolded state, which can be easily distinguished from other
states. Xia and Wei proposed to use accumulated bar length,
i.e., the sum of bar length of all cycles, to describe the struc-
ture of protein. In Fig. 8, we show the density plot of h1, h2
and accumulated bar length. Clearly, the accumulated bar
length for both clusters was �1.5–2.0 Å. Thus, we cannot
distinguish these two peaks by accumulated bar length.
The advantage of TFVanalysis compared with other PH an-
alyses relies on the volume-optimal cycles, which offer
much more information than persistent barcodes. For
example, we show samples of volume-optimal cycles for
native and misfolded states in Fig. 9. From the list of native
state cycles shown in Fig. 9 a, we found that as the amino
acid radius of r increases, the edge Tyr2-Tr9 emerge first,
and by increasing r further, the Gly1-Gly10, Pro4-Gly7,
Asp3-Thr8, Asp3-Gly7, Asp3-Thr6, Tyr2-Thr8, and Gly1-
Trp9 edges emerge, in this order. Compared with the MTF
for the 2JOX protein presented by Xia and Wei (12), the
chignolin’s MTF is more complex. For 2JOX, the edges
emerged between the closest adjacent amino acids, with
one amino acid having only one edge in contact with the
other strand of the b-sheet. In our case, several amino acids
contact two or more neighbors. For example, Gly1 contacts
FIGURE 6 Components of w for rank ¼ 2. We

also represent the edges whose corresponding com-

ponents are larger than 0.2 by blue lines. To see this

figure in color, go online.



FIGURE 7 (a)–(c) Example of protein configuration in native, misfolded, and unfolded state. (a) shows the native state, t ¼ 160 ns, (h1, h2) ¼ (22.7,3.03).

(b) shows the misfolded state, t ¼ 120 ns, (h1, h2) ¼ (3.81, 23.1). (c) shows the unfolded state, t ¼ 60 ns, (h1, h2) ¼ (3.60, 6.44) . (d)–(f) show examples of

distance maps for native (d), misfolded (e), and unfolded states (f). (g)–(i) show persistent barcode plots for native (g), misfolded (h), and unfolded states (i).

To see this figure in color, go online.
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Trp9 and Gly10, whereas Asp3 contacts Gly7, Thr6, and
Thr8. The list of volume-optimal cycles in Fig. 9 a also
showed that four of eight cycles include the edge Tyr2-
Trp9. However, in the misfolded state at t ¼ 120 ns, we
observed that four of nine cycles included the edge Tyr2-
Thr8, as shown in Fig. 9 b. These observations are consistent
with the result presented in Fig. 6. We also noted that births
and deaths are not sufficient to distinguish the cycles in the
native and misfolded states. For example, cycles Gly1-Tyr2-
Trp9-Gly10 in Fig. 9 a and Gly1-Tyr2-Thr8-Gly10 in Fig. 9
b have nearly the same births and deaths. The volume-
optimal cycle reveals the difference between these
‘‘similar’’ generators.
Comparison with the Cartesian coordinates and
contact map results

It was instructive to investigate the relationship between our
TFV analysis and other previous methods. Here, we
compare our result with those of Cartesian coordinate and
contact map-based analysis.

First, we compared our results and those based on the
Cartesian coordinates of Ca atoms, as described by Mitsu-
take and Takano (4). In this analysis, we constructed the
3n-dimensional vector R ¼ (x1, y1, z1, x2, y2, z2, ., xn,
yn, zn), where (xi, yi, zi) represents the position of the i-
th Ca atom. We then reduced dimensionality by PCA.
NMF is not available in this case because Cartesian
Biophysical Journal 118, 2926–2937, June 16, 2020 2933



FIGURE 8 Density plot of accumulated bar

length and (a) h1 and (b) h2. To see this figure in co-

lor, go online.
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coordinates can be negative. The density plots in the
reduced space are represented in Fig. 10. We identified
two clear peaks of density in Fig. 10 c. These results
are consistent with the result of Mitsutake and Takano
(4). Importantly, the first principal component does not
contribute to the cluster identification. These results indi-
cate that the PCA is strongly affected by structural
changes, which are not related to the transition between
the folded and misfolded states. A possible explanation
is the large degree of freedom in the unfolded state. In
unfolded states, most amino acids can move freely, which
results in large Cartesian coordinate fluctuations. In TFV
analysis, we had few cycles in the unfolded state, and the
corresponding TFV became nearly 0. Therefore, we were
able to avoid this large fluctuation in the unfolded state by
using TFV.

To confirm the cluster consistency between the TFV-
based analysis and Cartesian coordinate-based analysis,
we investigated the relationship between the hi in Fig. 5 a
and the PCA result. Fig. 11 shows the scatter plot of the sec-
ond and third principal components, in which the point color
indicates the score h1 and h2 obtained by NMF. Comparing
this figure with Fig. 10 c, h1 returns large values for the clus-
ter PC3�0, whereas h2 are large for the cluster at PC3��4.
Therefore, we concluded that the clusters obtained by Car-
tesian coordinate PCA and TFV-based analysis coincide.

Next, we conducted PCA and NMF analysis based on
contact maps using the method proposed by Ernst et al.
(31). In this method, we calculated the distance between
Ca atoms and created the contact map Dij as
2934 Biophysical Journal 118, 2926–2937, June 16, 2020
Dij ¼
�
1 if the distance between i� th and

j � th Ca is smaller than 8 �A;
0 otherwise

(1)

Dij is nonnegative, so we could apply both PCA and NMF.
In Fig. 12, we show the density plot obtained by PCA and
NMF of Dij. In both cases, it was difficult to identify the
folded or misfolded states.

Compared with the analysis based on contact maps, TFV
selects the shortest distance automatically. When the dis-
tances between Tyr2-Tyr8 and Tyr2-Trp9 are both shorter
than 8 Å, Dij ¼ 1 for both pairs. In this case, we cannot
distinguish the folded and misfolded states by contact
map. Of 100,000 samples, 80,366 samples showed that
both Tyr2-Tyr8 and Tyr2-Trp9 are contacted, and we failed
to distinguish the native and misfolded states. However,
TFV depends on the distance difference; if the distance be-
tween Tyr2-Trp9 is smaller than that between Tyr2-Tyr8, the
edge between Tyr2-Tyr8 is not included in the volume-
optimal cycle because at the birth of the cycle, including
Tyr2-Tyr8, Tyr2-Trp9 is not contacted. In other words,
TFV is sensitive to the difference in distance between atoms,
whereas contact maps are sensitive to the absolute distance.
This explains why TFV successfully detected two clusters
that were not captured by the contact-map-based method.

Before concluding this subsection, we discuss a previous
study by Mitsutake and Takano describing the structure of
native and misfolded state (4) in which they investigated
the distance between many atom pairs and found that the
hydrogen bond between Asp3 and Gly7 is strongly related
FIGURE 9 Volume-optimal cycles at native (t ¼
160 ns) (a) and misfolded (¼ 120 ns) (b) states.

Gray lines indicate the edge included in the vol-

ume-optimal cycle. (b, d) represent the birth and

death time of each cycle, respectively. The unit of

b and d are Å.



FIGURE 10 The density plots in the reduced space obtained by PCA based on Cartesian coordinates of Ca atoms. (a) shows the first and second compo-

nents. (b) shows the first and third components. (c) shows the second and third components. To see this figure in color, go online.
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to the difference between the native and misfolded states.
Fig. 6 shows that the contribution of the edge between
Asp3 and Gly7 is larger in w2 than in w1, which is consistent
with their results. However, our analysis showed that the
edge between Tyr2 and Thr8 is more remarkable in w2,
which is not mentioned previously. Thus, further studies
are needed to determine the difference between our work
and previous studies.
Dynamics in reduced space

To investigate the transition between native, misfolded, and
unfolded states, we plotted the average flow in Fig. 13. First,
we calculated dh(t) ¼ h(t þ dt) � h(t), where dt ¼ 10 ps.
Next, we divided the two-dimensional space into grids of
size 1.5 � 1.5 Å and calculated the average of dh(t) for
each grid. Fig. 13 a shows the flow in the entire two-dimen-
sional space. The results indicate that there are two stable
solutions at (h1, h2) �(20 Å, 5 Å) and (5 Å, 20 Å), respec-
tively. These two stable points correspond to folded and
misfolded states, as discussed above. The positions of these
fixed points differ slightly from the density peak, which is
due to the constraint of h1, h2 R 0. Though the density
peak is on the h1 and h2 axes, these points cannot be fixed
points because any configuration change drives the system
away from the axes. We also found that the flow along the
line h1 þ h2 � 25 is strong, whereas the flow at small
h1 þ h2 is very weak. To investigate the dynamics in this
area more clearly, we plotted the flow at 0 Å % h1, h2 %
15 Å in Fig. 13 b. These results strongly suggest that there
is a saddle point at (h1, h2) �(12 Å, 12 Å). Therefore, this
position is likely the transition state. These results also
demonstrate that there is no fixed point corresponding to
the unfolded state. Once the chignolin molecule reaches
the thermal noise-induced unfolded state, it remains
unfolded for an extended period of time. However, this is
not because of the attraction to the stable fixed point, but
rather the slow dynamics in reduced space.
CONCLUSIONS

In this study, we analyzed the chignolin folding process using
PH and proposed TFV as a feature to characterize protein
structure. TFV allows us to combine PH with machine-
learning methods, such as PCA or NMF. In particular, we
show that NMF analysis of TFV provides essential informa-
tion on folding dynamics. By investigating flow in the
reduced space, we found that there are two stable fixed points
that correspond to the native and misfolded states, one saddle
point corresponding to transient state, and one unfolded state.
The difference between the native and misfolded states lies in
the edge differences between Tyr2-Trp9 and Tyr2-Thr8. The
unfolded state has no fixed point, although the protein re-
mains unfolded for a long time because of the slow dynamics.

Our results show that featurization of protein structure by
TDA is promising. Several previous studies attempted to
FIGURE 11 Scatter plot in second and third Car-

tesian coordinate principal components. Color indi-

cates the values of (a) h1 and (b) h2 obtained by TFV

and NMF, respectively. To see this figure in color, go

online.
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FIGURE 12 Result of (a) PCA and (b) NMF of

contact map Dij. To see this figure in color, go on-

line.
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apply TDA to biomolecule dynamics. For example, Yao
et al. applied Mapper, a major TDA method, to investigate
RNA folding (9). Xia and Wei proposed MTF to charac-
terize protein structure (12,13). Gameiro et al. investigated
the relationship between PH and protein compressibility
(32). Compared to these previous works, there are several
advantages to the TFV-based analysis. First, TFV uses vol-
ume-optimal cycles, which include significantly more infor-
mation than does persistent barcodes. As shown in Results
and Discussion, volume-optimal cycles can distinguish
different structures that have the same births and deaths.
Another advantage is applicability to machine learning.
As we discussed in the Introduction, the fluctuation in num-
ber of cycles causes difficulty when applying machine
learning with PH. However, the TFV dimension only de-
pends on the number of amino acids; therefore, we can
easily apply machine-learning methods such as PCA,
NMF, and deep learning. Notably, TFV calculations require
large computational cost. Therefore, it would be difficult to
calculate TFV using all atoms in macromolecules.

The method developed in this study is powerful; however,
further development is also possible. First, several ap-
proaches can be taken to construct TFVs from the volume-
optimal cycles. Here, we used the sum of the deaths as the
edge weight, but we could alternatively use the sum of births,
the product of deaths, or a combination of births and deaths.
For chignolin, there is no qualitative difference when we use
the sum of the births in place of the deaths because the births
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or deaths of every cycle are the same order, as shown in
Fig. 7, g and h. However, if we analyze more complex mol-
ecules, the analysis may depend on the TFV definition.
Chignolin is a small molecule with only one b-sheet and no
tertiary structure. If we need to investigate a more complex
protein with tertiary structures, then the TFV definition
may affect the analysis results. Another improvement could
be achieved by the selection of the TFV analysis method.
In this study, we applied NMF to reduce the structure into
two dimensions; however, when analyzing more complex
proteins, the reduced dimensions will increase, so requiring
careful determination of the appropriate reduced space
dimension. In this case, other analysis methods may be
more appropriate. Once the TFV is calculated, we can apply
several data mining and time series analysis methods such as
hierarchical clustering, PCA, Fourier analysis, relaxation
mode analysis, and independent component analysis. In
time series analysis, Markov models are also promising, as
it is a powerful tool for time series analysis of protein dy-
namics (7). The difficulty in applying Markov modeling
lies in the definition of the states. In our study, we identified
the misfolded and folded states; however, it is difficult to
identify the boundary between them. Application of a hidden
Markov model (33) may solve this problem because this
method classifies each state automatically. Moreover, we
can also apply text-mining methods. In our approach, an
edge is regarded as a ‘‘term’’ to describe the protein shape.
In this analogy, the set of generators is a document that
FIGURE 13 Average flow dh(t) ¼ h(t þ dt) �
x(t). Panel (a) shows flow in the entire two-dimen-

sional space. Panel (b) shows flow at 0 Å % h1, h2
% 15 Å.
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describes the protein shape, and the volume-optimal cycles
are the sentences in the document. Therefore, we will be
able to use text-mining methods such as topic models, term
network analysis, and deep learning.

Themethodwedevelopedhere is applicable not only topro-
tein folding but also to other problems in physics, chemistry,
and engineering. For example, we could capture protein bind-
ing with small molecules, which will contribute to new drug
development. Another interesting application is active matter
dynamics such as schools of fish or flocks of birds. Although
active matter dynamics is keenly studied, quantitatively
analyzing the shapes of clusters of active matter is difficult.
Our method will provide insights regarding this problem.
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