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Abstract

Non-alcoholic fatty liver disease is a chronic liver disease which is closely associated with 
components of the metabolic syndrome. Its high clinical burden results from the growing 
prevalence, inherent cardiometabolic risk and potential of progressing to cirrhosis. 
Patients with non-alcoholic fatty liver disease show variable rates of disease progression 
through a histological spectrum ranging from steatosis to steatohepatitis with or without 
fibrosis. The presence and severity of fibrosis are the most important prognostic factors in 
non-alcoholic fatty liver disease. This necessitates risk stratification of patients by fibrosis 
stage using combinations of non-invasive methods, such as composite scoring systems 
and/or transient elastography. A multidisciplinary approach to treatment is advised, 
centred on amelioration of cardiometabolic risk through lifestyle and pharmacological 
interventions. Despite the current lack of licensed, liver-targeted pharmacotherapy, 
several promising agents are undergoing late-phase clinical trials to complement standard 
management in patients with advanced disease. This review summarises the current 
concepts in diagnosis and disease progression of non-alcoholic liver disease, focusing on 
pragmatic approaches to risk assessment and management in both primary and secondary 
care settings.

Why fight liver fat?

What is NAFLD?

Non-alcoholic fatty liver disease (NAFLD) is recognised as 
the most common aetiology of chronic liver disease, with 
an estimated global prevalence of 25.2%, and as a major 
cause of cirrhosis and hepatocellular carcinoma (HCC), 
projected to become the leading indication for liver 
transplantation during this decade (1). NAFLD is defined as 
the accumulation of liver fat (exceeding 5% of hepatocytes) 
without evidence for coexisting hepatic insults, namely 
viral or autoimmune hepatitis, use of steatogenic 
medication, or significant alcohol intake (2). Regarded as 
the hepatic manifestation of the metabolic syndrome in 
view of its intimate association with insulin resistance, 
obesity, hypertension and dyslipidaemia, NAFLD is a 
multi-system disease encompassing a histopathological 
spectrum of severity. This heterogeneous continuum 

ranges from simple, isolated steatosis (non-alcoholic 
fatty liver (NAFL)) to steatohepatitis with evidence of 
hepatocyte injury and necroinflammation (non-alcoholic 
steatohepatitis (NASH)) with or without hepatic fibrosis. 
In its advanced stages, NAFLD may progress to cirrhosis 
and its complications, including HCC. Its mounting 
prevalence and potentially aggressive nature combined 
with diagnostic and therapeutic barriers make NAFLD an 
important public health concern of the 21st century (3). 
Mirroring the obesity pandemic, its clinical and economic 
burden is reaching enormous proportions: 52 million 
people are estimated to suffer from NAFLD in Germany, 
France, Italy and the UK, incurring annual direct medical 
costs of €35 billion (2, 3).

The heterogeneity of disease progression is reflected in 
the multi-faceted pathogenesis of NAFLD. Hepatocellular 
fat accumulation arises when lipid export or degradation 
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is exceeded by lipid import or synthesis. Main sources of 
hepatic lipid aggregation are a flux of free fatty acids (FFA) 
from peripheral adipose tissue (59%), followed by hepatic 
de novo lipogenesis (26%) and dietary intake (14%) (4). 
Traditionally, steatosis severity is graded according to the 
extent of triglyceride accumulation despite the recognition 
that, in general, triglycerides per se do not cause hepatocyte 
injury. In contrast, triglyceride accumulation appears to 
be an adaptive mechanism minimising hepatocyte injury 
from lipotoxicity caused by reactive lipids and fatty acids, 
such as cholesterol, FFAs, oxysterols or phospholipids. 
In chronic nutrient surplus, the ability or inability 
of the liver to compensate for fatty acid exposure by 
synthesising triglycerides determines whether lipotoxicity 
ensues. If compensatory mechanisms are overwhelmed, 
lipotoxicity originates from the generation of reactive 
oxygen species and dysfunction of unfolded protein 
responses. Hepatocytes exposed to chronic lipotoxicity 
initiate dysregulated regenerative processes which 
perpetuate inflammatory and fibrogenic stimuli (4, 5, 6, 
7, 8). In normal homeostasis, insulin potently inhibits 
adipose tissue lipolysis. Insulin resistance, a fundamental 
characteristic of NAFLD, manipulates hepatic lipid 
metabolism and exacerbates adipocyte dysfunction, 
encouraging intrahepatic lipogenesis and fatty acid 
influx (7). Gut-liver axis dysfunction has been implicated 
in NAFLD pathogenesis through mechanisms which 
include generation of short-chain fatty acids, alterations 
in intestinal permeability and bacterial translocation into 
the portal vasculature (5, 6, 7). Reductions in microbiome 
quality, quantity and diversity are documented in NAFLD, 
yet causality between ‘dysbiosis’ resolution and NAFLD 
improvement is not established (5).

Natural history of NAFLD

The complex phenotype and variable progression 
rate of NAFLD reflect the overlapping influences of 
genetics, diet, comorbidities and metabolic discrepancies 
between individuals. A minority of patients advances to 
significant fibrosis, yet ambiguity exists regarding long-
term outcomes and histological progression of NAFLD 
(9). Epidemiologically, global NAFLD prevalence was 
estimated at 25.24%, with highest and lowest prevalence 
rates in the Middle East (32%) and Africa (14%), 
respectively. Comparable estimates were reported from 
Europe (23.7%) and the US (24.1%) (1). NAFLD prevalence 
increases analogously with burgeoning obesity, T2DM, 
hyperlipidaemia and hypertension rates, doubling 
from 5.5% in 1980 to 11% in 2008 in the US (1, 10).  

Over the last decade, the frequency of NAFLD as an 
indication for liver transplantation surged by 170% 
and HCC cases attributable to NAFLD simultaneously 
increased from 8.2% to 13.5% with NAFLD on trajectory 
to becoming the most common indication for liver 
transplantation during this decade (11).

While mortality data in NAFLD is difficult to interpret 
owing to discrepancies in the design of studies assessing 
survival, robust evidence indicates that fibrosis stage is the 
most relevant prognostic marker in NAFLD. Early mortality 
data was summarised by a meta-analysis demonstrating 
higher all-cause mortality for NAFLD patients compared 
to the general population (OR 1.57, 95% CI: 1.18–2.10, 
P = 0.002) (12). The predominant causes of death identified 
were cardiovascular complications, malignancy and liver-
related complications in descending order (13). One of the 
longest follow-up studies available (mean follow-up 26.4 
years) supports the notion that NAFLD confers increased 
all-cause mortality (HR 1.29) with advanced fibrosis being 
the only histological parameter to predict mortality (14). 
Hepatic fibrosis in NAFLD is categorised relative to location 
and extent: stage 1 (F1) is defined as perisinusoidal fibrosis 
alone, stage 2 (F2) as perisinusoidal plus periportal fibrosis, 
stage 3 (F3) includes bridging fibrosis, and stage 4 (F4) is 
cirrhosis (15, 16). Angulo et al. analysed 619 patients with 
biopsy-proven NAFLD retrospectively, validating fibrosis 
stage as the most reliable histological characteristic to 
predict adverse outcomes (17). A recent meta-analysis 
with 17,000 patient-years follow-up substantiated these 
findings. All-cause mortality progressively heightened 
with each subsequent fibrosis stage (mortality rate ratios 
by fibrosis stage: F1, 1.58; F2, 2.52; F3, 3.48; F4, 6.44) and 
liver-related mortality grew exponentially with fibrosis 
progression (F1, 1.41, F2, 9.57; F3, 16.69; F4, 42.30) (18). 
In the largest paired biopsy study to date (n = 646, mean 
follow-up 20 years) fibrosis stage alone independently 
predicted liver-related morbidity and overall mortality, 
whereas the presence of NASH had no significant bearing 
on outcomes (19).

Unsurprisingly given the cardiometabolic risk factors 
inherent to the metabolic syndrome, cardiovascular 
disease is the most common cause of death in NAFLD 
(17, 19, 20). The intricate association with the metabolic 
syndrome complicates the distinction between NAFLD 
as an independent phenomenon in cardiometabolic 
disease pathogenesis and NAFLD as a bystander sharing 
common aetiological foundations with cardiometabolic 
disease (20). Epidemiological evidence links NAFLD to 
cerebrovascular, coronary and peripheral vascular disease, 
as well as to subclinical artery intima-media thickness and 
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arterial wall stiffness (20). NAFLD is also closely associated 
with chronic kidney disease and early renal dysfunction 
with microalbuminuria (20). NAFLD and T2DM 
coexistence is common, promoting adverse outcomes in a 
synergistic and bi-directional manner. NAFLD is present in 
up to 70% of patients with T2DM, while NAFLD patients 
exhibit five-fold increased risks of T2DM development 
(21). T2DM and NAFLD coexistence is believed to drive 
micro- and macrovascular complications in T2DM and 
accelerate fibrogenesis in NAFLD (21). Insulin resistance 
is a cardinal feature of T2DM, cardiovascular disease and 
NAFLD pathogenesis, thereby potentially confounding 
the relationship between NAFLD and cardiometabolic 
outcomes (22).

Historically, NAFL was viewed as a benign disease state 
and NASH as its aggressive counterpart. Current evidence 
suggests that neither NAFL nor NASH, but only the 
presence of fibrosis directly influences clinically relevant 
outcomes. Do NAFL and NASH differ in their fibrogenic 
potential? In a systematic review of 221 patients with 
biopsy-proven NASH, 37.6% of patients demonstrated 
fibrosis progression over a 5.3 years mean follow-up 
(23). The indolent nature of NAFL was questioned by 
several small-scale longitudinal studies, observing fibrosis 
progression in 24–61% of NAFL patients with some 
individuals even reaching advanced fibrosis and end-stage 
liver disease (24, 25, 26, 27). In a meta-analysis of 411 
NAFLD patients, 33.6% experienced fibrosis progression, 
43.1% had static fibrosis stage, and 22.3% demonstrated 
fibrosis regression. This pooled analysis indicates that 
NAFLD is not always progressive, yet both NAFL and 
NASH appear to hold fibrogenic potential. If fibrosis 
progresses, however, it occurs approximately twice as 

quickly in NASH with an annual fibrosis progression 
rate of 0.14 stages compared to 0.07 stages in NAFL (28). 
Independent of NAFL/NASH status, 20% of patients with 
fibrosis progression were classified as ‘rapid progressors’ 
with the evolution from no fibrosis to advanced fibrosis 
in over just 6 years. Presently, no reliable methods exist to 
identify this high-risk subset of patients, although certain 
clinical features, especially obesity and T2DM, seem to 
confer increased risks of fibrosis progression, as detailed 
subsequently (28).

Choosing your battles

Establishing the diagnosis

In the absence of public screening programmes, NAFLD 
should be suspected in metabolically predisposed 
patients presenting with asymptomatically elevated 
aminotransferases or incidentally detected liver fat on 
abdominal imaging, prompting a comprehensive workup 
of all components of the metabolic syndrome and 
systematic exclusion of competing aetiologies of liver 
dysfunction (Table 1) (29). If symptoms are present, they 
are of non-specific nature, such as fatigue, mild right upper 
quadrant pain or epigastric fullness (8). NAFLD tends 
to remain asymptomatic until progression to end-stage 
liver disease and decompensation with ascites, hepatic 
encephalopathy and variceal haemorrhage occurs. While 
hepatomegaly and central adiposity are frequent, there 
are no pathognomonic examination findings in NAFLD. 
Rarer findings include acanthosis nigricans in insulin 
resistance and dorsocervical lipohypertrophy in NASH (8, 

Table 1 Comprehensive assessment in suspected NAFLD.

Comprehensive assessment in suspected NAFLD
Metabolic work-up Exclude secondary hepatic insults

Type 2 diabetes 
mellitus

Fasting blood glucose, HbA1c, 
oral glucose tolerance test

Alcohol excess >20 g/day (women) and >30 g/day (men), AST:ALT ratio

Obesity BMI, waist circumference, change 
in weight

Steatogenic 
medication

Amiodarone, diltiazem, steroids, valproic acid, 
tamoxifen, anti-psychotics, highly active retroviral 
therapy

Hypertension Repeated blood pressure 
monitoring

Rare causes of 
hepatic steatosis

Refeeding syndrome, lipodystrophy, total parenteral 
nutrition

Dyslipidaemia Serum total and HDL cholesterol Hepatitis B/C 
infection

Viral hepatitis serology

Endocrine 
disorders 
 

Hormonal profiling for 
hypothyroidism, hypogonadism, 
hypopituitarism and polycystic 
ovarian syndrome

Rare chronic liver 
diseases 
 

Haemochromatosis (ferritin and transferrin saturation), 
Wilsons disease (caeruloplasmin), autoimmune 
hepatitis (immunoglobulins), alpha-1-antitrypsin 
deficiency (alpha-1-antitrypsin levels)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; HbA1c, haemoglobin A1c; HDL, high-density lipoprotein; NAFLD, non-alcoholic fatty  
liver disease.
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30). Since the prevalence of NAFLD in those with T2DM 
and obesity is substantial and most patients with NAFLD 
have normal liver biochemistry (1), there is an argument 
for suspecting NAFLD in all such patients and conducting 
risk stratification, although data to support such an 
approach is still being collated.

Initially, appropriate history taking should identify 
other causes of hepatic steatosis, including steatogenic 
medications (31), refeeding syndrome, total parenteral 
nutrition and lipodystrophy (32). Although excess 
alcohol intake requires exclusion as a common aetiology 
for liver steatosis, this is often difficult in clinical reality. 
In NAFLD, alanine aminotransferase (ALT) classically 
exceeds aspartate aminotransferase (AST) levels, while 
alcoholic liver disease frequently demonstrates AST:ALT 
ratios of >1.5 (32). With progressive fibrosis in NAFLD, 
however, AST levels may proportionally rise, increasing 
the AST:ALT ratio (32). NAFLD is the most common reason 
for raised transaminases (11), yet up to 78% of NAFLD 
patients exhibit non-elevated liver enzymes (1, 33), and 
even advanced disease often exists despite normal liver 
function tests (9). In fact, the entire histological continuum 
of NAFLD was observed in patients with normal liver 
biochemistry (34). This illustrates the imperfect nature 
of transaminases as prognostic and diagnostic tools in 
NAFLD, emphasising that clinicians should not rely upon 
transaminases to establish NAFLD diagnosis. Coexisting 
insults causing hepatic dysfunction should be ruled out 
through extended liver testing (Table 1) (35). Aberrations 
in serum levels of thyroid, sex and growth hormones are 
known to contribute to the development of metabolic 
syndrome and NAFLD, necessitating extended hormonal 
profiling if there is a high index of clinical suspicion for 
endocrine abnormalities (36).

Once NAFLD is suspected, evidence of hepatic 
steatosis is required to satisfy diagnostic criteria. 
Quantification of hepatic steatosis is prognostically 
insignificant, and steatosis often regresses as fibrosis 
progresses (4, 37). Abdominal ultrasound is the most 
accessible imaging modality for steatosis assessment 
and benefits from its non-invasiveness, low cost and 
absence of radiation. Ultrasound is sensitive (85%) and 
specific (95%) for detecting moderate to severe steatosis 
(>33% steatotic hepatocytes); however, its sensitivity 
deteriorates when <30% of hepatocytes are affected (38, 
39). Increased echogenicity, the characteristic ultrasound 
finding in hepatic steatosis, is also present in fibrosis 
and early cirrhosis, reducing the reliability of ultrasound 
in coexisting liver disease aetiologies (8, 37, 39). To 
overcome the limitations of traditional ultrasound in 

diagnosing mild steatosis, steatosis-specific imaging 
methods were developed. The controlled attenuation 
parameter (CAP) measures ultrasound attenuation 
by hepatic lipid content, demonstrating improved 
accuracy in detecting mild steatosis (steatosis >10% – 
AUROC 0.91) (37, 39, 40). Magnetic resonance-based 
imaging technologies measuring the proton density 
fat fraction (PDFF) are considered the gold standard for 
non-invasive steatosis assessment, enabling hepatic fat 
mapping with extremely high accuracy (AUROC 0.99). 
Magnetic resonance spectroscopy (MRS) assesses PDFF 
directly through differences in water and lipid peaks on 
resonance frequency domains, whereas MRI indirectly 
estimates water and fat content through time-dependent 
oscillations in MR signals (41). Due to its direct nature 
of measurement, potentially higher accuracy is ascribed 
to MRS, although MRI-PDFF demonstrated comparable 
operating performances across various studies (41). While 
MRI-PDFF permits steatosis quantification throughout 
the liver, MRS-PDFF evaluates single voxels of hepatic 
parenchyma, incurring risks of sampling bias. Both 
techniques are confined to research settings given the 
expense, infrastructure and expertise required for their 
acquisition and interpretation (37, 41).

Identifying those at greatest risk of disease progression 
or with already advanced disease is essential to efficiently 
target therapeutic interventions. As the current reference 
standard for diagnosis, prognosis and treatment response 
assessment in NAFLD, clinical trials rely heavily on 
liver biopsy, supplying investigators with a wealth 
of histological information about liver architecture, 
presence and extent of steatosis, necroinflammation and 
fibrosis (42). However, liver tissue acquired by biopsy 
represents merely 1/50,000 of total liver volume and 
incurs significant risks of underestimating disease severity 
due to spatial sampling variability and non-uniform 
disease distribution (37, 39). Liver biopsies are expensive, 
invasive and prone to interobserver variability (37). The 
substantial epidemiological burden of NAFLD necessitates 
the implementation of more pragmatic approaches to 
diagnosis and risk stratification in clinical practice.

Risk stratification

Given that fibrosis is the strongest predictor of outcome, 
risk stratification based on fibrosis severity can determine 
who would benefit from liver-directed therapeutic 
interventions in specialist secondary care services. Certain 
populations of patients experience increased risks of 
NAFLD progression to advanced fibrosis. In comparison 
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to pre-menopausal women, males and post-menopausal 
females displayed higher fibrosis stages with onset and 
duration of menopause as independent risk factors for 
fibrosis presence (43). The relationship between ethnicity 
and NAFLD severity is complex. While NAFLD prevalence 
is disproportionally lower among African American 
patients and higher among Hispanic patients compared 
to white populations, these discrepancies are less marked 
in high-risk cohorts (T2DM and obesity) and the rates 
of advanced fibrosis do not seem to differ significantly 
between ethnicities (44). This indicates that ethnicity may 
play a comparatively greater role in determining NAFLD 
prevalence rather than severity (45). Genetic susceptibility 
to NAFLD and its progression was first established by 
genome-wide association studies suggesting that ethnic 
disparities in NAFLD prevalence are, in part, dependent 
on patatin-like phospholipase domain-containing protein 
3 (PNPLA3) genotypes (46, 47). Subsequent publications 
strengthened links between PNPLA3 polymorphisms, 
NAFLD susceptibility and advanced histology (47). 
Additional risk alleles such as TM6SF2 were since 
identified (48). Despite their common prevalence, these 
polymorphisms explain minor proportions of disease 
phenotype variability and are currently unsuitable for 
population-based risk assessment (47). In cross-sectional 
studies, age consistently predicted advanced fibrosis, yet 
this fails to persevere in longitudinal studies, implying 
that age reflects cumulative exposures to metabolic insults 
and disease duration rather than fibrosis progression rate 
(28, 43). Extensive evidence identified obese and diabetic 
patients as high-risk groups for fibrosis progression 
(14, 17, 25, 26, 28, 43). Accordingly, deterioration and 
improvement in fibrosis correlate with chronological 
weight gain or loss, respectively, while T2DM and NAFLD 
coexistence accelerates fibrogenesis (21, 43, 49, 50). Early 
histological data suggested that the risk of NASH could 
approach 40% in T2DM (50, 51). In a cross-sectional 
study of 1900 diabetic patients, the prevalence of 
advanced fibrosis was as high as 17.7% (50, 52). In two 
recent histological studies investigating patients with 
concomitant T2DM and NAFLD, advanced fibrosis even 
reached 40–41% prevalence (50, 53, 54).

There are many examples of non-invasive approaches 
to risk stratification in NAFLD including simple composite 
scoring systems, transient elastography or specialist panels 
for biomarkers of extracellular matrix remodelling. Simple 
scoring systems indirectly measure fibrogenesis and are 
derived from clinical risk factors of fibrosis progression 
(e.g. obesity, T2DM) and routinely available biochemistry 
reflecting liver dysfunction (AST, ALT, platelet count, 

albumin, etc). The NAFLD fibrosis score (NFS) and the 
Fibrosis-4 index (FIB-4) are two extensively validated, 
simple scoring systems with high negative predictive values 
for the exclusion of advanced fibrosis. The NFS (composed 
of BMI, age, presence of T2DM, AST:ALT ratio, platelet 
count and albumin) was specifically constructed and 
validated in biopsy-proven NAFLD (34, 37, 55), whereas 
the FIB-4 algorithm (composed of AST, ALT, platelet count 
and age) was originally derived for use in hepatitis C/HIV 
coinfection and later effectively validated in NAFLD (35, 
56). Both models utilise dual diagnostic cut-off values to 
exclude or diagnose advanced fibrosis. The NFS excludes 
advanced fibrosis with a negative predictive value (NPV) 
of 88–93% and detects advanced fibrosis with a positive 
predictive value (PPV) of 82–90% (35, 55). The FIB-4 
reliably excludes advanced fibrosis (NPV 90–95%) and 
diagnoses advanced fibrosis with moderate accuracy (PPV 
80%) (35, 56). These simple models generally demonstrate 
inferior accuracy in discriminating between fibrosis stages 
compared to direct measures of fibrogenesis, yet their high 
negative likelihood ratios and accessibility make them 
valuable screening tools to exclude advanced fibrosis. 
While the NFS is more extensively validated, the FIB-4 
performs slightly better in head-to-head comparisons and 
requires fewer variables for calculation, making it suitable 
for triaging NAFLD patients in primary care settings (8, 
34, 35). Both models generate indeterminate scores in a 
considerable proportion of cases (40–50%) necessitating 
a two-tiered system for risk stratification (34). Depending 
on local accessibility and expertise, the second tier should 
involve transient elastography or proprietary panels which 
directly measures biomarkers of fibrogenesis/fibrinolysis.

One such commercial panel is the Enhanced 
Liver Fibrosis (ELF™) Test which incorporates three 
fibrosis biomarkers: hyaluronic acid, tissue inhibitor of 
metalloproteinase-1 and amino-terminal propeptide of 
type III procollagen. ELF was validated in biopsy-proven 
NAFLD, exhibiting marginally improved accuracy in 
predicting advanced fibrosis for adult (AUROC 0.93) 
and paediatric (AUROC 0.99) patients compared to 
non-proprietary algorithms (37, 57, 58). Its single 
diagnostic cut-off value for advanced fibrosis precludes 
indeterminate results; however, increased cost compared 
to non-commercial systems rationalise its position as a 
second-line risk stratification approach (34, 35).

Transient elastography (TE) technologies, such as 
FibroScan, are validated for hepatic fibrosis assessment in 
various liver disease aetiologies, including NAFLD (59). TE 
evaluates liver elasticity by measuring shear wave velocity, 
relying on the principle that hepatic parenchyma gradually 
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loses elasticity with cumulative fibrotic tissue deposition. 
TE is a quick, painless and non-invasive procedure that 
assesses 1/500 of total liver volume (1/50,000 for liver 
biopsy), ameliorating sampling bias (60). TE capably 
excludes advanced fibrosis with few false negatives and 
demonstrates superior accuracy in identifying advanced 
fibrosis (AUROC 0.93–0.95) compared to simple scores (35, 
59). Pitfalls of TE include the lack of universally validated, 
diagnostic cut-off values for individual fibrosis stages and 
its considerable failure rate in clinical practice, especially 
with obese individuals (60). In a prospective study of 
13,000 TE examinations, failure rate ranged from 1% in 
lean patients to 42% in morbidly obese patients with an 
additional 16% unreliable readings, making nearly one-
fifth of all readings uninterpretable (61). Failure rates were 
reduced by the introduction of XL probes which cater 
towards obese patients (35, 37, 60).

ELF or TE testing is recommended in the event of 
indeterminate outcomes from first-line non-commercial 
models (FIB-4, NFS) to classify those patients in the 
‘grey zone’ (45). If test result discordance or diagnostic 
uncertainty persists after repeated non-invasive testing, 
consideration of liver biopsy is appropriate (37, 60). 
NAFLD patients categorised as low risk for significant 
hepatic fibrosis can be managed in primary care with 
therapeutic focus on cardiometabolic risk optimisation, 
since the probability of adverse liver-related outcomes 
within a 10- to 15-year time frame is low (28, 62). High-
risk patients warrant specialist hepatology referral for 
liver-focused management in addition to cardiometabolic 
risk factor control in secondary care settings (Fig. 1). Cost-
effectiveness analyses of this two-tiered risk stratification 
approach demonstrated five-fold increased detection 
rates of advanced fibrosis and cirrhosis while incurring 
specialist referral rates of 10% and reducing unnecessary 
referrals by 81% with significant cost savings (34, 42, 63).

Deploying your forces

The multidisciplinary approach

The multisystemic nature of NAFLD necessitates a holistic 
management approach with a varying focus on hepatic 
and cardiometabolic risk control depending on the 
disease stage. A purely hepato-centric treatment approach 
would be unsatisfactory given that cardiovascular disease 
is the principal cause of mortality in NAFLD (~40%) with 
malignant and non-malignant liver diseases accounting 
for 10% of deaths (45). Integration of multidisciplinary 

pathways across primary and secondary care is required to 
achieve NAFLD diagnosis and risk assessment, therapeutic 
optimisation of cardiometabolic risk and diabetic control, 
adjustment of lifestyle and diet, as well as the initiation of 
liver-directed interventions and recruitment into clinical 
trials (45). The ideal multidisciplinary team would include 
expertise in hepatology, diabetology/endocrinology and/
or metabolic medicine, dietetics, lifestyle advice and 
weight management across primary and secondary care; 
however, resource limitations frequently hinder the 
completeness of multidisciplinary teams (64). Holistic, 
multidisciplinary management is widely advocated 
in NAFLD, yet few studies evaluated its real-world 
effectiveness and data favouring its utility remain scarce. 
Moolla et  al. prospectively followed NAFLD patients 
attending a dedicated, multidisciplinary metabolic 
hepatology clinic in Oxford, UK, finding considerable 
improvements in liver and cardiometabolic health with 
reductions in ALT, weight, HbA1c, total cholesterol, 
QRisk3 score, and liver stiffness measurements (65).

Optimisation of cardiometabolic risk

Cardiometabolic interventions in NAFLD are founded 
on the central hypothesis that reversal of insulin 
resistance and hyperglycaemia alleviates cardiometabolic 
risk while simultaneously decelerating steatohepatitis 
activity and fibrosis (22). Independent of liver-related 
risk status and healthcare setting, lifestyle interventions 
targeting weight, diet and overall fitness remain the 
cornerstone of therapy for all NAFLD patients (39, 62, 
66). The incremental effect of weight loss on histological 
improvement is well documented; greater and more 
sustained weight loss correlating with more substantial 
histological improvements. Amelioration of ALT levels, 
steatosis and NASH is seen even with modest weight loss 
(>5%), while NASH resolution and fibrosis regression were 
observed in higher degrees of weight reduction (≥10%) 
(62, 64, 67, 68). A serial biopsy study (n = 293) found 
NASH resolution in 90% and fibrosis regression in 45% 
of patients who achieved ≥10% total body weight loss 
(68). However, the long-term effectiveness of lifestyle-
based weight loss interventions remains unclear, since 
these modifications are difficult to sustain. For example, 
only one in ten participants of the aforementioned 
study lost ≥10% total body weight and the vast majority 
(70%) did not achieve even ≥5% weight loss. Carefully 
selected patients at low risk of hepatic decompensation 
and unresponsive to lifestyle interventions may benefit 
greatly from bariatric surgery, given its substantial impact 
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on body weight and obesity-related comorbidities (45, 
62). Roux-en-Y gastric bypass surgery remains the most 
effective treatment for obesity as it induces greater, more 
sustained weight loss than other procedures with almost 
immediate, weight-independent effects on glycaemic 
control, insulin sensitivity and GLP-1 secretion (45, 69). 
Sleeve gastrectomy produces less marked, but comparable, 
effects to Roux-en-Y bypass surgery without significantly 
altering upper gastrointestinal tract anatomy (45, 62, 69). 
In a recent pooled analysis of 32 cohort studies, bariatric 
surgery resolved steatosis in 66%, inflammation in 50%, 
ballooning degeneration in 76% and fibrosis in 40% of 
patients (70). As NAFLD is not a primary indication for 

bariatric surgery and no randomised controlled trials 
exist in this field, these data cannot be regarded as level 1 
evidence (62). Furthermore, 12% of patients experienced 
worsening of NAFLD features following bariatric surgery 
(70). Mechanisms underpinning this deterioration are 
unknown, but were proposed to be related to the type 
of bariatric operation employed (45). No studies to date 
found reductions in liver-related mortality after bariatric 
surgery, underscoring the need for long-term, controlled 
trials in this area (69).

The role of dietary composition in NAFLD 
development and management is under extensive 
investigation. The ideal diet for NAFLD patients is yet 

Figure 1
Suggested risk stratification algorithm in NAFLD. 
CAP, controlled attenuation parameter; ELF, 
enhanced liver fibrosis test; FIB-4, fibrosis-4 
index; MRS, magnetic resonance spectroscopy; 
NFS, NAFLD fibrosis score; PDFF, protein density 
fat fraction; TE, transient elastography.
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to be established. Diets high in polyunsaturated fatty 
acids (PUFA) exhibited beneficial effects upon insulin 
sensitivity, visceral adiposity, hepatic triglyceride content 
and steatohepatitis independent of weight reduction 
(64, 71). Two randomised trials compared isocaloric diets 
enriched in PUFAs and saturated fatty acids (SFA), finding 
that SFAs promote visceral and hepatic lipid storage, 
whereas PUFAs generated a three-fold increase in lean 
tissue (72, 73). Being rich in PUFAs, the potential liver-
specific benefits of the Mediterranean diet were explored, 
after previously demonstrating protective effects on 
cardiovascular disease and diabetes risk – two highly 
relevant outcomes in NAFLD (64). In a 6-week crossover 
study, the Mediterranean diet improved hepatic steatosis 
and insulin sensitivity independent of weight loss 
compared to an isocaloric low-fat, high-carbohydrate diet 
(74). Calorie vs carbohydrate restriction was compared in 
one short-term dietary intervention study which favoured 
carbohydrate restriction for reducing hepatic steatosis 
despite similar weight loss profiles between groups (75). 
Isotope labelling studies highlighted the role of refined 
sugar intake (particularly fructose from industrial rather 
than fruit-derived sources) in hepatic lipotoxicity by 
facilitating de novo lipogenesis, depleting hepatic ATP and 
generating uric acid (6). Daily refined sugar intake was 
linked to lower steatosis grade but higher fibrosis stage 
(76). Fructose and refined sugar consumption should form 
part of thorough history taking in NAFLD and should be 
addressed accordingly (64).

Physical activity and exercise are strongly advocated 
for patients with NAFLD, although the evidence 
underpinning this management approach remains 
limited. Controlled studies with sufficient statistical 
power to outline exercise programmes or physical activity 
guidelines tailored to NAFLD patients are lacking (64). 
Mechanisms underlying proposed benefits of exercise in 
NAFLD pertain to improvements in peripheral insulin 
resistance, independent of weight loss (77). Pooled data 
from small-scale trials comparing aerobic and resistance 
exercise suggest that exercise in isolation (without 
weight loss) can generate relative reductions in hepatic 
lipid content by 20–30% (78). Variable forms of exercise 
(resistance, aerobic or high-intensity intermittent 
exercise) appear to have comparable impacts on hepatic 
steatosis (64, 78). Although emergent data indicate 
clinically meaningful benefits on steatosis reduction 
through exercise alone (20–30%), this improvement 
is modest compared to weight loss which can generate 
≥80% reductions in liver fat content (64, 79). Combined 
approaches integrating lifestyle-based interventions for 

weight management, diet and exercise with realistic, 
achievable goals and regular follow-up are advised.

Diabetes control in NAFLD

T2DM and NAFLD coexistence is a high-risk combination 
which synergistically accelerates morbidity, making 
optimisation of diabetic control imperative. The ideal 
anti-diabetic agent in NAFLD combines weight-reducing 
efficacy, cardiovascular event prevention, glycaemic 
control and cost-effectiveness while providing additional 
protective effects on liver histology (80).

The biguanide metformin is the first-line 
pharmacological agent for T2DM therapy and displays 
favourable effects on total body fat and insulin sensitivity. 
In a meta-analysis of 671 patients with NAFLD and 
T2DM, metformin failed to impact liver histology 
significantly despite reductions in HbA1c and weight (21, 
81). Metformin does not appear to offer unique benefits 
in NAFLD and is not licensed for its treatment outside the 
context of diabetic control (21, 22).

Thiazolidinediones, selective ligands to peroxisome-
proliferator-activated gamma receptors (PPAR gamma), act 
as insulin sensitisers by targeting adipocyte differentiation 
(50). In randomised, placebo-controlled trials (RCT), 
pioglitazone administration alleviated all histological 
characteristics of NASH (steatosis, inflammation, 
Mallory–Denk bodies and hepatocellular ballooning) 
in diabetic and non-diabetic patients (82, 83, 84). 
Although significant effects on fibrosis were not evident 
in individual trials, a pooled analysis of RCTs indicated 
that pioglitazone therapy led to fibrosis regression (85). 
Outside its potential liver-centric benefits, pioglitazone 
decreased cardiovascular event incidence in patients with 
T2DM and outperformed other anti-diabetic medications 
with regards to mortality-rate reductions in a European 
cohort (22, 86). Concerns about extensive adverse effects 
(increased risk of fractures, fluid retention, bladder cancer 
and weight gain) currently preclude the wider use of 
pioglitazone in patients with T2DM and NAFLD, although 
the evidence supporting these adverse events is disputed 
(21, 62).

Dipeptidyl peptidase-4 (DPP-4) inhibitors increase 
incretin availability and are widely employed as 
adjunctive oral therapy in T2DM (21). DPP-4 inhibitors 
have neutral effects on cardiovascular outcomes in 
T2DM with no evidence for additional benefits of clinical 
relevance in NAFLD, although adequately powered, 
controlled studies with primary histological endpoints 
are lacking (21, 22).
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Incretin mimetics, particularly glucagon-like peptide-1 
(GLP-1) receptor agonists, displayed attractive therapeutic 
potential in NAFLD and coexisting obesity and/or T2DM. 
GLP-1 agonists primarily stimulate glucose-dependent 
insulin secretion with important extra-pancreatic effects 
relating to satiety and insulin sensitivity (21, 50), thus 
improving glycaemic control and promoting weight loss 
via CNS modulation (21, 87). Meta-analysis of six phase 
III RCTs found that higher dose liraglutide (1.8 mg) 
significantly decreased ALT and hepatic steatosis levels, 
an effect intimately related to the magnitude of weight 
reduction (87, 88). In the landmark proof-of-concept 
LEAN trial (22, 87), liraglutide administration led to 
NASH resolution in a higher proportion of patients (39% 
vs 9%) and to fibrosis progression in a lower proportion 
of patients (9% vs 36%) compared with placebo (89). 
Whether weight loss exclusively lies at the heart of the 
mechanism underpinning phenotypic improvements 
needs to be clarified, although rodent studies suggest that 
these effects may be partly mediated by GLP-1 receptor 
expression (21, 90). In emerging data, semaglutide, a 
novel GLP-1 agonist, demonstrated superiority over older 
GLP-1 agonists in glycaemic control, weight reduction 
and cardiovascular event incidence (91, 92). The safety 
and efficacy of semaglutide in NAFLD is being investigated 
in phase II clinical trials.

Sodium-glucose transport protein-2 (SGLT-2) 
inhibitors impede renal glucose reabsorption, serving the 
dual purpose of lowering plasma glucose and enhancing 
caloric loss (21, 87). SGLT-2 therapy caused net weight 
reductions of 1.8 kg in a meta-analysis, probably as a 
consequence of caloric loss through glycosuria (93). 
SGLT-2 inhibitors are also associated with improved 
cardiovascular and all-cause mortality (94). In rodent 
models, SGLT-2 inhibition displayed protective effects on 
metabolic profiles and liver histology, including fibrosis 
(95). The translation of this benefit to human disease 
phenotypes is supported by sub-analyses of clinical trials 
showing significant reductions in transaminases with 
SGLT-2 therapy in T2DM (96). However, no controlled 
human studies of SGLT-2 inhibition in NAFLD with 
histological endpoints are available at present.

Liver-specific and novel approaches

The pharmacological landscape in NAFLD therapy is 
evolving rapidly, yet no licensed medications for NAFLD 
treatment currently exist. Several promising agents 
are undergoing phase III development. Liver-centred 
treatment approaches should complement, not replace, 

cardiometabolic risk profile management in NAFLD 
patients with progressive disease. Although an ideal 
intervention stage is not formally defined, patients with 
no or mild fibrosis and low risks of fibrosis progression 
present a small likelihood of advancing to meaningful, 
liver-related outcomes. Liver-specific therapy is unlikely 
to produce clinically relevant, cost-effective benefits for 
this patient cohort. Equally, patients with decompensated 
NASH cirrhosis may have progressed too far for anti-
fibrotic pharmacotherapy to significantly alleviate liver-
related outcomes (22, 62), putting the focus of liver-specific 
therapies on patients with significant to advanced fibrosis 
(F2–F3) and compensated cirrhosis (F4). Selected patients 
at high risk of disease progression (e.g. NASH + T2DM 
with no fibrosis) may profit from liver-directed therapy 
following risk–benefit analysis (62).

Given the role of oxidative stress in hepatic 
fibrogenesis, two RCTs investigated the anti-oxidant 
properties of vitamin E in children and adults with 
NASH. In adults, vitamin E administration for 96 weeks 
reduced NAFLD activity score (NAS), but failed to achieve 
statistical significance for NASH resolution (82). In 
children, vitamin E therapy provided no overall benefit 
on liver biochemistry, steatosis or necroinflammation 
(97). In both trials, vitamin E therapy did not improve 
fibrosis significantly; however, neither trial was powered 
to detect clinically relevant anti-fibrotic effects (62). Long-
term safety concerns regarding high-dose vitamin E use 
have surfaced and continue to be debated with some 
evidence indicating increased incidence of haemorrhagic 
stroke and prostate cancer (45, 98).

The dual and pan-peroxisome proliferator-activated 
receptor (PPAR α/δ) agonists elafibranor and lanifibranor 
are under active pursuit for the treatment of NASH as 
potent regulators of lipid metabolism (45). In animal 
models, elafibranor exhibited protective effects on 
hepatic lipid accumulation, necroinflammation and 
fibrosis progression (99). In the phase II GOLDEN-505 
trial, elafibranor failed to achieve the primary endpoint of 
NASH resolution, but favoured histological improvements 
in more progressive disease (NAS ≥4) on post hoc analysis 
(100). A multicentre, phase III trial is currently evaluating 
the efficacy of elafibranor in severe steatohepatitis 
(NAS ≥4), although interim data outline that the trial 
did not meet its primary and secondary endpoints 
of NASH resolution and fibrosis improvement after a 
72-week follow-up (https://clinicaltrials.gov/ct2/show/
NCT02704403; 101). Lanifibranor has universal, agonistic 
action on PPA receptors (pan-PPAR) and demonstrated 
fibro-protective properties in rodent models (102). 
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A phase II trial of lanifibranor safety and efficacy in 
NASH is ongoing (https://clinicaltrials.gov/ct2/show/
NCT03008070).

Substantial evidence documents the importance 
of bile acids in nutritional homeostasis (62). Bile-acid-
induced activation of the farnesoid X receptor (FXR) 
enhances insulin sensitivity and diminishes lipogenesis 
(103, 104). Obeticholic acid, a synthetic variant of the 
natural bile acid chenodeoxycholic acid, is a potent 
FXR ligand. The proof-of-concept, phase II FLINT trial 
of obeticholic acid therapy in NASH was terminated 
early after primary endpoints of efficacy were met 
during interim analysis, with 45 and 22% of patients 
in the intervention arm demonstrating histological 
improvement and NASH resolution (vs 21 and 13% 
in the placebo arm), respectively (105). Although not 
powered to evaluate fibrosis resolution or progression, 
the FLINT trial observed protective effects on overall 
fibrogenesis, demonstrating fibrosis improvement in 
35% of patients in the intervention arm (vs 19% in 
the placebo arm) (62, 87, 105). These encouraging 
outcomes initiated two ongoing, multicentre, phase 
III trials evaluating obeticholic acid effectiveness in 
NASH with fibrosis (REGENERATE) and compensated 
NASH cirrhosis (REVERSE) (https://clinicaltrials.gov/
ct2/show/NCT02548351; https://clinicaltrials.gov/
ct2/show/NCT03439254). In a promising interim 
analysis of the REGENERATE trial, 23% of patients in 
the intervention arm achieved the primary endpoint 
of fibrosis improvement (vs 12% in the placebo group, 
P = 0.0002) (106). Main adverse effects of obeticholic 
acid are pruritus (~20% of patients), managed relatively 
successfully with topical emollients and anti-histamines 
in existing trials, and unfavourable serum cholesterol 
profiles (increased LDL, decreased HDL), generating 
fears of increased cardiovascular events (62). In rodent 
models, FXR agonism ameliorated atherosclerosis despite 
raising LDL levels (107). The impact of FXR agonism on 
cardiovascular event incidence in humans is unknown.

Other promising agents undergoing phase III 
development include selonsertib, which inhibits stress-
induced regulators of inflammation and fibrosis, and 
cenicriviroc, which antagonises key drivers of monocyte 
recruitment and hepatic stellate cell activation (39, 
45). In phase II trials, selonsertib and cenicriviroc 
demonstrated acceptable safety profiles and superiority 
over placebo in improving fibrosis (108, 109) with phase 
III trials in process (https://clinicaltrials.gov/ct2/show/
NCT03053050; https://clinicaltrials.gov/ct2/show/
NCT03028740).

Conclusion

NAFLD is a chronic liver disease that results in a high clinical 
burden due to the prevalence, inherent cardiometabolic 
risk and potential of progressing to cirrhosis. The presence 
and extent of fibrosis are the most important prognostic 
factors in NAFLD, necessitating risk stratification of 
patients by fibrosis stage with non-invasive methods. 
A multidisciplinary approach to treatment is advised, 
centred on minimisation of cardiometabolic risk as the 
cornerstone of therapy. Despite the current lack of licensed 
pharmacological agents for NAFLD management, several 
promising agents are undergoing advanced development 
to complement standard management in patients with 
progressive disease.
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