
1SCIENTIfIC REPOrTS |  (2018) 8:3069  | DOI:10.1038/s41598-018-21495-7

www.nature.com/scientificreports

Predicting sex from brain rhythms 
with deep learning
Michel J. A. M. van Putten   1, Sebastian Olbrich2 & Martijn Arns3

We have excellent skills to extract sex from visual assessment of human faces, but assessing sex from 
human brain rhythms seems impossible. Using deep convolutional neural networks, with unique 
potential to find subtle differences in apparent similar patterns, we explore if brain rhythms from either 
sex contain sex specific information. Here we show, in a ground truth scenario, that a deep neural net 
can predict sex from scalp electroencephalograms with an accuracy of >80% (p < 10−5), revealing 
that brain rhythms are sex specific. Further, we extracted sex-specific features from the deep net 
filter layers, showing that fast beta activity (20–25 Hz) and its spatial distribution is a main distinctive 
attribute. This demonstrates the ability of deep nets to detect features in spatiotemporal data 
unnoticed by visual assessment, and to assist in knowledge discovery. We anticipate that this approach 
may also be successfully applied to other specialties where spatiotemporal data is abundant, including 
neurology, cardiology and neuropsychology.

Identification of sex from visual assessment of biometric data, in particular the face, is an important part of social 
perception, a skill typically acquired in the first year after birth1,2. Male and female brains differ as well, not only 
functionally and anatomically3–6, but also in the likelihood for development of neuropsychiatric diseases and 
responses to treatment7. Brain rhythms are the electrophysiological signatures of brain function8–10, and scalp 
electroencephalogram (EEG) recordings in pathologies like postanoxic coma or seizures are very distinct from 
physiology11–13.

In neuropsychiatric conditions, the correlation between brain rhythms and pathology is much less clear, and 
various quantitative techniques have been proposed to extract relevant features, for instance in patients with 
attention-deficit hyperactivity disorder14 or depression15,16. Sex, however, cannot reliably be extracted from visual 
or quantitative assessment of EEG9,13, despite significant sex differences in the structural connectome of the 
human brain17.

For several decades, traditional machine learning techniques have been frequently applied to brain imaging 
data, including electroencephalography (EEG), with applications ranging from characterization of the EEG back-
ground pattern18,19 or quantification of focal or global ischaemia20–22 to detection of epileptiform discharges23,24 
and diagnostics in depression16. Common to most of these techniques is the requirement for prior assumptions 
to guide extraction of particular features to be used for classification25. Examples include spectral features or cor-
relations between EEG signals from different brain regions26,27. A limitation of these approaches is that unknown 
and potentially relevant features may not be included. Deep nets do not need prior extraction of such hand-made 
features, can learn from raw data28–30, and have potential to detect subtle differences in otherwise similar pat-
terns25,28. Here, we report on sex prediction from human scalp EEG recordings using a deep convolutional neural 
network.

Results
We used normative EEG data of 1308 subjects (mean age 43.38 (18.42 SD) yrs.; range 18–98 y; 47% males) 
recorded at different laboratories. We implemented a convolutional neural network in Python 3.6 using the Keras 
wrapper with a Tensorflow 1.0 backend on a CUDA-enabled NVIDIA GPU (GTX-1060), running in Windows 10 
operating system. Figure 1 shows the global architecture (see Methods for more details).

After training, accuracy was expressed as the percentage of correct classifications over all subjects, taking the 
mean probability of the 40 segments of 2 s each for each subject. We estimated statistical significance at p < 10−5 
by Monte Carlo simulation, yielding a significance threshold for the classification accuracy of 63% (see methods 
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for more details). We could subsequently predict male or female sex with an accuracy of 81%, far above the sig-
nificance threshold of 63%. Examples of EEG epochs from the test set used for the classification are illustrated in 
Fig. 2. While spatiotemporal patterns differ, no distinct pattern for sex can be observed.

Using different hyperparameters, e.g. larger filter sizes (3 × 2 or 4 × 2 patches) or lower numbers of convolu-
tional layers (four or three layers instead of 6 layers), resulted in inferior prediction accuracies of 61–69% and 
63–74%, respectively. Although a myriad of possible networks can be constructed (as an example: evaluating 6 
different layers, 10 different patch sizes and 10 different numbers of filters would result in 6 × 1012 distinctive 
networks), we restricted to similar network designs as stated above.

When the input matrices contained EEG from only the left or right hemisphere (each with 10 EEG channels, 
midline channels left out) with a consecutively slightly adjusted net architecture (i.e. halved input matrix with 
256 × 10 channels and consecutive decrease of pooling along the y-axis), accuracies were 76% for the left hemi-
sphere and 75% for the right hemisphere.

As a second step, we were interested in the features the deep net learned to differentiate between males and 
females. When visualizing the filters of all six convolutional layers of the net using a procedure similar to the deep 
dream algorithm31,32, the first two filter layers produced data in the input space (i.e. as an artificially generated 
2-sec EEG epoch) where spectral analysis with Fast Fourier Transformation (FFT) showed white noise (Fig. 3-left 
and right panel 1). Advancing deeper into the network, the consecutive filters (layers three to six) produced input 
data that reveal specific frequency features in the time domain when computing spectral analysis on each row, 
representing EEG-channel data (see Fig. 3-left panel 2). Since these artificially computed matrices reflect input 
patterns with the largest activation of the net, they can be regarded as surrogate EEG-segments, thus sharing 
similar frequency properties of original EEG data. The FFT analysis revealed that all deep layer filters > two 
show highest power peaks within the beta (12–25 Hz) frequency range (Fig. 3-right panel). The last layers (5 
and 6), while also yielding mainly beta activity, restricted their focus on spatial patterns within the input space 
(Fig. 3-panels 3), thus showing sex-specific spatial differences in brain rhythms.

Using this information of beta range activity being distinctive for sex classification, we went back to a tradi-
tional approach and extracted frequency power features from the EEG raw data. Exploiting the EEG-beta power 
from all subjects from all channels in a logistic regression model, we reached a classification accuracy of 70%, 
which is much lower than the achieved 81% of the deep net (Fig. 4).

Discussion
We show that human scalp EEG recordings contain sex specific information that can be extracted with a deep 
convolutional network, reaching prediction accuracies better than 80%. To our knowledge, this is the first study 
to explore deep learning for sex classification. A prior study in a small sample (n = 40; 20 males), observed power 
differences in resting state EEG for the delta (0–4 Hz), theta (4–8 Hz), alpha 2 (10–12 Hz) and beta bands (13–
25 Hz), but predictive accuracies were not reported33.

While not all details of the features used for classification by the deep net have been revealed, our data show 
that differences in brain rhythms between sexes are mainly in the beta frequency range (cf. Figs 3 and 4). Women 
are generally better at recognizing emotions and expressing themselves than men34, in part also reflected in differ-
ences in responses from the mu-rhythm as a presumed read-out of the mirror neuron system35, and modulations 
of beta activity during wakefulness have been associated with cognition and emotionally positive or negative 
tasks36. The discovery from the deep net that information in the beta-range differs between the sexes supports 

Figure 1.  Architecture of the convolutional neural network. The input shape (2 second 24-channel EEG) 
has dimensions 256 (samples) × 24 (channels); the output of the net is dichotomous: 1 (male) or 0 (female). 
Stochastic optimization was realized using Adamax51 with learning rate = 0.002, β1 = 0.9, β2 = 0.999, ε = 108 
and decay = 0.0. As the loss function, the categorical cross-entropy was used. The total number of parameters 
was 9,051,902.
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these observations. However, which particular spatiotemporal characteristics of the beta-rhythm differentiate 
remains enigmatic, and was not further explored.

Our CNN was motivated by the architecture used for image classification with ImageNet37. The input matri-
ces of the EEG data were shaped as a two-dimensional input array, comparable to a two-dimensional image. 
We decided to use a 6-layer network since the input space matrix comprised of 256 × 24 data points. Hence, a 
pooling approach with halving data points after each layer will result in 4 data points left along the x-axis. Further 
convolution on a 4 × 1 matrix should not bring in additional discriminative power for the network. Since an 
increase of data points in the input space (e.g. by using a higher sampling rate with e.g. 256 or 500 Hz or larger 
epoch lengths) did increase the computational needs above the available resources, we restricted to the maximal 
depth of six layers. No further attempts were made to compare different architectures. The main goal of our work 
was to demonstrate that sex specific information is contained in scalp EEG recordings that can be extracted with 
deep learning. Future studies should investigate further optimizations of this approach e.g. by varying montages, 
filter settings and network architectures. Although EEG recordings where obtained from different laboratories, 
this is not a significant limitation of our work, since all data was recorded with a standardized platform, the same 
amplifiers and across-site consistency; test-retest reliability of this methodology has been published before38,39.

Deep learning for analysis of EEG patterns has been applied to other studies with resting state EEG. For 
instance, a deep net learned discriminative features between imagining music or listening to music40 or rhythm 
perception41. Differentiation between early stage Creutzfeldt-Jakob disease and other forms of rapid progressive 
dementias with deep learning achieved a sensitivity of 92% at specificity of 89%42. Classification of sleep stages 
using deep nets performed on par with human sleep experts43. Detection of interictal epileptiform discharges is 
another promising application for deep nets, and may soon become a standard clinical tool to assist in the diag-
nostic process in epilepsy44,45.

In sum, brain rhythms contain sex specific information, and deep convolutional networks can extract features 
from time series beyond traditional approaches, including visual assessment. Deep nets might also substitute or 
complement human guided feature extraction and knowledge discovery in other specialties where spatiotempo-
ral data are ubiquitous, including clinical neurophysiology, cardiology, intensive care medicine, psychiatry and 

Figure 2.  Examples of classification of raw scalp eyes-closed electroencephalograms (2 s epochs). Vertical bars 
are 70 μV. F = female, M = male. Prob: probability for the (true) class. In these 16 cases, three classifications (in 
red) were incorrect.
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neuropsychology. This approach may also find application to differentiate response characteristics to drugs7, with 
promise to contribute to diagnostic and prognostic applications in personalized medicine46.

Methods
Normative data.  EEG data were obtained from six different laboratories that were extracted from the Brain 
Resource International Database (New York, Rhode Island, Nijmegen, London, Adelaide and Sydney). All par-
ticipants were adults (mean age 43.38 (18.42 SD) y; range 18–98 y; 47% males). Exclusion criteria were a personal 

Figure 3.  Panels left: The three filters generated input data with maximum activation for layer 2 (top), layer 3 
(middle) and layer 6 (bottom), representing the features with most discriminative power between sexes. The 
Fourier Spectral analysis in the time domain (panels right, averaged for all 24 rows, similar to a traditional 
Fourier analysis approach of EEG data) displays that filters of layer 2 yield white noise without prominent 
features, while filters for layer 3 show a distinct peak in the beta range (12–25 Hz), similar to layer 6. In this 
example, the activation of layer 6 is mainly seen within rows (i.e. EEG-channels) 4–20, restricting the extracted 
feature to certain EEG-channels, providing additional spatial information.

Figure 4.  Top: Shown is the log-transformed amplitude spectrum in the frequency range 0.5–35 Hz from three 
electrode positions (Fz, Cz, and Pz). Power is slightly increased at all frequencies for females, most prominent 
in the beta band. Bottom: topoplots of the grand average (n = 1308) showing that differences in spectral content 
between males and females are mainly within the beta range (12–25 Hz; right). Colorbar at the right indicates 
z-scores.
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or family history of mental illness, brain injury, neurological disorder, serious medical condition, drug/alco-
hol addiction, first-degree relative with bipolar disorder, schizophrenia, or genetic disorder. Institutional review 
board approval was obtained for all sites and informed consent from all subjects. All methods were performed 
in accordance with the relevant guidelines and regulations. IRB approval was obtained for all sites (Nijmegen: 
Commissie Mensgebonden Onderzoek, Regio Arnhem-Nijmegen; CMO-nr: 2002/008).

EEG recordings.  EEG recordings were performed using a standardized methodology and platform (Brain 
Resource Ltd., Australia) for which full details have been published elsewhere7,47 as have the results of the 
across-site consistency and reliability of this methodology38,39.

Participants were seated in a sound and light attenuated room, controlled at an ambient temperature of 22 °C. 
EEG data were acquired from 26 channels: Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, 
CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz and O2 (Quikcap; NuAmps; 10–20 electrode international system, sampling 
frequency 500 Hz). Data were referenced to averaged mastoids with a ground at AFz. Horizontal eye movements 
were recorded with electrodes placed 1.5 cm lateral to the outer canthus of each eye. Vertical eye movements 
were recorded with electrodes placed 3 mm above the middle of the left eyebrow and 1.5 cm below the middle 
of the left bottom eyelid. Skin-electrode impedance was kept <5 kOhm. A low pass filter with an attenuation of 
40 dB per decade above 100 Hz was employed prior to digitization. EEG data was recorded for two minutes with 
eyes open (EO) with the participant asked to fixate on a red dot on the screen. Two minutes with eyes closed 
(EC) were obtained while the participant was instructed to remain relaxed. Data were EOG-corrected using a 
regression-based technique similar to that used by Gratton, Coles and Donchin48 and stored in EDF format49.

EEG data was down-sampled to 128 Hz and subsequently band-pass filtered between 0.5–25 Hz. EEG refer-
ence was kept unchanged (averaged mastoids) and 24 channels were kept (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, 
FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1) while two were removed (O2 and Oz) to achieve 
low numbers in the prime decomposition of the matrix (3 × 2 × 2 × 2) to later be able to perform a maximum of 
pooling operations. Filtering was obtained with a first order Butterworth minimum phase distortion filter.

Deep Net Architecture.  The architecture of the deep net was inspired by deep convolutional nets that have 
been designed for image classification37. The input matrix for the net was a 24 (EEG-channels) × 256 (2 s × 
128 Hz) matrix. For the filter sizes of the convolutional layers, we used minimal windows of 2 × 2 patches. The 
number of filters decreased from 300 within the first and second layer to 50 within all other layers. Activation was 
done using a rectified linear unit. A pooling function was applied before using a dropout function for the first 
four convolutional layers. The final classification was obtained by applying a dense layer with a softmax activation, 
resulting in a probability p for male or female sex. The various layers are summarized in Table 1.

Training and testing.  We trained the neural network using 40 non-overlapping EEG segments of 2 s dura-
tion with eyes closed from every subject. In total, EEGs from 1000 adults were used for the training set (40 epochs 
× 1000 subjects = 40000 epochs of 2 s with 47% being males). Each segment received one-hot label array, indi-
cating a male or a female. Training was done with a batch size of 70 for 150 runs, meaning all 40000 epochs were 
presented to the network 150 times in chunks of 70 segments.

Training and testing the accuracy of the data was done on large separate, independent datasets, therefore cross 
validation was deemed not necessary. The independent test set comprised 308 cases (49% males, 40 segments 
from each subject × 308 subjects = 12320 samples of 2 s). Classification by the final layer of the network was 
binary (male (1) or female (0)). Within training, accuracy was computed after each run for all segments of the 
training set and for the test set. Training was finished after a) accuracy within the training set reached 100% or b) 
the loss function of the training set did not further decrease or c) 150 runs were finished. Final classification was 

Layer type activation # of filters filter size dropout rate

1. Convolutional RELU 100 3 × 3

2. Pooling 2 × 2

3. Dropout 25%

4. Convolutional 100 3 × 3

5. Pooling 2 × 2

6. Dropout 25%

7. Convolutional 300 2 × 3

8. Pooling 2 × 2

9. Dropout 25%

10. Convolutional 300 1 × 7

11. Pooling 1 × 2

12. Dropout 25%

13. Convolutional 100 1 × 3

14. Convolutional 100 1 × 3

15. Dense softmax

Table 1.  Layers of the CNN. The input matrix for the net was a 24 (EEG-channels) × 256 (2 s × 128 Hz) matrix. 
RELU = rectified linear unit.
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dichotomous, by taking the mean probability of the 40 segments of 2 s each for each subject; if p > 0.5, the EEG 
was classified as male.

Visualizing deep layers.  The procedure we used to visualize which features of the input data are mainly 
used by the CNN is similar to a technique called “deep-dreaming” and has been described elsewhere in more 
detail31,32,50. The essence of the method is that the network is activated “top-down”, meaning that from a desired 
output (e.g. 1 = male) from the last layer, the connections of the trained network are activated toward the input 
layer. The activity of the first layer, which normally receives the input matrices (i.e. the raw EEG data), then can 
be seen as an artificially generated input pattern that most likely would produce the desired output. During this 
process, the filter layers in between the input and the output are activated, representing archetypal features of the 
desired output.

We generated artificial input patterns by retrograde ascending of the gradients in the trained network model, 
repeating this for all filters of all layers and sorting the generated data for the input space by the highest loss (i.e. 
the maximum activation of a specific filter in a particular layer32).

Estimating significance.  First, we randomly assigned sex to each subject in the test set (n = 308), using the 
prior sex distribution (47% males). To set the p-value for statistical significance at p < 10−5, we performed 100,000 
simulations in Matlab. The best classification accuracy reached was 63%, which was subsequently considered the 
significance threshold.

Spectral features.  Power spectrum was estimated using a Fast Fourier Transform using Welch’s method 
with half overlapping epochs of 10 s, as implemented in Brain Vision Analyzer 2.1.0 (Gilching, Germany).
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