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Abstract: Multidrug bacterial resistance endangers clinically effective antimicrobial therapy and
continues to cause major public health problems, which have been upgraded to unprecedented
levels in recent years, worldwide. β-Lactam antibiotics have become an important weapon to fight
against pathogen infections due to their broad spectrum. Unfortunately, the emergence of antibiotic
resistance genes (ARGs) has severely astricted the application of β-lactam antibiotics. Of these,
New Delhi metallo-β-lactamase-1 (NDM-1) represents the most disturbing development due to its
substrate promiscuity, the appearance of variants, and transferability. Given the clinical correlation of
β-lactam antibiotics and NDM-1-mediated resistance, the discovery, and development of combination
drugs, including NDM-1 inhibitors, for NDM-1 bacterial infections, seems particularly attractive
and urgent. This review summarizes the research related to the development and optimization of
effective NDM-1 inhibitors. The detailed generalization of crystal structure, enzyme activity center
and catalytic mechanism, variants and global distribution, mechanism of action of existing inhibitors,
and the development of scaffolds provides a reference for finding potential clinically effective NDM-1
inhibitors against drug-resistant bacteria.

Keywords: NDM-1; multidrug resistance; variants; enzyme inhibitors; pharmacophore; biological
activity

1. Introduction

Abusing the use of antibiotics causes the mass production of resistant bacteria and
resistance genes. Resistant bacteria and resistance genes can be transmitted to humans via
the food chain and environments, which leads to a variety of infectious illnesses, including
norovirus and hepatitis A [1–3]. The emergence and spread of multidrug-resistant bacteria
(MDR) and antibiotic resistance genes (ARGs) have become an international public health
crisis [4,5]. A large number of studies have shown that MDR mainly focuses on gram-
negative bacteria, especially carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-
resistant Acinetobacter baumannii (CRAB) [6,7]. With the increasing awareness of MDR and
ARGs in the world, proposing strategies to prevent and control clinical infection is an urgent
task. β-Lactam antibiotics are the most widely used antibacterial agents at present and
block bacterial cell walls due to their covalent bond with basic penicillin-binding proteins
(PBPs) [8]. Each species of bacteria has its own unique set of PBPs, and each species of
bacteria can have 3 to 8 enzymes [9]. However, bacteria have developed sophisticated
resistance mechanisms to resist treatments with β-lactam antibiotics. Among them, β-
lactamases (BLs) represent the most extensive and clinically relevant mechanism [10,11].
BLs are expressed by both gram-positive and gram-negative bacteria that hydrolyze the
β-lactam ring, resulting in the inactivation of the drug [12].
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The Ambler scheme classifies BLs into four classes according to the protein homology
of enzymes [13]. Classes A, C, and D are serine β-lactamases (SBLs) (such as AmpC, KPC,
OXA), which can catalyze the hydrolysis of β-lactam antibiotics by nucleophile serine, and
a transient covalent reaction occurs at the active sites [14–16]. Class B BLs, also known as
metallo β-lactamases (MBLs) (such as IMP, VIM, NDM), catalyze the hydrolysis of β-lactam
antibiotics through a non-covalent mechanism and are characterized by one or two equiv-
alents of bound zinc (Zn) ions that are indispensable for enzyme activity [17,18]. MBLs
are further divided into three subclasses (B1, B2, and B3), which are mainly defined by
differences in the primary zinc coordination layer [19]. New Delhi metallo-β-lactamase-1
(NDM-1) [20,21] is a new member of the B1 subclass of the MBL superfamily and was
first identified in 2008 by Klebsiella pneumoniae (K. pneumoniae) isolated from a Swedish
patient [22–24]. Subsequently, NDM-1 has been characterized mainly in Escherichia coli
(E. coli), Acinetobacter spp., and (K. pneumoniae) [25,26]. The global appearance of NDM-1
can effectively hydrolyze almost all available β-lactam antibiotics except for monobactams
such as aztreonam, and it spreads quickly between the same species or even different
species [27]. Plasmids mediate the blaNDM-1 gene transfer among the same and even dif-
ferent bacterial species, endangering efficacious antibacterial treatments [28,29]. Moreover,
NDM-1 positive bacteria have been detected in drinking water and wastewater [30]. Only
colistin and tigecycline are effective against NDM-1 producing bacteria, and some NDM-1
producing bacteria are also resistant to these two drugs [31,32]. Ongoing research has sug-
gested that new types of antibiotics will have long research and development periods and
high costs. At present, the most effective method against NDM-1 is to design an inhibitor
to protect β-lactam drugs from enzyme hydrolysis. In addition, combining β-lactam drugs
with inhibitors can restore its antibacterial activity and kill pathogenic microorganisms.
Although the structural features and information about the mechanism of NDM-1 hydroly-
sis have been evaluated based on its homologs, it is still a challenge to develop an effective
NDM-1 inhibitor for treatment. Of course, only a profound understanding of the structure
of NDM-1 and the different mechanisms of action of NDM-1 on different substrate types
are helpful for the future drug discovery of NDM-1-producing drug-resistant bacteria to
avert catastrophic pandemics.

In this review, the major advances in NDM-1 inhibitor discovery and development
were presented. This summary focuses on the effective structural basis and inhibitory
mechanism of inhibitors and inhibitors that synergize with β-lactam antibiotics to restore
the drug sensitivity of clinically relevant NDM-1-expressing bacteria in vitro and in vivo.

2. The Structure of NDM-1

The NDM-1-encoding gene blaNDM-1 is mostly located on readily transferable
plasmids, and NDM-1 consists of 270 amino acids and is expressed at approximately
27.5 kDa [33,34]. NDM-1 is a single-chain polypeptide with an N-terminal signal peptide
that shuts through the periplasmic space, effectively acts on β-lactam antibiotics, and
inactivates the hydrolysis of antibiotics. The NDM-1 enzyme has a compact spherical
structure with a size of 50 Å × 40 Å × 40 Å and displays a conical αβ/βα sandwich fold.
The αβ/βα fold is unique to the MBL superfamily with two central antiparallel β-sheets
flanked by two pairs of α-helices. The hydrolysis mechanism of the substrate catalyzed
by BLs indicates that the NDM-1 enzyme folded spatial structure is highly adaptable to
β-lactam antibiotics. The right portion (C-terminal) of the NDM-1 molecule consists of
two α-helices (α4 and α5) and five antiparallel β-strands (β8–β12). The left subdomain
(N-terminal) consists of two α-helices (α1 and α2) and seven antiparallel β-strands (β1–β7)
(Figure 1) [12,35,36]. The β-chain interacts through hydrophobic groups, the N-terminal
β-chain is highly twisted with a twist angle > 100 degrees, and α-helices and β-strands are
connected by a flexible loop [37].
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Figure 1. The Crystal Structure of NDM-1 (PDB: 3SPU). The two zinc ions are shown as purple
spheres. α-Helices and β-strands are colored red and blue, respectively. The secondary structure
designations are labeled.

In solution, the active form of NDM-1 is reported as a monomer, which is similar to
other B1 MBLs. In some cases, due to hydrophobic and van der Waals interactions, NDM-1
may exist in the form of a partial dimer, and the loop insertion sequence (Thr162–Gly167) is
considered to contribute to the dimerization of NDM-1 [38,39]. It is speculated that NDM-1
can exist as a dimer in both membrane-bound and soluble states, which contributes to the
formation of the unique mechanism of resistance of NDM-1 [40].

Many studies are describing the characteristics of NDM-1. To date, many reports of
NDM-1 crystal structural determinations have been deposited in the Protein Data Bank
(PDB) [41]. These structural models showed that NDM-1 has a typical MBL fold, but a
considerable degree of variation exists among the models. These differences include the
cocrystallized substrate, the stoichiometry of the bound metal ion, and the conformation of
the ligand with substrate binding loops [39]. Dozens of crystal structures of NDM-1 cocrys-
tallized with hydrolyzed antibiotics, including ampicillin (5ZGQ), benzylpenicillin (4EYF),
methicillin (4EY2), oxacillin (4EYB), and meropenem (4EYL) (Figure 2) [42,43]. There are
also crystal structures of NDM-1 combined with potential inhibitors, such as L-captopril
(4EXS) and bisthiazolidine (4U4L). Comparing the root-mean-square deviation (RMSD)
values of several different NDM-1 crystal structures, it was found that Loop 3 (residues 63
to 73) contained the greatest flexibility, and the other regions of the protein skeleton were
relatively stable [44,45]. The crystal structure of NDM-1 cocrystallized with hydrolyzed
antibiotics, which reveals the structure-activity relationship (SAR) between the NDM-1
enzyme and its substrate, provides the basis for exploring the mechanism of hydrolyzing
antibiotics and broad substrate specificity which further deepens our understanding of
these important enzymes.
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Figure 2. Crystal structure of NDM-1 bound to hydrolyzed meropenem (PDB: 4EYL). (a) Structure of
the docking complex of NDM-1 with meropenem. (b) A ligand interaction diagram for NDM-1 and
meropenem in the active site.

3. Active Site and Hydrolysis Mechanism of NDM-1

In the active site of NDM-1, there are two divalent zinc ions connected by hydroxide
ions that interact with different amino acid residues [46,47]. Zn1 is tetrahedrally coordinated
with three histidine residues, His120, His122, and His189, with distances of 2.16 Å, 1.99 Å,
and 2.19 Å, respectively. Zn2 coordinates with Asp124, Cys208, and His250 at distances of
2.42 Å, 2.52 Å, and 2.35 Å, respectively [35,42,48] (Figure 3). In addition, Zn2 coordinates
with three water molecules, one of which acts as a catalytic water molecule and interacts
with Zn1 and Zn2. The catalytic water molecule is most likely in the form of hydroxide ions,
which form a bridge between the two zinc ions and act as nucleophiles during enzymatic
substrate hydrolysis [49–52]. It is assumed that the position of nucleophilic hydroxide
is similar to that of all β-lactam antibiotic product complexes, and it is directly located
between Zn 1 and Zn 2, with distances of 2.0 ± 0.1 Å and 3.0 ± 0.1 Å, respectively [53].
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Figure 3. The structure of the NDM-1 active site. (a) The red circle indicates the active site region of
NDM-1. (b) Coordination distance between the key amino acids of NDM-1 and zinc.
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In the current proposed NDM-1 enzyme structure model, two zinc ions with a dis-
tance of 3.2 Å are connected by the side chain of Asp124 [36,53]. Therefore, Zn-Zn ions
bind closely during the formation of substrate and enzyme complexes and promote the
interaction of Zn2 with the amide groups of the β-lactam ring [54]. In addition, the distance
of Zn1-Zn2 in the substrate structure increase after hydrolysis, thereby weakening the
interaction and releasing the hydrolysate from the NDM-1 enzyme activity center [55]. Zn1
keeps the hydroxyl group in the correct direction to attack the carbon atom on the carbonyl
group of the β-lactam ring by nucleophilicity, while the oxygen atom of the carboxyl group
is positioned in a way that enables it to interact with the Zn2 ion [56,57]. The research also
shows that the hydroxide ion at the active site attacks the carbonyl carbon of β-lactam
to form an intermediate, and the intermediate is stabilized by zinc ions, thus forming a
transition state complex and finally leading to the cleavage of the C-N bond (Figure 4). The
catalytic mechanism of NDM-1 is still unclear, and some researchers believe that it follows
the dual-zinc catalytic mechanism described above. By only thoroughly understanding the
relationship between the active site and the mechanism of hydrolysis, a potential inhibitor
may be designed as a future treatment, which is needed in the present situation [58,59].
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4. NDM-1 Variants and Global Distribution

The selective pressure caused by the increasing use and abuse of broad-spectrum
antibiotics is considered to play a key role in the evolution of NDM-1, leading to the
emergence of NDM variants [60,61]. NDM variants are characterized by point mutations at
specific positions. To date, substitutions at 21 different positions of the 270 amino acids have
been reported, which resulted in 31 different NDM mutations [61–63] (Figure 5). Among
31 known NDM variants, the amino acid substitution pattern is usually between 1 and 5.
NDM-2, -3, -4, -6, -9, -11, -14, -22, -23, -24, -25, -28, -29, -30 and -31 are different from NDM-1
in that they are replaced by a single amino acid, while the rest of them are different due to
multiple substitutions. One exception is NDM-18, which is identical to NDM-1, and the
only difference is the 5-amino acid tandem repeat sequence (QRFGD) at positions 44–48
of NDM-1 [64]. The secondary structure and thermal stability of the NDM-1 variant were
detected by circular dichroism (CD) and differential scanning fluorescence (DSF), and no
amino acid mutation was found to affect the whole folding of the NDM-1 variants [65].
However, substitution with different amino acid residues either in various combinations
or individually has different effects on the catalytic activity and thermal stabilities of the
enzyme in comparison to NDM-1 [66–68].
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Figure 5. NDM-1 amino acid sequence and NDM-1 point mutations. The annotation of the NDM
amino acid sequence was adopted from data reported under UniPort. Signal peptides of NDM-1 are
framed with red lines. α-helices, β-strands, and turns are indicated as orange spirals and blue zigzag
lines and green apsidal lines, respectively. The zinc-binding residues are highlighted in purple. The
lipidation box is highlighted in gray.

In the process of NDM evolution under the selection of environmental pressure,
residue M154 appears to be the most frequently replaced, among which the mutation of
M154L is the most common change (observed in 14 of the 31 distinct NDM variants) and
M154V occurred once (in NDM-11). The mutation M154L, which appears on the surface
of the protein together with other mutations, is regarded as one of the most favorable
substitutions, as it enhances the metal-binding affinity and may improve thermostability
through other mechanisms, such as eliminating a charge in one of two closely situated
aspartate residues (D130N and D95N) or reducing the flexibility of the loop (G222D) [61,69,70].
Several mutations may introduce other mutations as global suppressors to stabilize the
hydrophobic core of NDM, especially M154L, which leads to additional function at the cost
of structural instability [71]. Global-suppressing mutations have been researched in the
evolution of SBLs [72].

To date, it has been observed that amino acid substitutions in NDM variants are
far from the key catalytic residues or those residues related to maintaining active site
conformation or substrate interaction. However, some variants have been reported to
change the activities against β -lactam [73], which suggests that a substitution, despite
being located at a nonactive site, may distort the groove, resulting in a major impact
on enzyme activity, and the mechanism of the increase in activity remains unclear [74].
Observing the distribution of all substitutions in the crystal structure of NDM-1 mutants, it
was found that the loop regions were the most susceptible to mutations. More than half
of the substitutions are located within the loops of the NDM structure, followed by the
α-helices and then in the β-strands (Table 1). The loop region is also mainly involved in
mediating drug resistance, which indicates that substitutions in the loops may provide an
evolutionary advantage for bacteria [75,76].
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Table 1. Corresponding amino acid substitutions among NDM-1 and its variants and its first source
of spread.

NDM-1
Variant

Location of Amino Acid(s) Substitution Source
Organism(s)A-Helices β-Strands Loop

NDM-2 - - P28A A. baumannii
NDM-3 D95N - - E. coli
NDM-4 - - M154L E. coli
NDM-5 - V88L M154L E. coli
NDM-6 A233V - - E. coli
NDM-7 D130N - M154L E. coli
NDM-8 D130G - M154L E. coli
NDM-9 - - E152K K. pneumoniae
NDM-10 - A74T R32S, G36D, G69S, G200R K. pneumoniae
NDM-11 - - M154V E. coli
NDM-12 G222D - M154L E. coli
NDM-13 D95N - M154L E. coli
NDM-14 D130G - - A. lwoffii
NDM-15 A233V - M154L E. coli
NDM-16 A233V V88L M154L E. coli
NDM-17 - V88L M154L, E170K E. coli
NDM-18 - - QRFGD (44-48) P. rettgeri
NDM-19 D130N - M154L, A233V E. coli
NDM-20 - V88L M154L, R270H E. coli
NDM-21 - V88L G69S, M154L E. coli
NDM-22 - - M248L E. cloacae
NDM-23 I101L - - K. pneumoniae
NDM-24 - V88L - P. stuartii
NDM-25 - A55S - K. pneumoniae
NDM-26 G222S V88L M154L E. coli
NDM-27 D95N, A233V - - E. coli
NDM-28 A266V - - K. pneumoniae
NDM-29 D130N - - K. pneumoniae
NDM-30 D223Y - - K. oxytoca
NDM-31 P171T - - C. werkmanii

It is speculated that various amino acid substitutions affect the stability and catalytic
activity of the enzyme. NDM variants containing the V88L substitution of NDM-5, -16,
-17, -21, and -24 have been reported to show higher carbapenem activity than that of
NDM-1, while NDM-20 decreased the activity of carbapenems. The minimal inhibitory
concentration (MIC) of ertapenem against strains producing NDM-5 -16 and -24 is 4- to
8-fold higher than that of strains producing NDM-1, while strains producing NDM-21 have
carbapenem similar to that of NDM-5 [77–81]. Compared with NDM-5 (V88L and M154L),
NDM-20 (V88L, M154L, and R270H) improves the hydrolysis activity of some penicillins
and cephalosporins but inhibits the activity of carbapenems, which may influence drug
strategies in CRE infection [82]. Experimental studies have shown that the affinity of
NDM-17 (V88L, M154L, and E170K) for all β-lactams is significantly higher than that of
NDM-5 (V88L and M154L), and the increase in its catalytic activity may be related to the
novel substitution of E170K. Other substitutions of NDM-4 (M154L) and NDM-14 (D130G)
have also been found to increase carbapenem activity [83,84]. However, NDM-8 contains
both M154L and D130G substitutions, but enzymatic activities against carbapenems were
similar to those of NDM-1 [85]. Regarding NDM-7 (D130N and M154L), in which the Asp
at position 130 replaces Asn in NDM-8, it has been reported that the carbapenem activity of
NDM-7 is higher than that of NDM-1 [86]. This indicates that the substitution of different
amino acid residues on the same site will have different effects on the catalytic activity
of the enzyme, which depends on the structure and properties of different amino acids.
Above all, these results explained that different combinations of amino acid mutations
have different effects on the catalytic activity of NDM-1. In the single substitution variants,
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it is easy to associate the substitution with an increase or decrease in catalytic activity.
However, it is difficult to accurately predict the individual contribution of each substitution
in multiple substitution variants. Further comparative kinetic studies can provide insight
into the effects of individual substitutes [76,87,88].

NDM variants increase their stability or Zn binding affinity through the accumulation
of mutations, while Zn deprivation strictly limits the evolution of this MBL [69]. Under
conditions of zinc starvation, NDM-3 (D95N), -4 (M154L), -6 (A233V), -9 (E152k), and -14
(D130G) variants enhance cefotaxime resistance by increasing the metal affinity or stability
of NDM enzymes, but the mechanism is still unclear. In contrast, NDM-2(P28A) and NDM
-11(M154V) had no significant influence on NDM function under zinc-restricting conditions.
NDM-19 (D130N, M154L, and A233V) is a derivative of NDM-7 (D130N and M154L).
Under zinc-restricted growth conditions, compared to NDM-1 or NDM-7, NDM-19 shown
is less sensitive to carbapenems and cephalosporins [89]. Therefore, the stress caused by
zinc depletion may be the major driving force for the evolution of NDM enzymes [61,69].
To date, there has been no research report on new variants of NDM-28, -29, -30, and -31
enzyme activities. Therefore, it is essential to analyze the catalytic efficiency and resistance
of evolving NDM variants in the control of clinical infections, which is still an important
task.

According to reports, NDM-1 and its variants are spreading worldwide [21,90,91].
The Asian continent is the main storage area for NDM producers, where approximately
58.15% of the abundance of NDM-1 and its variants are distributed, especially in China,
Bangladesh, and India [92–94]. NDM-2 was the first variant of NDM-1, which spread
NDM carbapenemases in A. baumannii, and the corresponding gene mainly spread in the
Middle East [95]. However, NDM-1 and its variant total producers in European countries
were approximately 16.8%, Romania, Germany, London, etc. with the maximum spread
of NDM-1 variant [94,96,97]. NDM-4, -5, and-7 are reported to be prevalent in European
subcontinent countries in Italy, Denmark, and France [94,98]. Africa and the American
continent account for approximately 10.8% of the global NDM-1-producing countries, of
which the Algeria subcontinent and Brazil are the main distribution areas, and NDM-5
is also reported to be distributed in Algeria [99]. Australia accounts for 1.6% of the total
NDM-1 producers in the world [100]. All 31 NDM variants detected the highest prevalence
in E. coli and K. pneumoniae species.

5. NDM-1 Inhibitors: Discovery and Advances

Although a variety of mechanism-based inhibitors are available for SBLs in therapy, there
is still a lack of specific and effective inhibitors against NDM-1 in clinical practice [101–103].
The development of effective inhibitors of NDM-1 is impaired by factors such as variability
in the entry loop permutation of the active site, the lack of new scaffolds that can selectively
target the active site of NDM-1, and the existence of multiple variants of NDM-1 [104–106].

The widespread emergence of NDM-1 and its variants has promoted research on an-
tibacterial drugs worldwide. The design and research strategies of drugs targeting NDM-1
have focused on two approaches. First, NDM-1 is combined with carbapenem antibiotics
(such as imipenem), which can not only protect the structure of β-lactam antibiotics from
being destroyed but also synergize with carbapenem drugs to restore their curative effect
on NDM-1. Theoretically, these inhibitors should be β-lactam antibiotics [107]. The second
is to design new antibiotics that are insensitive to the catalytic hydrolysis of NDM-1. There
is still much progress necessary for new antibiotics that require more effort to innovate and
must be explored from scratch. Therefore, most efforts have focused on the first approach,
as it offers the ability to protect β-lactam antibiotics from hydrolysis when they are used in
combination with inhibitors [108]. Due to the high structural similarity between the MBL
subtypes, it is assumed that these inhibitors play a broad role in the MBLs [103].

To date, more than 500 small-molecule compounds have been reported in the literature
as potential NDM-1 inhibitors, but there are no clinically approved NDM-1 inhibitors [27].
In this paper, the active chemical scaffolds of NDM-1 inhibitors that have been discovered
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are reviewed to summarize the pharmacophore and lay a foundation for the subsequent
development of NDM-1 inhibitors. NDM-1 inhibitors can be classified and separated into
noncovalent inhibitors and covalent inhibitors according to different modes of action.

5.1. Noncovalently-Bound Inhibitors

Noncovalent inhibitors mainly consist of zinc-binding inhibitors, boronic acid deriva-
tives, and metal chelating inhibitors.

5.1.1. Zinc-Binding Inhibitors

The reaction mechanism of NDM-1 was investigated through the formation of hetero-
bimetallic analogs (CoCo-, ZnCo-, and CoCd-) and the use of chromatic as a chromogenic
substrate. The results show that the zinc ion of NDM-1 is essential in the hydrolysis
of β-lactam antibiotics [56]. The electrophilic zinc ions in the NDM-1 enzyme and the
electron-rich substituent of NDM-1 inhibitor act synergistically to produce inhibitory activ-
ity through ion-dipole interactions.

Thiol-Based Derivatives

L-captopril (1, Figure 6) is the first angiotensin-converting enzyme (ACE) inhibitor
to be clinically approved for the treatment of hypertension [109]. Like ACE, MBLs also
contains two key zinc atoms in the active site, so it is no surprise that both enantiomers of
captopril are studied as potential NDM-1 inhibitors [110]. D-Captopril (2, Figure 6) has a
high inhibitory effect on NDM-1, with a half-maximal inhibitory concentration (IC50) of
7.9 µM, while the inhibitory activity of L-captopril is 25-fold less potent, with an IC50 of
202.0 µM [36]. The crystal structure of NDM-1 combined with L-captopril was obtained
by mass spectrometry and X-ray crystallography. The crystal structure showed that the
thiol unit of L-captopril was intercalated between Zn1 and Zn2 in the active site of NDM-
1, replacing water molecules and becoming a competitive inhibitor of NDM-1 [42]. In
addition, Asn220 is a residue involved in intermediate product stabilization and substrate
binding. It forms a hydrogen bond with the hydrophilic part of the inhibitor, while the
hydrophobic part of the inhibitor interacts with the L3 loop.
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Captopril contains thiol and carboxylate pharmacophores, which can form coordina-
tion bonds with Zn ions. These chemical groups are the reasons why L- and D-captopril
have strong inhibitory effects on all subclasses of MBLs, and these effects have been veri-
fied for a long time [111–113]. When the carboxylate group of mercaptocarboxylic acids
was substituted by bioisosteric groups such as phosphonic acids, the biological activity,
and inhibitor binding were reduced, which further demonstrated the importance of the
carboxylate acid group [114]. The maleic acid derivative disodium 2,3-diethylmaleate
(ME1071, 3 Figure 6) containing carboxylate showed that the activity of carbapenems and
cephalosporins on clinical isolates producing MBL was enhanced in vitro [108]. In vivo,
the combined application of ME1071 and biapenem can improve the survival rate of
ventilator-associated pneumonia in a mouse model caused by MBL-producing Pseudomonas
aeruginosa [115].

Captopril has been identified as an effective inhibitor of NDM-1, which is the starting
point for the development of new inhibitors with thiol and carboxyl pharmacophores.
Captopril consists of two units: a 3-mercapto-2-methylpropanoyl fragment and a proline
residue. To test various D-captopril analogs produced by substituting proline residues
or partially modifying 3-mercapto-2-methylpropanoyl, Klingler and coworkers created a
promising platform for screening and developing new MBL inhibitors [116]. This approach
has succeeded in finding three FDA-approved drugs possessing a sulfhydryl moiety with a
low µM IC 50 range for MBLs. Thiorphan (4, Figure 6), an enkephalin inhibitor, showed
high inhibitory activity against NDM-1 with an IC50 of 1.8 µM. Dimercaprol (5, Figure 6) is
clinically used as an antidote for metal poisoning and has the lowest IC50 (1.3 µM), and is
the most potent. Penicillamine (6, Figure 6) is a drug for Wilson’s disease that also shows
NDM-1 enzyme inhibitory activity. Among the thiol-based compounds, thiomandelic acid
(7, Figure 6) and 2-mercapto-3-phenyl propionic acid (8, Figure 6) were found to efficiently
restore sensitivity to meropenem [117]. The above analogs can restore the imipenem
susceptibility of E. coli carrying such MBLs. In contrast, tiopronin (9, Figure 6), with an IC50
of 84 µM, has only moderate activity, while N-acetylcysteine has no activity at all [116].

González and coworkers designed and synthesized a novel chemical scaffold bisthi-
azolidine (BZTS), derivative according to the mechanism of NDM-1 identifying and hy-
drolyzing β-lactam antibiotics. The BTZ scaffold is a structure with the characteristics of a
β-lactam substrate and can be modified by introducing metal-binding groups to target the
MBL active site. The modification ability is based on the BTZs bicyclic ring, which could
simulate the unbreakable β-lactam ring, retain the bridging nitrogen and the carboxylate
that interact with Zn2, and accommodate other metal-binding groups inserted into the
necessary Zn center. Four BTZs derivates (L-CS319, L-VC26, and their enantiomers, 10, 11,
Figure 6) that behave as competitive NDM-1 inhibitors in vitro, with Ki values in the low
micromolar range from 7 to 19 µM, and could restore the efficacy of carbapenem on clinical
isolates that produced NDM-1. The two key pharmacophores of the four BTZ derivatives
are carboxylate, which interacts with Lys224, and the thiol group and binds to the two Zn
ions in the active site of NDM-1 [45]. Therefore, Lys224 was demonstrated to participate in
the substrate to identify and adjust substrates toward easy hydrolysis [35,38]. The crystal
structure of the most effective L-CS319 and NDM-1 complex (PDB 4u4l) has been clarified,
which provides a reference for structural determinants for inhibitor binding and further
improves its efficiency [45]. Although compared with NDM-1, other MBL subclasses have
different binding modes with BTZs, BTZ scaffolds have also been confirmed to have a
broad spectrum of inhibiting all MBL subclasses [118]. This is an effective new strategy to
inhibit NDM-1 and provides a valuable scaffold for discovering NDM-1 inhibitors in the
future.

In molecular design based on silicon fragments, Cain R and colleagues reported
thiol-mediated potent MBL inhibitors [119]. Utilizing a molecular fragment docking ap-
proach, benzyl thiol (12, Figure 6) was discovered as a potential competitive inhibitor of
NDM-1 with a low micromolar affinity. Docking calculations and polarizable molecular
mechanics predicted interactions between the benzyl thiol derivative (13, Figure 6) and
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NDM-1 [120,121]. The carboxylate forms hydrogen bond interactions with Lys224 and
Zn2, the thiol coordinated Zn1 and Zn2, and the aryl ring interact with Trp87 through
π-stacking. Nuclear magnetic resonance (NMR) and crystallographic analyses showed
that benzyl thiol derivatives were directly combined with MBL active sites. SAR studies
have shown that the terminal phenyl ring of derivative modification with heterocycles
or substituents revealed has no significant influence on the effectiveness of the designed
inhibitor. Within the detection range, none of the individually tested derivatives had any
antibacterial activity, but at an active ingredient concentration of 100 µg/mL, the MIC
of meropenem to NDM-1-producing strains was decreased. This design can effectively
identify the chemotypes of other inhibitors that involve substitution of metal coordination,
as well as inhibitors that are dependent on metal coordination.

More recently, 2-mercaptomethyl thiazolidines (MMTZs, 14, Figure 6) were demon-
strated to be all MBL inhibitors; they contain a thiazolidine ring and two chiral carbon
centers with free thiol groups and carboxylates. MMTZs inhibit MBLs, including NDM-1,
by maintaining a conserved binding mode, which utilizes thiol-coordinated mono- or
dizinc centers, and thiazolidine sulfur interact with aromatic residue f active site. In vitro,
MMTZs inhibit all MBL subclasses with Ki values ranging from 0.16 µM to 130 µM and
can restore the activity of carbapenems against NDM-1-expressing recombinant E. coli.
Therefore, MMTZs represent a promising MBL inhibitor scaffold to control the emergence
of bacterial resistance [122].

Rhodanine

Rhodanine (15, Figure 7) is one of the few compounds with inhibitory activity in all
enzyme classes. Due to the noncompetitive or competitive inhibition of PBPs, some rhoda-
nines also have antibacterial activity [123,124]. Later, Brem et al., through crystallographic
analyses of the mechanism by which rhodanine inhibits VIM-2 MBL, revealed that the rho-
danine ring was hydrolyzed into thioenolate (16, Figure 7), and thioenolate was bound by
dizinc chelation. Crystallographic observations and NMR analyses in solution revealed that
the thioenolate derived from rhodanine as an efficient broad-spectrum MBL inhibitor [125].
Synthesis and characterization of 26 rhodanine derivatives and 1 thioenolate derivative to
develop broad-spectrum MBL inhibitors. The biochemical evaluation revealed that most
of the tested derivatives strongly inhibited B3 MBL. In particular, for NDM-1, compound
17 (17, Figure 7) was the most active. SAR and Dock showed that the substitution of
rhodanine with diaryl provides a good scaffold for the design of broad-spectrum inhibitors
of MβLs [126].
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Thiadiazoles

A high-throughput screening method was established by Falconer B and cowork-
ers to discover the chemical perturbants of the essential. Therefore, two spiro-indoline-
thiadiazoles (5-ethyl-5′-phenyl-3′H-spiro[indoline-3,2′-[1,3,4] thiadiazol]-2 and 5-bromo-1-
methyl-5′-phenyl-3′H-spiro[indoline-3,2′-[1,3,4] thiadiazol]-2) (18, 19, Figure 8) that disrupt
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iron homeostasis in bacteria have been identified and characterized. These two com-
pounds are intracellular chelators with two isomeric states. Various spiro-heterocyclic
compounds were converted into the open chelating form of merocyanine, thus enhancing
the antibacterial activity of β-lactams [127]. Then, researchers also verified that a range
of spiro-indoline-thiadiazole analogs would potentiate β-lactam antibiotics on NDM-1-
positive K. pneumoniae in vitro by resisting zinc availability. Among analogs, compound 20
(20, Figure 8) inhibited NDM-1 in vitro and combined with meropenem, the bacterial load
in the liver and spleen of mouse peritonea infected by NDM-1-expressing K. pneumoniae
was significantly reduced [128].
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Isatin-β-thiosemicarbazones (IBT)

Repurposing old drugs is the most effective foundational method for the discovery of
new drugs [129]. Isatin (21, Figure 9) is an endogenous natural product, and its derivatives
possess antibacterial, antifungal, antimalarial and antiviral biological activities [130]. It
was found that methisazone (22, Figure 9) was a weak NDM-1 inhibitor with an IC50 of
297.6 µM. Docking studies have shown that the thiol group present on the molecule forms
several coordination bonds with zinc ions, indicating that thiol groups play an important
role in the inhibition process. Inspired by this result, a series of IBT derivatives sharing the
methisazone scaffold were designed and evaluated as new NDM-1 inhibitors. The IC50
values of the nine IBT derivatives were all below 10 µM, among which compound 23 (23,
Figure 9) was the strongest at 2.72 µmol/L [131]. When new compounds were screened
against drug-resistant bacteria, a few IBTs that can inhibit the growth of MRSA and VRE
were also discovered, and their derivatives had significant activity against gram-positive
bacteria. This finding indicated that IBTs can be regarded as potential lead compounds for
discovering NDM-1 inhibitors [132].

Int. J. Mol. Sci. 2022, 23, 197 12 of 27 
 

 

iron homeostasis in bacteria have been identified and characterized. These two com-

pounds are intracellular chelators with two isomeric states. Various spiro-heterocyclic 

compounds were converted into the open chelating form of merocyanine, thus enhancing 

the antibacterial activity of β-lactams [127]. Then, researchers also verified that a range of 

spiro-indoline-thiadiazole analogs would potentiate β-lactam antibiotics on NDM-1-pos-

itive K. pneumoniae in vitro by resisting zinc availability. Among analogs, compound 20 

(20, Figure 8) inhibited NDM-1 in vitro and combined with meropenem, the bacterial load 

in the liver and spleen of mouse peritonea infected by NDM-1-expressing K. pneumoniae 

was significantly reduced [128]. 

 

Figure 8. Thiadiazoles derivatives as NDM-1 inhibitors. 

Isatin-β-thiosemicarbazones (IBT) 

Repurposing old drugs is the most effective foundational method for the discovery 

of new drugs [129]. Isatin (21, Figure 9) is an endogenous natural product, and its deriva-

tives possess antibacterial, antifungal, antimalarial and antiviral biological activities [130]. 

It was found that methisazone (22, Figure 9) was a weak NDM-1 inhibitor with an IC50 of 

297.6 µM. Docking studies have shown that the thiol group present on the molecule forms 

several coordination bonds with zinc ions, indicating that thiol groups play an important 

role in the inhibition process. Inspired by this result, a series of IBT derivatives sharing 

the methisazone scaffold were designed and evaluated as new NDM-1 inhibitors. The 

IC50 values of the nine IBT derivatives were all below 10 μM, among which compound 

23 (23, Figure 9) was the strongest at 2.72 µmol/L [131]. When new compounds were 

screened against drug-resistant bacteria, a few IBTs that can inhibit the growth of MRSA 

and VRE were also discovered, and their derivatives had significant activity against gram-

positive bacteria. This finding indicated that IBTs can be regarded as potential lead com-

pounds for discovering NDM-1 inhibitors [132]. 

 

Figure 9. Isatin-β-thiosemicarbazones derivatives as NDM-1 inhibitors. 

Pyridine Dicarboxylic Acid Derivatives 

Chen and coworkers used a fragment-based NDM-1 inhibitor discovery strategy. 2,6-

Dipicolinic acid (DPA, 24, Figure 10) was identified as a valuable chemical scaffold with 

an IC50 of 0.52 μM and can be used to develop a novel type of broad-spectrum MBL in-

hibitor. The metal-binding pharmacophore (MBP) fragment library makes it possible to 

Figure 9. Isatin-β-thiosemicarbazones derivatives as NDM-1 inhibitors.

Pyridine Dicarboxylic Acid Derivatives

Chen and coworkers used a fragment-based NDM-1 inhibitor discovery strategy.
2,6-Dipicolinic acid (DPA, 24, Figure 10) was identified as a valuable chemical scaffold
with an IC50 of 0.52 µM and can be used to develop a novel type of broad-spectrum MBL
inhibitor. The metal-binding pharmacophore (MBP) fragment library makes it possible
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to systematically search for compounds targeting the binuclear Zn site of B1 MBL and
identify the DPA framework. The DPA core framework for further optimization and SAR
analysis found that 4-(3-aminophenyl) pyridine-2,6-dicarboxylic acid (25, Figure 10) had
an IC50 value of 80 nM. Further experiments demonstrated that DPA showed a tendency
of chelation with metal ions from NDM-1 to form a stable ternary complex of NDM-
1:Zn(II):inhibitor, which acted as a metal-binding competitive inhibitor. When imipenem
was used in combination with a DPA derivative, the resistance of Enterobacteriaceae
producing NDM-1 to imipenem was reduced to a sensitive level [133].
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Inspired by the DPA scaffold, Hinchliffe and coworkers designed and synthesized
a series of 6-phosphonylmethylpyridine-2-carboxylic acid ester (PMPCs, 26, Figure 10)
derivatives. According to bioelectronic isosteric theory, these derivatives substituted one
of the carboxyl groups of DPA with a phosphonate. Without an isomerization step, the
inhibitor competitively and slowly bound to NDM-1, with low IC50 values of 0.3–7.2 mM.
SAR studies have indicated that both carboxylic and phosphonic acids are important
pharmacophores for inhibiting NDM-1. When carboxylic or phosphonic acid exists alone,
its inhibitory activity is greatly reduced. PMPCs inhibit NDM-1 by binding to the active
site, not just by chelating metal ions. The efficacy, low toxicity, and affinity of PMPCs
indicated that PMPCs and similar phosphonate compounds may be considered for the
development of NDM-1 inhibitors [134].

Triazole-Thione Derivatives

Triazole thiones (27, Figure 11) are commonly reported as synthetic intermediates
and have antibacterial, antiproliferative, and anti-inflammatory biological activity [135].
1,2,4-Triazole-3-thione derivatives as metal ligands have been confirmed to inhibit clinically
relevant MBLs, which are well adapted to target the catalytic site of di-zinc MBLs [136].
Based on the triazole-thione scaffold, fifty-four analogs of initial compounds 28 and 29 (28,
29, Figure 11) differing on their side chain at position 5 of the heterocycle were synthesized
and evaluated, and identified. Nineteen inhibitors with an IC50 in the µM range toward
at least one of the MBLs and five analogs inhibited at least four enzymes [137]. Recently,
ninety 4-amino-1,2,4-triazole-3-thione-derived (30, Figure 10) bases were synthesized and
characterized, and they changed at the 4th and 5th positions. The existence of the 4-position
aryl moiety increased the potency by an average of 10 times. Several compounds are
broad-spectrum inhibitors of MBLs, and compound 31 (31, Figure 11) was combined with
colistin to restore the activity of colistin against NDM-1 clinical isolates [138].
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5.1.2. Boronic Acid Derivatives

Since bortezomib was approved by the US FDA, borate compounds have been utilized
as a new scaffold for β-lactamase inhibitor development. The boron atom in boronic acid
is sp3 hybridized under physiological pH, and the geometric structure of the tetrahedron
can fully simulate the instantaneous tetrahedral species formed in the catalytic process
of hydrolytic enzymes [139]. Brem et al. reported that cyclic boronates, the first dual
BL inhibitor, significantly inhibited both nucleophilic SBLs and zinc-dependent MBLs by
imitating the common tetrahedral intermediate produced during the hydrolysis reaction.
All five derivatives showed submicron/nanomolar inhibitor activity against NDM-1. It
should be noted that with the combined use of compounds 32 and 33 (32, 33, Figure 12), the
MIC of meropenem in all NDM-1-producing strains was reduced by up to 64 times. The
X-ray crystallography structures of the B1 MBL complex with 34 (34, Figure 12) showed that
first, the C-3 carboxylate oxygen interacts with both Zn2 and Lys224 (NDM-1 and BcII) or
Arg228 (VIM-2). Second, the bicyclic phenyl-boronate ring of compound 34 on the active site
of MBLs can interact hydrophobically with the conserved Trp87 and Phe61 residues. Finally,
the two ‘exocyclic’ boron-binding hydroxyls coordinate with Zn1 and form hydrogen bonds
with Asn233 and the NH of the acetylamino side chain. Cyclic boronates also potently
inhibit the PBP targets of BLAs by the same mechanism of action [140].
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The promotion effect of cyclic boron was further studied. By modifying the key
structure of the bicyclic aromatic ring, methyl thioacetamide was found to be one of the
most active imide substituents. By modifying the key structure, the compound QPX7728 (35,
Figure 12) was ultimately obtained with a hydrophobic region composed of oleophilic side
chains. QPX7728 displays ultrabroad-spectrum inhibition of SBL and MBL enzymes and is
less influenced by modifications and efflux of the porin. In the complex crystal structures of
QPX7728 with NDM-1, the catalytic water molecule is covalently bound to the boron atom
of QPX7728. Due to the favorable bioavailability and biosafety of QPX7728, it is suitable
for combined application with β-lactam antibiotics for the treatment of multidrug-resistant
bacterial infections. The drug is currently in the late stage of preclinical development [141].

Starting from benzo-[b]-thiophene-2-boronic acid (BZB, 36 Figure 12) as an inhibitor
of AmpC β-lactamase, Santucci et al. reported for the first time that a multiligand set of
acyclic boronic acid of BZB analogs was able to inhibit clinically relevant BLs, including
NDM-1. All the acyclic boronic acid analogs had low SBL micromolar inhibitor activity,
while compounds 37 and 38 (37, 38, Figure 12) showed activity toward NDM-1 with IC50
values of 35.7 µM and 32.4 µM, respectively. Docking simulations suggested that the
boronic group of derivatives coordinated two metal zinc ions, and the carboxyl groups
interacted with key catalytic residues to form hydrogen bonds [142].

Both cyclic and acyclic boronic acids showed favorable NDM-1 inhibitory activity;
however, the activity of the former was significantly stronger than that of the latter due to
the double-ring structure of cyclic boric acid. Among them, compound 33 (taniborbactam,
VNRX5133) with a dual-ring structure has been approved by the FDA to enter phase III
clinical trials [143]. Taniborbactam is also a dual BLs inhibitor. The crystallographic results
emphasize the ability of bicyclic borate to inhibit SBLs and MBLs by combining with
tetrahedral (sp3) boron. The results further support boronic acid as a scaffold to design
broad-spectrum BL inhibitors.

5.1.3. Metal Chelating Inhibitors

The main element of zinc-dependent enzyme inactivation is zinc deprivation, so it
has been widely reported that metal complexing agents show MBL enzyme inhibition
activity [144]. For example, ethylenediaminetetraacetic acid (EDTA, 39, Figure 13) is an
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MBL inhibitor with the function of sequestering and extracting key zinc in the active site,
thus protecting the coadministered antibiotic from hydrolysis. Studies have shown that
NDM-1 is more sensitive to EDTA than other MBLs, with an IC50 of 0.4 µM, indicating
that EDTA possesses a strong ability to bind the Zn ions of NDM-1 [145]. Other metal
chelators, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA, 40, Figure 13) and 1,4,7,10-
tetra-azacyclononane-1,4,7,10-tetraacetic acid (DOTA, 41, Figure 13), demonstrated activity
against NDM-1-producing bacteria. NOTA was more effective than DOTA in restoring
antibiotic susceptibility [146]. Despite these promising effects, the toxicity of these non-
selective chelating agents prevents them from being widely used in the clinic because
they can chelate various metal ions, such as Zn, Fe, and Cu. Zn is the key element of
essential enzymes, and excessive consumption of Zn by metal chelating agents may lead to
disease [147]. An important exception was disodium calcium salt (Ca-EDTA, 42, Figure 12).
It was reported that Ca-EDTA greatly reduced toxicity and was approved as an injection
in Japan for the treatment of lead poisoning. Ca-EDTA significantly reduced the MICs
of carbapenem antibiotics against all NDM-1-overexpressing bacteria. In a mouse model
of sepsis, Ca-EDTA combined with imipenem and CILAStatin sodium treatment further
reduced the bacterial load compared with imipenem or CILAStatin sodium treatments
alone [105].Int. J. Mol. Sci. 2022, 23, 197 17 of 27 
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Schnaars et al. synthesized several novel selective zinc chelators based on a tris-
picolylamine (TPA, 43, Figure 13) scaffold as putative MBL inhibitors. All new derivatives
reduced the MIC of meropenem against MBL-harboring carbapenem-resistant strains and
reduced HepG2 toxicity. Among them, one of the most promising compounds (TFA, 44,
Figure 13) reduced the MIC of meropenem in MBL-expressing isolates and showed no
activity on carbapenem serine-expressing strains, which indirectly demonstrated that Zn
chelation of TPA had occurred.

King and coworkers established a cell-based NDM-1 inhibitor screening model by using
natural product extracts from environmental microorganisms [104]. NDM-1 inhibitors were
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screened by the model strain [E. coli BW25113∆ bamB∆ tolC∆ araDAB: pLac(blaNDM-1)]
in combination with a sublethal concentration of meropenem. Aspergillomarasmine A
(AMA, 45, Figure 13) was identified from approximately 500 natural product extracts. It
is a natural product that was isolated from the extract of Aspergillus versicolor fungus,
which was an inhibitor of ACE and endothelin converting enzyme [148,149]. AMA had a
highly selective inhibitory effect on NDM-1, with an IC50 of 4.1 ± 1.0 µM and Ki of 11 µM.
The activity of meropenem on bacteria overexpressing NDM-1 was completely restored,
but it was completely ineffective on SBLs. In contrast to the metal complexing agents
mentioned above, AMA can also maintain efficacy in vivo. The survival study of mice
showed that the bacterial load of NDM-1-positive K. pneumoniae in tissues was not affected
by treatment with AMA and meropenem alone, while the combined treatment of AMA
(10 mg·kg−1) and meropenem (10 mg·kg−1) significantly reduced the bacterial load in the
spleen, and the 5-day survival rates were increased to 95%. Surprisingly, compared with
the 50% lethal dose (LD50) of EDTA of 29 mg·kg−1, AMA exhibited low toxicity with an
LD50 of 159.8 mg·kg−1. The inhibition of NDM-1 by AMA is irreversible, but the activity of
the enzyme could be restored by adding excessive ZnSO4, which is consistent with a metal
depletion mechanism. AMA represents a nontoxic candidate for an antibiotic adjuvant,
and its high hydrophilicity with a CLog P value of −5 may limit further development and
application in the clinic [104].

Soon after, Wright and coworkers completed the stereoselective total synthesis of
AMA molecules, reassigned the absolute configuration of the three stereocenters to (S,
S, S), and corrected the configuration (R, R, S) proposed by King for the first time. (S,
S, S)-AMA (46, Figure 13) had the same inhibitory activity against NDM-1 as the first
natural extract [150]. Seven new AMA derivatives were efficiently synthesized by different
strategies. SAR studies clearly showed that the aspartic acid part of AMA and the carboxyl
groups in C1, C4, C6, and C9 play a key role in NDM-1 inhibition. The combination
of AMA derivatives and meropenem had a synergistic effect on the drug resistance of
NDM-1-expressing K. pneumoniae and other gram-negative bacteria [151].

5.2. Covalently Bound Inhibitors

NDM-1 has a Cys208 residue, which is an essential residue for the coordination with
zinc ions to maintain a conserved active site structure, so this residue can potentially be
a target in the design of NDM-1 inhibitors. Thomas et al. authenticated two irreversible
thiol-modifying p-chloromercuribenzoate acids (p-CMB, 47, Figure 14) and nitroprusside
(48, Figure 14) as NDM-1 inhibitors through high-throughput screening, which can be
irreversibly covalently bound to the Cys208 residue on NDM-1 and exhibit inhibitory
activity with IC50 values of 2.3 and 9.0 µM, respectively. Almost all enzyme activity was
maintained despite the C208D mutation, and it was completely resistant to inhibitors.
This acquirable resistance mutation demonstrated that covalent targeting of the conserved
active-site Cys residue may have drawbacks as an NDM-1 inhibitor design strategy [152].
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Ebselen (2-phenyl-1,2-benzoselenazol-3-one, 49, Figure 14) is a compound containing
selenium used for the treatment of cerebral ischemia and stroke. It has also been shown to
be a promising NDM-1 inhibitor by a cell-based screening method [153]. Enzymatic kinetic
studies and ESI-MS analyses showed that ebselen could form a covalent S–Se bond with
the Cys208 residue to binding to NDM-1, resulting in the removal of Zn2 from the active
site, demonstrating a new inhibition mechanism and broad-spectrum inhibitory potential.
In vitro, ebselen coadministration with meropenem resulted in 128-fold reductions in the
MICs, thus restoring the activity of meropenem on NDM-1-positive E. coli [154]. A total
of forty-six 1,2-benzisoselenazol-3(2H)-one scaffold derivatives were treated with ebselen,
and many compounds displayed stronger synergistic activity with meropenem and better
physiochemical properties than those of ebselen. Among them, compound 50 (50, Figure 14)
could covalently bind to NDM-1 and transfer one zinc ion from the active site, showing
strong synergistic activity with meropenem against clinical NDM-1 CRE isolates [155].

Su et al. further reported a potent covalent scaffold ebsulfur (51, Figure 14). Eighteen
ebsulfur derivatives targeted NDM-1 with IC50 values ranging from 0.16 to 9 µM and
effectively reversed the antibacterial activity of cefazolin against E. coli expressing NDM-1.
Inhibition and equilibrium dialysis studies showed that there was a covalent and time-
dependent relationship between ebsulfur and NDM-1 [156].

3-Bromopyruvate (52, Figure 14) is an active reactive electrophilic derivative of pyru-
vate, a cell metabolite that is clinically used for cancer treatment [157]. It has also been
demonstrated to exhibit potential inhibitory activity on B1 and B2 MBLs, especially on
NDM-1, with an IC50 of 2.57 µM. In addition, among the three clinical isolates that were
NDM-1 positive, 3-bromopyruvate effectively restored the activity and reduced the MIC of
five β-lactams antibiotics, such as cefotaxime and meropenem. A study on the inhibition
mechanism suggested that 3-bromopyruvate may reversibly inhibit NDM-1 by covalently
binding electrophilic methylene with Cys208 at the active center of NDM-1 [158].
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Along this line of research, the Lys211 residue was also considered to be a promising
“handhold” for the development of NDM-1 covalent inhibitors. Thomas et al. reported
that the β-lactam drug cefaclor (53, Figure 14) is a time- and concentration-dependent
covalent irreversible inactivator of NDM-1 with millimolar affinity. Cefaclor inactivation is
mediated by a variety of pathways, including mediation by Lys211. Surprisingly, cefaclor
was also demonstrated to be more effective as the substrate of NDM-1 than as an inactivator.
Unfortunately, supratherapeutic doses of cefaclor are required to achieve NDM-1 inactiva-
tion in vitro, which hinders its clinical use against NDM-1 [159]. 3-Formylchromone (54,
Figure 14) was identified as a novel covalent inhibitor of clinically relevant MBLs. The
results of ESI-MS and single-site directed mutagenesis showed that cefaclor and Lys221
formed a covalent bond at the active site of NDM-1, while Lys211 is highly conserved and
adjacent to the metal cluster of NDM-1 [160]. Recently, Thomas et al. also reported O-aryl
oxycarbonyl hydroxamate (55, Figure 14) as a classical affinity label for NDM-1, which was
bound with Lys211 in the substrate-binding site of NDM-1 [161].

5.3. Inhibitors with Other Mechanisms

In contrast to the screening and design philosophy of other NDM-1 inhibitors, Sully
et al. constructed a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO)
targeting NDM-1 mRNA and intervened in the expression of NDM-1 at the gene level.
PPMO restored the sensitivity of NDM-1-positive strains to carbapenems in vitro. In a
murine sepsis model infected with E. coli expressing blaNDM-1, PPMO in combination
with meropenem significantly improved the survival rate, reduced the systemic bacterial
burden, and alleviated inflammation. PPMO is a gene-specific therapeutic targeted to
NDM-1, and this new strategy can rapidly design, synthesize and test sequence specificity
against bacterial gene targets [162].

Chandar et al. screened ethanol extracts against the NDM-1 E. coli strain from the
leaves of 240 medicinal plant species. Then, extracts from six plants, including Hibiscus
acetosella, Punica granatum, and Combretum albidum, showed inhibitory activity on NDM-
1 with an IC50 value ranging from 0.50 to 1.2 ng/µL, and the MIC was between 2.56
and 5.12 mg/mL. The mechanism of plant extracts inhibits NDM-1 enzyme activity by
destroying the integrity of bacterial cell walls. When used in combination with antibiotics
with FICI values of 0.09–0.375, all the plant extracts showed synergistic effects, which
indicated the possibility of combined treatment with NDM-1 bacteria [163].

ANT431 (56, Figure 15), a specific competitive inhibitor of MBLs, is the result of
design modifications based on the lead compound pyridine-2-carboxylic acid. ANT431
competitively inhibited the activity of NDM-1 and VIM-2 with Ki values of 0.29 and
0.195 µM, respectively. When the concentration of ANT431 was 30 µg/mL, it remarkably
improved the activity of meropenem on recombinant NDM-1-positive engineered bacteria
and reduced meropenem MICs to EUCAST breakpoint susceptibility levels in over 70% of
highly resistant relevant clinical isolates. In a murine thigh infection model, meropenem
in combination with ANT431 restored the efficacy of meropenem against E. coli NDM-
1-producing bacteria. Compared with other metalloenzymes, such as ACE and GLY2,
ANT431 displayed favorable selectivity and pharmacokinetic profile, which showed a high
potential of patent medicine [164].
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Figure 15. Other mechanisms inhibitors of NDM-1.

Liu et al. discovered two potent NDM-1 inhibitors that interact with amino acid
residues. Magnolol (57, Figure 15), a natural product separated from the bark of mag-
nolia trees, significantly inhibited the biological activity of NDM-1 with an IC50 value
of 6.47 µg/mL and restored the effectiveness of meropenem in vitro against NDM-1-
producing E. coli. The compound pterostilbene (58, Figure 15), which was originally
isolated from red sandalwood, showed a synergistic inhibitory effect with meropenem
against NDM-1-positive E. coli. The mechanistic analysis demonstrated that magnolol and
pterostilbene were directly located in the catalytic pocket of NDM-1 and formed hydrogen
bonds or hydrophobic interactions, thereby hindering substrate binding to NDM-1 and
resulting in its inactivation. Furthermore, they inhibited the activity of NDM-1 without
influencing the binding of NDM to Zn, which was different from the metal consumption
mechanisms of other inhibitors [165,166].

Finally, novel synthetic peptide inhibitors were found and characterized by the surface
localized antimicrobial display (SLAY), which enhanced the killing effect of carbapenem on
NDM-1 E. coli. Approximately 1700 candidate peptide sequences were identified, among
which only 37 peptides restored NDM-1-producing E. coli sensitivity to both meropenem
and imipenem. Sequence analysis of 37 peptides showed that their specific amino acids
were enriched, and each sequence encoded a residue with a positive charge. Conservative
site-specific charge was helpful for peptides to penetrate the periplasm of bacteria and
directly bind NDM-1 to inhibit enzymatic activity [167]. This approach provides a molecular
platform for the discovery of NDM-1 inhibitors.

6. Conclusions

Over the past decade, NDM-1 and its variants have rapidly spread around the world.
The gram-negative strain that produces NDM-1 poses a major public health threat because
it can catalyze the hydrolysis of a variety of β-lactam antibiotics, including carbapenems,
which is the last choice to treat infections caused by drug-resistant bacteria. Therefore, the
active discovery of highly effective inhibitors and combination with β-lactam antibiotics
has become an important strategy against NDM-1-expressing drug-resistant bacteria. Al-
though a series of studies have been carried out on the structural characteristics, biological
functions, and mechanism of action of NDM-1 in the past few years, none of the NDM-1
inhibitors have yet been approved for clinical application. The unclear catalytic mechanism
of NDM-1 enzymes and various hydrolysis mechanisms of β-lactam antibiotics are crucial
factors that hinder the development of NDM-1 inhibitors. The active site of NDM-1 gives
the enzyme the characteristic that allows it to bind to a wide range of substrates, but the
specific binding mode of NDM-1 to different substrates is different, which increases the
difficulty in establishing the targeted active site inhibitor. Hopefully, with the development
of computational biology, pharmaceutical chemistry, and other multidisciplinary knowl-
edge and technology, the interaction mode of NDM-1 and substrate will be explained more
accurately and thoroughly.

At present, compounds that can not only chelate zinc ions at the active site of NDM-1
but also form hydrogen bonds and/or salt bridges with amino acid residues at the binding
site are the most promising inhibitors of NDM-1. Moreover, there are many metallo-
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proteinases in the human body, and compounds targeting NDM-1 rather than human
metalloproteinases may be prerequisites for the development of NDM-1 inhibitors in the
future. At the same time, mutating NDM-1 tends to enhance the affinity of zinc ions
in vivo and improve the tolerance to Zn deprivation, which poses a new challenge for the
development of inhibitors in the future. In this paper, the overview of the superbug NDM-1
and the research progress of inhibitors provided are powerful references for the discovery
and optimization of new inhibitors. Moreover, this review could provide MBL inhibitor-
carbapenem combination strategies that complement the existing weaponry against CRE,
with profound influence on human health.
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