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Abstract: Background: Graph edit distance is a methodology used to solve error-tolerant graph match-

ing. This methodology estimates a distance between two graphs by determining the minimum number of 

modifications required to transform one graph into the other. These modifications, known as edit opera-

tions, have an edit cost associated that has to be determined depending on the problem. 

Objective: This study focuses on the use of optimization techniques in order to learn the edit costs used 

when comparing graphs by means of the graph edit distance. 

Methods: Graphs represent reduced structural representations of molecules using pharmacophore-type 

node descriptions to encode the relevant molecular properties. This reduction technique is known as ex-

tended reduced graphs. The screening and statistical tools available on the ligand-based virtual screening 

benchmarking platform and the RDKit were used. 

Results: In the experiments, the graph edit distance using learned costs performed better or equally good 

than using predefined costs. This is exemplified with six publicly available datasets: DUD-E, MUV, 

GLL&GDD, CAPST, NRLiSt BDB, and ULS-UDS. 

Conclusion: This study shows that the graph edit distance along with learned edit costs is useful to iden-

tify bioactivity similarities in a structurally diverse group of molecules. Furthermore, the target-specific 

edit costs might provide useful structure-activity information for future drug-design efforts. 

Keywords: Structure-activity relationships, Graph edit distance, Extended reduced graph, Virtual screening, Molecular similar-
ity, Machine learning. 

1. INTRODUCTION 

Quantitative structure-activity relationship (QSAR) mod-
els are computational or mathematical models that attempt to 
find a significant correlation between molecular structure and 
molecular activity. With the huge increment in the amount of 
available data about chemical compounds and their reactivity, 
there is as well, a rising need for computational tools to re-
duce the drug synthesis and test cycle execution times. These 
tools are essential if activity data are to be analyzed and new 
models created for virtual screening techniques [1]. 

Virtual screening - usually referred to as the use of com-
putational techniques to search and filter chemical databases 
[2, 3] - is a common step in the drug discovery process. Two 
main categories of methods can be found in the virtual 
screening inventory: structure-based virtual screening 
(SBVS) [4] and ligand-based virtual screening (LBVS) [5]. 
SBVS uses the 3D structure information of a target (obtained 
from X-ray, NMR, or some other method), to dock a group of 
molecules into the binding site of a protein, and estimate the 
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likelihood that the molecules will bind to the protein [6, 7]. 
LBVS uses information about the known activity of some 
molecules, activity in terms of their behavior as ligands that 
binds to a receptor, to predict the unknown activity of new 
molecules [8]. In this work, the focus will be only on LBVS 
applications. The main LBVS approaches are pharmacophore 
mapping [8], shape-based similarity [9], fingerprint similar-
ity, and various machine learning methods [10]. The measure 
of molecular similarity used is an important feature in the 
context of LBVS, which can determine the degree of success 
of a virtual screening method. 

It is assumed that structurally similar molecules are likely 
to have similar activity properties [11]; therefore, molecular 
similarity methods are commonly used to select good candi-
dates in the drug discovery industry. These similarity meth-
ods are used in applications related to molecular clustering, 
similarity searching or molecular screening [12-16]. 

Regardless of the application, molecular similarity 
searching usually requires one descriptor representing the 
molecules and a distance measure by which the level of simi-
larity (or dissimilarity) between those molecules can be nu-
merically defined. Different types of descriptors have been 
used [3, 17, 18], which are frequently classified as one-
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dimensional (1D), two-dimensional (2D) or three-
dimensional (3D) depending on the molecular in- formation 
used to compute them [19]. 1D descriptors include general 
molecular properties such as size, molecular weight, logP, 
dipole moment or BCUT parameters [20-23]. 2D descriptors 
create array representations of the molecules by simplifying 
the atomic information within them such as 2D fingerprints 
[24-27]. 3D descriptors use the 3D information such as mo-
lecular volume [28, 29]. Additionally, there are methods 
representing compounds as trees [30], or graphs [31, 32]. 
Among the graph options, some of these methods represent 
the compounds using reduced graphs [33-36], which group 
atomic sub-structures together in terms of related features 
such as pharmacophoric features, hydrogen-bonding, ring 
systems or other rules. Likewise, extended reduced graphs 
(ErG) [36] is an extension of the reduced graphs described 
by Gillet et al. [35], which introduces some changes in order 
to better represent the size, shape, and pharmacophoric prop-
erties of the molecules. 

ErGs have demonstrated to be a powerful tool for virtual 
screening [36], it can be used as an abstraction layer from the 
complex physico-atomic world, and leave the path clear to 
work directly with the pharmacophoric chemical information 
inside the molecular structures. 

Three similarity measures have been used to perform re-
duced graph comparisons. The first one maps the reduced 
graphs into a 2D fingerprint [35-37], the second one maps 
them into sets of shortest paths [38], and the third one makes 
the comparison directly on the graphs via the graph edit dis-
tance method [39]. 

The main goal of this study is to implement optimization 
tools in order to improve the recognition ratio when classify-
ing molecules represented as ErGs according to their biologi-
cal activity. The optimization techniques help to determine 
better values to be considered as edit costs in the process of 
computing the graph edit distance (GED) [40-43] used as 
dissimilarity measure between molecular graphs based on 
ErGs. GED considers the distance between two graphs as the 
minimum cost of modifications required to transform one 
graph into another. Each modification can be one of the fol-
lowing six operations: insertion, deletion and substitution of 
both nodes and edges in the graph. 

In a previous work [39], we used the edit costs proposed 
by Harper et al. [38], which were assigned by experts con-
sidering the different node and edge types. In this paper, we 
present a method for optimizing those edit costs, based on 
minimizing the distance between molecules correctly classi-
fied and maximizing the distance between molecules incor-
rectly classified. 

The process of mathematical optimization is the selection 
of the best element into a set of alternatives, taking into ac-
count some criteria or constraints. This optimization process 
minimizes or maximizes an objective function, by iteratively 
using different input values and computing the output. 

Optimization techniques are used in several areas like 
mechanics, finance, engineering, physics, biology, molecular 
modeling, etc. Particularly in molecular modeling applica-
tions, optimization tools are used along with QSAR descrip-
tors to optimize the existing leads by structural modifications 

in order to improve a specific activity and mitigate or remove 
any possible side effects [44]. In the drug discovery process, 
a lead compound is a molecule having biological activity 
likely to be useful, but may require modifications to better fit 
the target. Having optimized QSAR models developed on 
the basis of the lead series can assist in optimizing the lead 
compounds and help them to overcome their drawbacks [45]. 

The process of optimization, taking into account target- 
specific structure-activity models working with activity-
known hits, can be helpful for high-throughput screening 
applications by rapidly searching through the library and 
identifying the most promising molecular candidates. This 
kind of optimized screening can lower the number of high-
throughput experiments giving the opportunity to perform 
more complex low-throughput ones [44]. Additionally, the 
optimization of the models gives a better insight into the 
chemical space regarding those compounds in proximity to 
the ligands. 

This work is inspired in a similar one carried out by 
Birchall et al. [46], in which the authors optimize the trans-
formation costs of a String Edit Distance-based method to 
compare molecules using reduced graphs. In contrast, our 
work optimizes the edit costs of a Graph Edit Distance-based 
method to compare molecules using ErG. 

The outline of this paper is as follows. First, materials 
and methods are presented and explained in detail including 
the datasets used, the GED methodology and the optimiza-
tion process. Second, we present the computational results. 
And third, the paper is concluded with a final discussion. 

2. MATERIALS AND METHODS 

2.1. Datasets  

Six publicly available datasets were used in this study. 
They are: ULS and UDS [47], GDD and GLL [48], DUD 
Release 2 (DUD-E) [49], NRLiSt BDB [50], MUV [51], and 
a dataset from Comparative Analysis of Pharmacophore 
Screening Tools (CAPST) [52]. All these datasets were for-
matted and standardized in an easy-to-use form by the LBVS 
benchmarking platform developed by Skoda and Hoksza 
[53]. The concept and functionality of this platform are simi-
lar to that developed by Riniker and Landrum [54] including 
some extended features. The datasets within this platform 
consist of several selections of active and inactive molecules 
arranged according to the tar- get they were physically tested 
with. Each selection is separated into two sub-groups named 
test and train sets so that it can be readily used for machine 
learning applications. Table 1 shows all targets available in 
the datasets. 

A subset of the first 100 active molecules and 100 inac-
tive molecules were selected per target from the datasets as 
they were formatted in the LBVS benchmarking platform. In 
some cases, available active molecules are less than 100; for 
those cases, all available active molecules and the same 
number of inactive molecules are used. Then, we split the 
sets by half in order to have train and test subsets that were 
used independently, the former to optimize the transforma-
tion costs and the latter to evaluate the recognition ratio with 
unknown data. 
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Table 1. Input data used for the experiments. The column entitled ‘Dataset’ contains the name of each dataset, and the column 

entitled ‘Targets used’ contains the name of the targets used during the experiments for each dataset. Note that in the re-

sult plots shown below, per-target points are arranged in the same order as they are in this table. 

Dataset Targets Used 

ULS-UDS 5HT1F_Agonist, MTR1B_Agonist, OPRM_Agonist, PE2R3_Antagonist 

GLL&GDD 5HT1A_Agonist, 5HT1A_Antagonist, 5HT1D_Agonist, 5HT1D_Antagonist, 5HT1F_Agonist, 5HT2A_Antagonist, 

5HT2B_Antagonist, 5HT2C_Agonist, 5HT2C_Antagonist, 5HT4R_Agonist, 5HT4R_Antagonist, AA1R_Agonist, 

AA1R_Antagonist, AA2AR_Antagonist, AA2BR_Antagonist, ACM1_Agonist, ACM2_Antagonist, ACM3_Antagonist, 

ADA1A_Antagonist, ADA1B_Antagonist, ADA1D_Antagonist, ADA2A_Agonist, ADA2A_Antagonist, ADA2B_Agonist, 

ADA2B_Antagonist, ADA2C_Agonist, ADA2C_Antagonist, ADRB1_Agonist, ADRB1_Antagonist, ADRB2_Agonist, 

ADRB2_Antagonist, ADRB3_Agonist, ADRB3_Antagonist, AG2R_Antagonist, BKRB1_Antagonist, BKRB2_Antagonist, 

CCKAR_Antagonist, CLTR1_Antagonist, DRD1_Antagonist, DRD2_Agonist, DRD2_Antagonist, DRD3_Antagonist, 

DRD4_Antagonist, EDNRA_Antagonist, EDNRB_Antagonist, GASR_Antagonist, HRH2_Antagonist, HRH3_Antagonist, 

LSHR_Antagonist, LT4R1_Antagonist, LT4R2_Antagonist, MTR1A_Agonist, MTR1B_Agonist, MTR1L_Agonist, 

NK1R_Antagonist, NK2R_Antagonist, NK3R_Antagonist, OPRD_Agonist, OPRK_Agonist, OPRM_Agonist, 

OXYR_Antagonist, PE2R1_Antagonist, PE2R2_Antagonist, PE2R3_Antagonist, PE2R4_Antagonist, TA2R_Antagonist, 

V1AR_Antagonist, V1BR_Antagonist, V2R_Antagonist 

CAPST CDK2, CHK1, PTP1B, UROKINASE 

DUD-E COX2, DHFR, EGFR, FGFR1, FXA, P38, PDGFRB, SRC, AA2AR 

NRLiSt_BDB AR_Agonist, AR_Antagonist, ER_Alpha_Agonist, ER_Alpha_Antagonist, ER_Beta_Agonist, FXR_Alpha_Agonist, 

GR_Agonist, GR_Antagonist, LXR_Alpha_Agonist, LXR_Beta_Agonist, MR_Antagonist, PPAR_Alpha_Agonist, 

PPAR_Beta_Agonist, PPAR_Gamma_Agonist, PR_Agonist, PR_Antagonist, PXR_Agonist, RAR_Alpha_Agonist, 

RAR_Beta_Agonist, RAR_Gamma_Agonist, RXR_Alpha_Agonist, RXR_Alpha_Antagonist, RXR_Gamma_Agonist, 

VDR_Agonist 

MUV 466, 548, 600, 644, 652, 689, 692, 712, 713, 733, 737, 810, 832, 846, 852, 858, 859 

 
2.2. Molecular Representation 

Reduced graphs are smaller representations of the origi-
nal atomic graph from a chemical compound, in which the 
main information is condensed in feature nodes to give 
summary abstractions of the chemical structures. Different 
versions of reduced graphs can be used [32, 34, 36-38], and 
they depend on the features they summarize or the use that is 
given to them. In the virtual screening context, the structures 
are reduced to track down features or substructures having 
the potential to interact with a specific receptor and, at the 
same time, trying to keep the topology and spatial distribution 
of those features. 

The reduction methodology used in this study is the ErG 
described by Stiefl et al. [36], where node features represent 
pharmacophore-type node descriptions. As the authors point 
out, this methodology can be described as a hybrid approach 
between reduced graphs [35] and binding property pairs 
[55]. 

In ErGs, nodes can be a single or a combination of the 
following features: hydrogen-bond donor, hydrogen-bond 
acceptor, positive charge, negative charge, hydrophobic 
group and aromatic ring system. There are also featureless 
nodes, which work as links between the main features and 
help them to keep the spatial distribution among them. These 
featureless nodes can be carbon or non-carbon link nodes. 
Fig. (1) exhibits an example of an ErG. The upper half of the 
image shows a chemical substance with its pharmacophoric 
substructures highlighted, and the lower half shows the ErG 
obtained from that molecule. 

 

Fig. (1). Example of molecule reduction using ErG. The original 

molecule is at the top and its ErG representation is at the bottom. 

Ac: H-bond acceptor; Hf: hydrophobic group; Ar: aromatic ring 

system; +: positive charge. Colors are used to show how different 

parts of the original structure are reduced to nodes in the ErG.
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2.3. Molecular Comparison 

Once the molecules have been represented as ErGs, we 
compare them by means of the GED. Fig. (2) shows a mo-
lecular comparison procedure using the GED-based similarity 
method. The GED is defined as the minimum cost of modi-
fications required to transform one graph into the other. 
These modifications are called edit operations and six of 
them have been used: insertion, deletion and substitution of 
both nodes and edges. For each pair of graphs A and B, 
there are several editPath(A, B) = (σ1, ..., σk) that transform 
one graph into the other, considering that each σi indicates 
an edit operation. An edit path holding the transformations 
from graph A into graph B can be seen in Fig. (3). In this case, 
the edit path consists of the following five edit operations: 
delete edge, delete node, insert node, insert edge, and substi-
tute node. The substitution operation in the last step is 
needed since it is assumed that the attributes in both nodes 
are different. 

 

Fig. (2). Comparison of two molecules comprising two steps. First, 

we extract the ErGs; second, we apply the GED. 

 

Fig. (3). An edit path that transforms graph A into graph B.  

Edit costs have been introduced to quantitatively evaluate 
each edit operation and ultimately determine which edit path 
has the minimum total cost. The aim of the edit costs is to 
designate a coherent transformation penalty in proportion to 
the extent to which it modifies the transformation sequence. 
For instance, when ErGs are compared, it makes sense that 
the cost of substituting a “hydrogen-bond donor" feature with 
a joint “hydrogen-bond donor-acceptor" feature be less heav-
ily penalized than the cost of substituting a “hydrogen-bond 
donor" feature with an “aromatic ring" system. Similarly, 
inserting a single bond should have a lower penalization cost 
than inserting a double bond, and so on. 

In a previous work [39], we used the edit costs proposed 
by Harper et al. [38] with small changes to fit the ErG fea-
tures. The node and edge descriptions are shown in Table 2 
and the specific costs proposed by Harper et al. [38] are ex-
posed in Tables 3 and 4. Note that the insertion and deletion 
costs applied to a given node are constant. Moreover, substi-
tutions are symmetric, which means that substitution of node 
type A to B is assigned the same cost as substitution of type 
B to A, to guarantee the symmetry property for the GED. 

Table 2. Description of the node and edge attributes that 

compose an ErG. 

Node Attributes 

Attribute Description 

[0] Hydrogen-bond donor 

[1] Hydrogen-bond acceptor 

[2] Positive charge 

[3] Negative charge 

[4] Hydrophobic group 

[5] Aromatic ring system 

[6] Carbon link node 

[7] Non-carbon link node 

[0, 1] Hydrogen-bond donor + hydrogen-bond acceptor 

[0, 2] Hydrogen-bond donor + positive charge 

[0, 3] Hydrogen-bond donor + negative charge 

[1, 2] Hydrogen-bond acceptor + positive charge 

[1, 3] Hydrogen-bond acceptor + negative charge 

[2, 3] Positive charge + negative charge 

[0, 1, 2] Hydrogen-bond donor + hydrogen-bond acceptor + positive 

charge 

Edge attributes 

Attribute Description 

- Single bond 

= Double bond 

≡ Triple bond 
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Table 3. Substitution, insertion and deletion costs for nodes, as proposed by Harper et al. [38]. 

Substitution Costs for Nodes 

 [0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2] 

[0] 0 2 2 2 2 2 2 3 1 1 1 2 2 2 1 

[1] 2 0 2 2 2 2 2 3 1 2 2 1 1 2 1 

[2] 2 2 0 2 2 2 2 3 2 1 2 1 2 1 1 

[3] 2 2 2 0 2 2 2 3 2 2 1 2 1 1 2 

[4] 2 2 2 2 0 2 2 3 2 2 2 2 2 2 2 

[5] 2 2 2 2 2 0 2 3 2 2 2 2 2 2 2 

[6] 2 2 2 2 2 2 0 3 2 2 2 2 2 2 2 

[7] 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 

[0, 1] 1 1 2 2 2 2 2 3 0 2 2 2 2 2 2 

[0, 2] 1 2 1 2 2 2 2 3 2 0 2 2 2 2 2 

[0, 3] 1 2 2 1 2 2 2 3 2 2 0 2 2 2 2 

[1, 2] 2 1 1 2 2 2 2 3 2 2 2 0 2 2 2 

[1, 3] 2 1 2 1 2 2 2 3 2 2 2 2 0 2 2 

[2, 3] 2 2 1 1 2 2 2 3 2 2 2 2 2 0 2 

[0, 1, 2] 1 1 1 2 2 2 2 3 2 2 2 2 2 2 0 

Insertion/Deletion Costs for Nodes 

 [0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2] 

insert 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 

delete 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 

 

Table 4. Substitution, insertion and deletion costs for edges, 

as proposed by Harper et al. [38]. 

Substitution Costs for Edges 

 - = ≡ 

- 0 3 3 

= 3 0 3 

≡ 3 3 0 

Insertion/Deletion Costs for Edges 

 - = ≡ 

Insert 0 1 1 

Delete 0 1 1 

The final edit cost for a given edit path is obtained by 
adding up all individual transformation costs. Fig. (3) shows 
an example of edit path. In this case, the transformation se-
quence is the sum for the cost of deleting an edge, plus the 
cost of deleting node 3, plus the cost of inserting node 2, plus 
the cost of inserting an edge, plus the cost of substitution 
from node 1 to node 4. The process of adding up all trans-

formation costs and getting the edit cost is repeated for any 
possible edit path transforming one graph into the other. At 
the end, the GED resulting value for any pair of graphs A and 
B is defined as the minimum cost under all those possible 
edit path sequences. 

Usually, the GED is normalized according to the number 
of nodes in both graphs being compared. This is done in or-
der to make the measure independent of the size of the graphs. 

Several GED computational methods have been proposed 
during the last three decades, and they can be classified into 
two groups: those returning the exact value for the GED in 
exponential time proportional to the number of nodes [56]; 
and those returning an approximation of the GED in poly-
nomial time [57, 58]. These two groups of GED computa-
tional methods have been widely studied [59, 60]. 

In this work, we computed an approximation of the GED 
in polynomial time using an in-house implementation of the 
bipartite graph matching method proposed by Serratosa [57]. 
This was programmed in C++ and Python languages. 

2.4. Objective Function 

Fig. (4) shows the objective function we have used along 
with a genetic algorithm [61, 62] to track the evolution of the 
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learning process. The objective function is divided into three 
main steps. First, we compare each molecule with all the 
others and create a matrix of distances. Second, for each row 
in the matrix (which represents the distances computed for 
one molecule, the “query molecule”, with all the others), we 
find the lowest distance D, which is considered as the “closest 
molecule” to the query one. Third, we use the “closest mole-
cule” distance D and a log loss function [63] adding up the 
quantity exp(−D) as follows: if the “query molecule” and 
the “closest molecule” are from the same activity class, then 
the objective function is decreased. On the contrary, if the 
“query molecule” and the “closest molecule” are from differ-
ent activity classes, then the objective function is increased. 
The log loss uses the error magnitude in the prediction (how 
much it varies from the ground truth) to give a more con-
tinuous view over the model’s behavior, slowly increasing or 
decreasing the objective function output values. Note that for 
building the matrix of distances, if the molecules belong to 
the same activity class, then the lower the distance the better. 
On the other hand, if the molecules belong to different activ-
ity classes, then the higher the distance the better. 

The learning algorithm tries to minimize the objective 
function, therefore it ends up having as many correct 
classifications as possible, since correct classifications 
reduce the resulting value and wrong classifications increase 
it, as explained before. The main goal of this process is to 
measure the performance of the objective function and tune 
the next values to be used as edit costs. 

3. EXPERIMENTAL 

The aim of the practical experiments is twofold. First, we 
want to compare the recognition ratio deduced using the 
learned edit costs to the recognition ratio deduced using the 
edit costs proposed by Harper et al. [38]. Second, we want to 
analyze if the learned costs are congruent with the chemical 
knowledge given by Harper et al. [38]. To that aim, we have 
done four experiments and, in each experiment, we have 
learned one edit cost. The edit costs have been selected con-
sidering the more frequent node and edge attributes. 

• Experiment 1: insertion and deletion costs correspond-
ing to the carbon link node, which is assigned to attribute 
“[6]” in Table 2. 

• Experiment 2: substitution cost between the carbon link 
node (attribute “[6]” in Table 2) and the aromatic ring 
system node (attribute “[5]” in Table 2). 

• Experiment 3: insertion and deletion costs correspond-
ing to the single bond edge, which is assigned to attribute 
“-” in Table 2. 

• Experiment 4: substitution cost between the single bond 
edge (attribute “-” in Table 2) and the double bond edge 
(attribute “=” in Table 2). 

4. RESULTS 

Fig. (5) shows an example of the learning behavior of a 
single target. In this figure, the blue continuous line repre-
sents the objective function, which decreases after every 
learning iteration until convergence. The red-segmented line 
represents the number of misclassifications over the training 

set, and the green points represent the number of misclassifi-
cations over the test set. Both training and test misclassifica-
tion values should decrease, but it is not always the case be-
cause it depends on several factors including the size of the 
training set, the number of variables being learned, the toler-
ance for convergence and the overfitting, among others. 

Fig. (6) shows the number of errors in the classification 
process over the test set for all 127 targets, using two differ-
ent edit cost configurations: the edit costs proposed by Harper 
et al. [38], and the edit costs we have learned. It is important 
to note that, since the figure depicts the number of misclassi-
fications, the lower the values the better. These results show 
how the learned edit costs present a slightly improved behav-
ior compared to the edit costs proposed by Harper et al. [38]. 
The improvement is noted in the maximum and the third quar-
tile being part of the box-and-whisker plots. All other quar-
tile values are the same for both methods. 

 

Fig. (4). Objective function.

We present in Fig. (7), a deeper analysis for each dataset 
separately in order to better understand the behavior of the 
learned costs. This figure shows the number of errors in the 
classification for two datasets in each experiment. (We do 
not include all the results per experiment for space reasons; 
nevertheless, other results can be found as supplementary 
material). Note that each row represents an experiment and 
each subfigure in the row represents a dataset. As in Fig. (6), 
here we show the number of misclassifications. Again, box-
and-whisker plots are located on the right of each subplot to 
illustrate the distribution of values. 
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For the first experiment, we used the GLL&GDD and 
DUD-E datasets. The results using the learned edit costs are 
slightly better. The improvement obtained by using the 
learned costs can be observed in the third quartile and the 
maximum value for the GLL&GDD dataset, and in the me-
dian and maximum value for the DUD-E dataset. For the 
GLL&GDD, as the third quartile is reduced, note how the 
GED using the learned costs provides more stable results 
(Stability is represented as the box and whiskers length; 
shorter lengths indicate that several results are closer to each 

other, so the method seems more reliable). For the other 
datasets in this experiment, results were similar, obtaining 
lower or equal median values using the learned edit costs as 
compared to the edit costs from Harper et al. [38]. 

For the second experiment, we used the ULS-UDS and 
GLL&GDD datasets. In this case, the results using the 
learned edit costs are significantly better, too. The improve-
ment obtained by using the learned costs can be observed in 
every aspect of the box plot for the ULS-UDS dataset and in 
almost every aspect of the box plot for the GLL&GDD 

 

Fig. (5). Training evolution for target FXA in dataset DUD-E.

 

Fig. (6). Number of misclassifications using the test set over the 127 targets available in the six datasets combined. The scattered values on 

the left of the plot represent the number of classification errors (the lower the values, the better) using different colors and shapes depending 

on the edit costs used. Vertical segmented lines mark the limits between different datasets (from left to right: ULS-UDS, GLL&GDD, 

CAPST, DUD-E, NRLiSt_BDB, and MUV). The box-and-whisker plots on the right show the distribution of the resulting values. The boxes 

show the first and third quartiles, the line in the middle of the box is the median value (second quartile), and the whiskers extend from the boxes 

to show the range of the data (outliers are not included). 
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dataset, except the minimum value, which is zero in both 
cases. For the other datasets in this experiment, median val-
ues using the learned and Harper’s edit costs were the same 
except for CAPST, which obtained a better median value 
using Harper’s costs. 

For the third experiment, we used CAPST and ULS-UDS 
datasets. In this case, only the results for ULS-UDS using the 
learned edit costs are better. This improvement is noticeable 
for all the values in the box plot, including the three quartiles 
and the minimum and maximum values. On the other hand, 
for the CAPST dataset, the values are the same for each target 
using the learned edit costs and the edit costs proposed by 
Harper. For the other datasets in this experiment, median 
values using learned and Harper’s edit costs were the same 
in every case. 

Finally, for the fourth experiment we used the 
NRLiSt_BDB and MUV datasets. In this experiment, the 
results using learned edit costs are slightly better. The im-

provement obtained by using learned costs can be observed 
in the median and maximum values for the NRLiSt_BDB 
dataset, while for the MUV dataset the improvement can be 
observed in the first quartile, minimum and maximum values. 
Nevertheless, the third quartile is better for the NRLiSt_BDB 
dataset using the costs proposed by Harper. For the other 
datasets in this experiment, results were similar, obtaining 
lower or equal median values using learned edit costs as com-
pared to the edit costs from Harper, except for CAPST, which 
obtained a better median value using Harper’s costs. 

5. DISCUSSION 

GED along with ErGs using learned edit costs obtained 
better recognition ratio results in most experiments. In this 
experiments, we only learned one edit cost per case, and we 
chose this simpler and clearer approach to show the validity of 
our method. Clearly, this methodology can be applied to 
learn several edit costs at a time, either sequentially or in par-

 

Fig. (7). The number of misclassifications for all available targets in the LBVS benchmarking platform separated for each dataset and each 

experiment. The scattered values on the left of each subplot represent the number of classification errors (the lower the values, the better) 

using different colors and shapes depending on the edit costs used. Box-and-whisker plots on the right of each subplot show the distribution 

of the resulting values for each experiment.
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allel. Learning a bigger number of edit costs might increase 
the recognition ratio values with respect to those presented in 
this study. 

Table 5 shows the edit costs proposed by Harper et al. 
[38] and the learned edit costs obtained for each one of the 
experiments. We can see how the learned edit costs of the 
first experiment tend to be lower than Harper’s edit costs in 
most datasets. This means that, in general, inserting or delet-
ing a link node should imply a lower cost than the expected 
by Harper et al. [38]. On the other hand, for the third ex-
periment, learned edit costs tend to be slightly higher than 
Harper’s edit costs, meaning that inserting or deleting a sin-
gle bond edge should imply a higher cost than the expected 
by Harper et al. [38]. Furthermore, learned edit costs for the 
second and the fourth experiments tend to be greater com-
pared to the first and the third experiments, which means that 
the substitution of a link node for an aromatic ring node or 
the substitution of a single bond edge for a double bond edge 
should carry a higher cost than inserting or deleting a link 
node or a single bond edge. This information is useful in 
order to have some clues about the structure-activity rela-
tionship within molecules. 

In a previous work [39], we presented a molecular similar-
ity measure that uses graph edit distance to effectively com-
pare the representation of molecules by extended reduced 
graphs. In that work, edit costs for the different node and 
edge operations were assigned using expert knowledge. In 
this study, we have used a learning algorithm to learn the 
edit costs automatically. Significant improvements in per-
formance have been obtained when using learned costs in 
most of the experiments for the 127 targets present in six 
datasets. All datasets used are publicly available as part of 
the benchmarking platform proposed by Skoda and Hoksza 
[53]. 

CONCLUSION 

Results show that learned edit costs performed as good or 
better in most of the targets present in the six datasets, com-
pared to the edit costs proposed by Harper et al. [38]. In ad-
dition, learned costs may also give some ideas related to the 
structure-activity relation present within activity classes. 

Further research will focus on comparing the results in 
this study with other results obtained by learning a greater 
number of edit costs (for instance, including all insertion and 

deletion costs or all substitution costs), and a variety of toxi-
cological endpoints. 

For purposes of simplicity, the GED implementation 
used in this study does not envisage the use of stereochemical 
information for molecules. This issue could be addressed in 
future studies. It should be possible to include this informa-
tion since the 3D location of each atom is available for all 
the datasets in the LBVS benchmarking platform, so a refer-
ence for the position of the neighbors with respect to each 
atom should be possible to be established. 
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Table 5. Harper’s costs and learned values obtained per experiment. 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Harper et al. 1 2 0 3 

CAPST 0.000 0.013 0.004 0.017 

DUD-E 0.005 0.145 0.001 0.186 

GLL&GDD 0.014 0.333 0.003 0.206 

MUV 0.490 0.867 0.327 1.005 

NRLiSt_BDB 0.012 0.104 0.003 0.024 

ULS-UDS 0.115 0.500 0.011 0.607 
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