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Previous studies have shown that melatonin can mitigate cryopreservation-induced

mitochondrial dysfunction in oocytes; however, the underlying molecular mechanism

remains unclear. The objective of the present study was to investigate whether melatonin

can improve the mitochondrial function during in vitro maturation of vitrified-warmed

mouse germinal vesicle (GV) oocytes by modulating phosphorylation of dynamin

related protein 1 (Drp1). Vitrification/warming procedures resulted in the following: (1)

After cryopreservation of mouse GV oocytes, the phosphorylation level of Drp1 at

Ser616 (p-Drp1 Ser616) in metaphase II (MII) oocytes was increased (P < 0.05).

Furthermore, the rates of in vitro maturation, cleavage and blastocyst formation after

parthenogenetic activation were decreased (P < 0.05). (2) In MII oocytes, the expression

levels of translocase of the mitochondrial outer membrane 20 (TOMM20), mitochondrial

membrane potential (MMP), adenosine triphosphate (ATP) content, and mRNA levels of

mitochondrial biogenesis-related genes (Sirt1, Pgc-1α, Tfam) were all decreased (P <

0.05), and (3) Reactive oxygen species (ROS) level, early apoptosis level, Cytochrome

C release and mRNA levels of pro-apoptotic related genes (Bax, Caspase9, Caspase3)

in MII oocytes were all increased (P < 0.05). The results of this study further revealed

that negative impacts of GV oocyte cryopreservation were mitigated by supplementation

of warming and in vitro maturation media with 10−7mol /L melatonin or 2 x 10−5mol/L

Mdivi-1 (Drp1 inhibitor). Therefore, we concluded that 10−7mol/L melatonin improved

mitochondrial function, reduced oxidative stress and inhibited apoptosis by regulating

phosphorylation of Drp1, thereby enhancing in vitro development of vitrified-warmed

mouse GV oocytes.
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INTRODUCTION

In recent years, cryopreservation of oocytes has been widely
applied in preservation of animal germplasm, developmental
biology research, and assisted reproduction among others (1–3).
In animal production, this approach could be used to establish
oocyte banks, facilitating animal production and breeding
programs (4), and also preserving diversity of livestock genetic
resources (5–8). In human reproductive medicine, this can
facilitate treatment of female infertility resulting from cancer
therapy and premature ovarian failure (9–11), and would avoid
many ethical, legal, moral and religious issues of embryo
freezing (12, 13). However, oocyte cryopreservation can cause
mitochondrial function damage and produce excessive ROS, with
deleterious effects on oocyte development (14–16). Therefore,
reducing mitochondrial damage is one approach to improve the
developmental potential of vitrified-warmed oocytes.

Under normal physiological conditions, mitochondrial
homeostasis is precisely regulated by mitochondrial fission
and fusion to meet physiological needs (17, 18). Among them,
mitochondrial fission is mainly regulated by the dynamin related
protein 1 (Drp1) (19). The phosphorylation of Drp1 at serine
616 increases its activity (20). Activated Drp1 is recruited to the
mitochondrial outer membrane by the protein receptor on the
mitochondrial outer membrane (21), and Drp1 comprises the
helical oligomer around the mitochondrial outer membrane
to drive the fission process (22). Abnormal expression and
activity of Drp1 could cause an imbalance of mitochondrial
fission/fusion, potentially affecting mitochondrial function
and ultimately leading to apoptosis (23, 24). When p-Drp1
Ser616 increases in SD rat cardiac myocytes, excessive fission
of mitochondria occurred, leading to cardiac dysfunction (23).
Inhibition of Drp1 activity affects mitochondrial function and
increases oxidative stress and apoptosis during maturation of
porcine oocytes (25). In addition, maintenance of mitochondrial
function by p-Drp1 Ser616 was observed in mouse oocytes (26).
However, it is still unknown whether oocyte cryopreservation
alters Drp1 expression and p-Drp1 Ser616 during in vitro
maturation of mouse GV oocytes.

Mitochondrial biogenesis contributes to maintenance of
mitochondrial homeostasis in cells (27), which is regulated by
many factors (28). Among them, sirtuin 1 (Sirt1) is a member
of the deacetylase family that is involved in mitochondrial
biogenesis and energy metabolism (29). Peroxisome proliferator
activated receptor gamma coactivator alpha (Pgc-1α) and
mitochondrial transcription factor A (Tfam), key factors in
mitochondrial biogenesis, could regulate transcription and
replication of the mitochondrial genome (30). Cryopreservation
of porcine GV oocytes and 2-cell mouse embryos can cause
expression disorder of Sirt1, Pgc-1α and Tfam, resulting in
mitochondrial dysfunction and disrupting cell development
(15, 16). TOMM20 is an important indicator of mitochondrial
mass and metabolic activity (31). Cryopreservation of porcine
GV oocytes decreased expression of TOMM20 and caused
mitochondrial damage (16). To sum up, abnormal expression
of mitochondrial biogenesis related genes (Sirt1, Pgc-1α and
Tfam) and TOMM20 could affect mitochondrial function and

block cell development. However, it is yet to be determined
whether cryopreservation could alter mitochondrial biogenesis
mentioned above during in vitromaturation of vitrified-warmed
GV mouse oocytes.

Melatonin is secreted predominantly in the pineal gland and
has many important biological functions (32). Melatonin can
inhibit excessive fission of mitochondria by down-regulating
expression of Drp1 to reduce the damage caused by calcification
of rat vascular smooth muscle cells (24). It can also inhibit
rotenone-induced SH-SY5Y cell death (33), maintain cardiac
function in rats with mechanical trauma (23), protect cardiac
microvasculature from ischemia/reperfusion injury (34) and
treat prion disease (35) by regulating Drp1 activity. Furthermore,
melatonin can reduce cryopreservation-induced mitochondrial
damage, oxidative stress, and apoptosis in mouse (2, 36–38),
horse (7), cattle (14) and human (39) oocytes. However, it
remains to be explored whether melatonin involvement in
the above-mentioned functions during in vitro development of
vitrified-warmed mouse GV oocytes occurs via regulation of
Drp1 or p-Drp1 Ser616.

To elucidate potential mechanisms of melatonin in
mitochondrial function, we conducted the following
experiments. (1) Effects of melatonin on both Drp1 and p-
Drp1 Ser616 during in vitro maturation of vitrified-warmed
mouse GV oocytes and their developmental potential (e.g.,
rates of maturation, cleavage and blastocyst formation). (2)
Effects of melatonin on mitochondrial mass (TOMM20) and
mitochondrial function (MMP, ATP, mitochondrial biogenesis
related genes Sirt1, Pgc-1α, Tfam) through regulation of p-
Drp1 Ser616 during in vitro maturation of vitrified-warmed
mouse GV oocytes. and 3) Effects of melatonin on oxidative
stress (ROS and Cytochrome C) and apoptosis (level of early
apoptosis, pro-apoptotic related genes Bax, Caspase9, Caspase3)
through regulation p-Drp1 Ser616 during in vitro maturation of
vitrified-warmed mouse GV oocytes.

MATERIALS AND METHODS

Unless otherwise stated, all chemicals were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All experimental
procedures were conducted in strict accordance with regulations
of the animal ethical and welfare committee (AEWC) of Sichuan
Agricultural University China (approval code: AEWC2016, 6
January 2016).

Oocyte Collection
Female ICR mice, 8–10 wk old, were purchased from Chengdu
Dashuo Experimental Animal Co., Ltd, and maintained at 18–
25◦C and 50–70% humidity, with 14 h of light and 10 h of
darkness. After a 2-wk adaptation period, each mouse was given
10 IU PMSG (PMSG, Ningbo Shusheng Veterinary Drug Co.,
Ltd, Ningbo, China) ip. After 44–48 h, the mice were euthanized
by cervical dislocation. Ovaries were removed, placed in a 37◦C
M2 solution, sliced under the stereomicroscope with syringe
needles, and GV oocytes with obvious germinal vesicles were
selected for experiments.
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Oocyte Vitrification and Warming
Oocytes were vitrified using an open-pulled straws (OPS)
method, as described in our previous study (40). Briefly, the
straws (250 µL, IMV, France) were heat-softened and pulled
manually, to obtain straws∼ 3 cm long, 0.10mm inner diameter,
and 0.15mm outer diameter.

Vitrification-warming procedures were conducted in
accordance with our standard laboratory practice (2). Briefly,
oocytes were first equilibrated in 10% ethylene glycol (EG)
+10% dimethyl sulfoxide (DMSO) for 30 s, then loaded into the
narrow end of OPS with EDFS30 solution, comprised of DPBS
medium containing 300 g/L Ficoll, 0.5 mol/L sucrose, and 3
g/L bovine serum albumin (BSA), 15% EG and 15% DMSO, for
25 s. Finally, straws containing oocytes were plunged into liquid
nitrogen. During warming, oocytes were rinsed in 0.5 mol/L
sucrose for 5min, and then washed three times in M2 medium.
All manipulations were performed at 37◦C on a warming stage
attached to a stereomicroscope (SMZ1500, Nikon, Tokyo, Japan).

Oocyte Culture and in vitro Maturation
The GV oocytes were randomly divided into four groups. Fresh
group (F): Fresh oocytes matured directly in vitro. Vitrification
group (V): Oocytes were vitrified and then matured in vitro.
Vitrification + Melatonin group (V+M): On the basis of
vitrification group, melatonin [10−7mol /L, concentration based
on our previous study (2)] was added to the warming and
maturation solutions (M16); Vitrification + Mdivi-1 group
(V+MD, Mdivi-1: 14102, HY15886, Med Chem Express,
Shanghai, China): On the basis of vitrification group, Mdivi-1
[2x10−5mol/L, concentration based on a previous study (41)]
was added to the warming and maturation solutions. Then, fresh
and vitrified oocytes were rinsed and placed in M16 medium.
Metaphase I (MI) and metaphase II (MII) oocytes were collected
after 8 and 12 h of in vitro culture of GV oocytes, respectively.
Maturation rates in each group were calculated.

Parthenogenetic Activation and Embryo
Culture
Methods for parthenogenetic activation of oocytes and in vitro
culture of resultant embryos were adopted as described in a
previous study (36). Briefly, all in vitro matured oocytes were
incubated first in activation solution A (Ca2+-free human tubal
fluid (HTF) supplemented with 10 mmol/L SrCl2 and 2 mg/mL
cytochalasin D) for 2.5 h and then in activation solution B (HTF
supplemented with 2 mg/mL cytochalasin D) for 3.5 h at 37.5◦C
in a humidified atmosphere with 5% CO2 in air. Finally, oocytes
were removed from above media and cultured in KSOM-AA
medium. Cleavage and blastocyst rates were calculated at 24 and
96 h post activation.

Detection of MMP and ATP Level
MMP was detected by JC-1 staining according to manufacturer’s
guidelines (Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China). Firstly, JC-1 probe was diluted to a final
concentration of 10µg/mL in M2 solution and then equilibrated
in a humidified incubator containing 5% CO2 at 37◦C for 20min.
Secondly, all oocytes were stained in a humidified incubator
containing 5% CO2 at 37◦C for 15min. The JC-1 reaction was

conducted in darkness. Then, oocytes were washed three times
for 5min each in M2 solution without JC-1 probe. Finally,
they were transferred to a slide containing VECTASHIELD
mounting medium with DAPI and sealed with a glass cover and
photographed under fluorescence microscopy (BX53, Olympus,
Tokyo, Japan). The ratio of red fluorescence to green fluorescence
was recorded as MMP (1ψm) of oocytes. The intensity of red
and green fluorescence in each oocyte was measured using Image
J software (Version 1.48; National Institutes of Health, Bethesda,
MD, USA), calculated the fluorescence intensity was based on
previous study (2, 38, 42).

ATP levels were determined according to the manufacturer’s
instructions (A095-2, Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). Firstly, oocytes were initially washed
three times with M2 and added to an Eppendorf tube containing
20 µL of ATP lysate for ATP detection (groups of 10 oocytes
each). Secondly, the enzyme working solution was configured
and samples were treated according to the instructions. ATP
levels were measured using a multi-plate reader containing
chemiluminescence (Varioskan LUX, Thermo, USA). Finally,
sample ATP concentration was calculated using a standard curve
generated from nine ATP gradient concentrations ranging from
0 to 2 µmol/L.

Detection of ROS Level and Early
Apoptosis
To measure intracellular ROS level, oocytes were incubated in
M2 solution containing 20µM 2, 7-dichlorodihydrofluorescein
diacetate (H2DCFDA, C2938, Invitrogen, Carlsbad, CA, USA)
for 30min (37◦C, 100% humidity, and 5% CO2), and then
washed three times in M2 solution for 5min each. Finally,
oocytes were placed on a clean glass slide and photographed
under fluorescence microscopy and fluorescence measured, as
described above.

Similarly, according to the manufacturer’s guidelines of
Annexin-V kit (C1062L, Beyotime Biotechnology, Shanghai,
China), oocytes were collected and transferred to a working
solution of Annexin-V. After 30min incubation at 37◦C, oocytes
were washed three times in M2 solution for 5min each. At the
end, oocytes were transferred to slide containing VECTASHIELD
mounting medium with DAPI and sealed with glass cover and
photographed under a fluorescence microscope and the intensity
of fluorescence in each oocyte was measured as described above.

Immunofluorescent Staining
Oocytes were fixed in 4% paraformaldehyde for 30min, and
then permeabilized in permeate (DPBS containing 1% Triton
X-100) for 20min at room temperature. After blocking oocytes
with 1% BSA for 1 h at room temperature, they were exposed
to primary antibody at 4◦C overnight, and washed three times
for 10min each in wash buffer (DPBS containing 0.01% Triton
X-100 and 0.1% Tween 20), then stained with fluorescently
labeled secondary antibodies and incubated at 37◦C for 1 h.
After incubation, oocytes were washed three times in washing
buffer for 10min each. Finally, oocytes were transferred to slide
containing VECTASHIELD mounting medium with DAPI and
sealed with glass cover and photographed under fluorescence
microscope and intensity measured as described above.
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TABLE 1 | The specific primers used for Q-PCR in this study.

Genes GenBank number Primer sequences Tm (◦C)

Sirt1 NM_019812.3 F: TCGTGGAGACATTTTTAATCAGG

R: GCTTCATGATGGCAAGTGG

55

Pgc-1α NM_008904.2 F: AGAACGTGACCTTATCACCCC

R: GCACCTCAACCCGACTACTT

55

Tfam NM_009360.4 F: GTGAGCAAGTATAAAGAGCAGC

R: CTGAACGAGGTCTTTTTGGTTT

55

Bax NM_007527.3 F: ATGCGTCCACCAAGAAGC 55

R: CCAGTTGAAGTTGCCATCAG

Caspase9 NM_015733.5 F: TGTGAATATCTTCAACGGGAGC 55

R: GAGTAGGACACAAGGATGTCAC

Caspase3 NM_009810.3 F: AAAGGCTGGAACCCTTGTTT 55

R: GCACCTTGCCTTCAATGAGT

Gapdh NM_008084.3 F: CATGGCCTTCCGTGTTCCTA

R: GCCTGCTTACCACCTTCTT

55

Tm,Melting temperature; Sirt1, Sirtuin 1; Pgc-1α, Peroxisome proliferator activated receptor gamma coactivator alpha; Tfam,Mitochondrial transcription factor A; Bax, B-cell lymphoma-2

associated X; Caspase, Cysteinyl aspartate specific proteinase; Gapdh, Glyceraldehyde-3-phosphate dehydrogenase.

Antibodies and dilution ratios used in immunofluorescence
were as follows: Drp1 antibody (Affinity, DF7037, 1:300);
Drp1(Ser616) antibody (Affinity, AF8470, 1:300); TOMM20
antibody (Affinity, DF4179, 1:200); Cytochrome C antibody
(Affinity, AF0146, 1:100); CoraLite488- conjugated Goat Anti-
Rabbit IgG (Proteintech, SA00013-2, 1:300).

Quantitative Polymerase Chain Reaction
(Q-PCR)
The total cDNA was isolated from oocytes (≧20) using
TransScript-Uni Cell to cDNA Synthesis SuperMix for Q-PCR kit
(TransGen Biotech, Beijing, China). Then, cDNA was quantified
by Q-PCR using a TransStart Tip Green qPCR SuperMix Kit
(TransGen Biotech, Beijing, China) on a CFXConnect Real-Time
Detection System (Bio-Rad, Hercules, CA, USA) under standard
conditions. The cycle threshold (Ct) value used to calculate
the relative expression was the average of three replicates and
was normalized against that of the reference gene (Gapdh). In
this experiment, mitochondrial biogenesis related genes (Sirt1,
Pgc-1α, Tfam) and pro-apoptotic related genes (Bax, Caspase9,
Caspase3) were detected in MII oocytes. Primer information
is summarized in Table 1. The mRNA expression levels were
calculated using the 2−11Ct method.

Experimental Design
The outline for the design of the experiments is presented in
Figure 1. This study consisted of Experiments 1, 2, and 3. In
each experiment, all fresh GV oocytes were randomly divided
into four groups: Fresh group, Vitrification group, Vitrification
+Melatonin group and Vitrification+Mdivi-1 group.

Experiment 1: Effects of melatonin on Drp1 and
developmental potential during in vitro maturation of vitrified-
warmed mouse GV oocytes. (1) Expression level of Drp1 and
level of p-Drp1 Ser616 were detected in MI and MII oocytes by
immunofluorescence staining. (2) Maturation rate, cleavage rate

at 24 h and blastocyst rate at 96 h after parthenogenetic activation
were calculated in each group.

Experiment 2: Effects of melatonin on mitochondrial mass
and mitochondrial function in vitrified-warmed mouse GV
oocytes through regulation of p-Drp1 Ser616. (1) Expression
level of TOMM20 and MMP were detected in MII oocytes by
immunofluorescence staining, and ATP content was measured
using a multi-plate reader containing chemiluminescence in
MII oocytes. (2) Levels of mRNA of mitochondrial biogenesis
related genes (Sirt1, Pgc-1α, Tfam) were detected in MII oocytes
with Q-PCR.

Experiment 3: Effects of melatonin on oxidative stress
and apoptosis in vitrified-warmed mouse GV oocytes through
regulation of p-Drp1 Ser616. (1) The ROS level, early apoptosis
and Cytochrome C content were detected in MII oocytes by
immunofluorescence staining. (2) Levels of mRNA of pro-
apoptotic related genes (Bax, Caspase9, Caspase3) were detected
in MII oocytes with Q-PCR.

Statistical Analyses
Statistical analyses were performed using one-way ANOVA,
followed by a post-hoc Fisher’s least significant difference (LSD)
test, using SPSS statistical software (v. 22.0; IBM, Chicago, IL,
USA). Normality test and variance homogeneity test were used
before ANOVA. Prior to ANOVA, percentage data were arcsine
transformed. Data were expressed as the mean ± standard error
and all experiments were repeated at least three times. For all
analyses, P < 0.05 was regarded as significant.

RESULTS

Melatonin Regulated the LEVEL of p-Drp1
Ser616 During in vitro Maturation of
Vitrified-Warmed Mouse GV Oocytes
Expression level of Drp1, represented by relative fluorescence
intensity, in both MI and MII oocytes derived from
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FIGURE 1 | Experiment flow chart. GV, germinal vesicle; MI, metaphase I; MII, metaphase II. Melatonin and Mdivi-1 were added to warming and maturation solutions.

vitrified-warmed mouse GV oocytes were similar (P > 0.05)
to that of corresponding fresh group (Figures 2A,B). When
melatonin or Mdivi-1 were added in the vitrification group, Drp1
expression in both MI and MII oocytes were not different (P >

0.05) compared to that of corresponding vitrification and fresh
groups, respectively. Furthermore, p-Drp1 Ser616 expression,
represented by relative fluorescence intensity (Figures 2C,D),

in MI oocytes, was not different (P > 0.05) among F, V, VM,
and VMD groups. However, p-Drp1 Ser616 expression in MII
oocytes was higher (P < 0.05) in the vitrification group than
in the fresh group. When melatonin or Mdivi-1 were added to
warming and maturation solutions, p-Drp1 Ser616 expression in
MII oocytes was lower (P < 0.05) than that of vitrification group,
but similar (P > 0.05) to the fresh group.
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FIGURE 2 | Effects of melatonin on Drp1 activity during in vitro culture of vitrified-warmed mouse GV oocytes. (A) Representative images of Drp1 in mouse MI and MII

oocytes. Scale bar, 50µm. (B) The fluorescence intensity of Drp1 was recorded using ImageJ software. In total, n = 174 MI oocytes (F: n = 45; V: n = 42; VM: n =

45; VMD: n = 42) and n = 147 MII oocytes (F: n = 39; V: n = 40; VM: n = 35; VMD: n = 33) were used in this assay. (C) Representative images of p-Drp1 (Ser616) in

(Continued)
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FIGURE 2 | mouse MI and MII oocytes. Scale bar, 50µm. (D) Fluorescence intensity of p-Drp1 (Ser616) was recorded using ImageJ software. In total, n = 154 MI

oocytes (F: n = 36; V: n = 40; VM: n = 35; VMD: n = 43) and n = 150 MII oocytes (F: n = 40; V: n = 38; VM: n = 40; VMD: n = 32) were used in this assay. Data are

presented as mean ± SEM of three independent experiments. Groups without a common superscript are significantly different (P < 0.05). The four experimental

groups: Fresh control (F), vitrification (V), vitrification + MT (VM), and vitrification + Mdivi-1 (VMD). MI, metaphase I; MII, metaphase II.

FIGURE 3 | Effects of melatonin on in vitro developmental potential of vitrified-warmed mouse GV oocytes. (A) Representative images of matured oocytes cultured in

vitro. Scale bar, 100µm. (B) The maturation rate was recorded in F (n = 179), V (n = 184), VM (n = 179), and VMD (n = 194) oocytes after maturation for 12 h in vitro.

Data are presented as mean ± SEM of seven independent experiments. (C) Representative images of 2-Cell from different groups. Scale bar, 100µm. (D) The

cleavage rate was recorded in F (n = 51), V (n = 43), VM (n = 54) and VMD (n = 53) 2-Cell after parthenogenetic activation for 24 h. Data are presented as mean ±

SEM of five independent experiments. (E) Representative images of blastocysts. Scale bar, 100µm. (F) The blastocyst rate was recorded in F (n = 37), V (n = 22), VM

(n = 35) and VMD (n = 33) blastocysts after parthenogenetic activation for 96 h. Data are presented as mean ± SEM of five independent experiments. Groups without

a common superscript are significantly different (P < 0.05). The four experimental groups: Fresh control (F), vitrification (V), vitrification + MT (VM), and vitrification +

Mdivi-1 (VMD). The cleavage rate and blastocyst rate were calculated on the number of mature oocytes. The red asterisk indicates cell development retardation.
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FIGURE 4 | Effects of melatonin on mitochondrial mass and mitochondrial function in MII oocytes derived from vitrified-warmed mouse GV oocytes. (A)

Representative images of TOMM20 in mouse MII oocytes. Scale bar, 50µm. (B) The fluorescence intensity of TOMM20 was recorded using ImageJ software. In total,

n = 197 MII oocytes were used in this assay (F: n = 53; V: n = 49; VM: n = 48; VMD: n = 47). (C) The expression levels of mitochondrial biogenesis related genes.

(Continued)
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FIGURE 4 | (D) Representative images of mitochondrial membrane potential (MMP) in mouse MII oocytes. Scale bar, 50µm. (E) The rate of mitochondrial membrane

potential was recorded using ImageJ software. In total, n = 129 MII oocytes were used in this assay (F: n = 32; V: n = 27; VM: n = 36; VMD: n = 34). (F) The ATP

content in different groups. In total, n = 120 MII oocytes were used in this assay (F: n = 30; V: n = 30; VM: n = 30; VMD: n = 30). Data are presented as mean ±

SEM of three independent experiments. Groups without a common superscript are significantly different (P < 0.05). The four experimental groups: Fresh control (F),

vitrification (V), vitrification + MT (VM), and vitrification + Mdivi-1 (VMD).

Melatonin Promotes in vitro Development
of Vitrified-Warmed Mouse GV Oocytes by
Regulating p-Drp1 Ser616
At 12 h after in vitro culture of mouse GV oocytes, the
maturation rate was lower (P < 0.05) in the vitrification group
(63.35 ± 2.03%) than in the fresh group (79.90 ± 1.90%)
(Figures 3A,B). However, when melatonin or Mdivi-1 were
added, maturation rates of vitrified-warmed oocytes were 76.59
± 1.69 and 75.88 ± 1.84%, respectively, higher (P < 0.05)
than in the corresponding vitrification group, but not different
(P > 0.05) from the fresh group. The cleavage rate was lower
(P < 0.05) in the vitrification group (39.60 ± 2.53%) than in
the fresh group (64.69 ± 2.21%) at 24 h after parthenogenetic
activation (Figures 3C,D). When melatonin or Mdivi-1 was
added, cleavage rates of vitrified-warmed oocytes were 49.72
± 2.84 and 48.32 ± 2.20%, respectively, higher (P < 0.05)
than in the corresponding vitrification group, but lower (P <

0.05) than in the corresponding fresh group. The blastocyst
rate was lower (P < 0.05) in the vitrification group (20.64 ±

2.50%) than in the fresh group (47.02±2.12%) at 96 h after
parthenogenetic activation (Figures 3E,F). When melatonin or
Mdivi-1 was added, cleavage rates of vitrified-warmed oocytes
were 32.52 ± 2.54 and 30.43 ± 1.74%, respectively, higher (P <

0.05) than in the corresponding vitrification group, and lower (P
< 0.05) than in the corresponding fresh group.

Melatonin Alleviates Mitochondrial
Dysfunction Caused by Cryopreservation
of Mouse GV Oocytes via Regulating
p-Drp1 Ser616
After in vitro culture of mouse GV oocytes for 12 h, the
expression level of TOMM20 inMII oocytes was lower (P< 0.05)
in the vitrification group than in the fresh group (Figures 4A,B).
When melatonin or Mdivi-1 were added, expression level of
TOMM20 was higher (P < 0.05) than in the vitrification group,
but lower (P < 0.05) than in fresh group. Gene expressions of
Sirt1, Pgc-1α and Tfam in MII oocytes were lower (P < 0.05)
in the vitrification group than in the fresh group (Figure 4C).
However, when melatonin or Mdivi-1 were added, expression of
these three genes were increased (P < 0.05) and were similar (P
> 0.05) to that of the fresh group, except Tfam expression after
Mdivi-1 treatment.

Similarly, after in vitro culture of mouse GV oocytes for 12 h,
both MMP (Figures 4D,E) and ATP content (Figure 4F) in MII
oocytes were lower (P < 0.05) in the vitrification group than
in the fresh group. However, when melatonin or Mdivi-1 were
added, MMP and ATP contents were higher (P < 0.05) than in
the corresponding vitrification group, with not difference (P >

0.05) from the fresh group.

Melatonin Reduces Oxidative Stress and
Apoptosis Caused by Cryopreservation of
Mouse GV Oocytes by Regulating p-Drp1
Ser616
After in vitro culture of mouse GV oocytes for 12 h, the ROS
level in MII oocytes was higher (P < 0.05) in the vitrification
group compared to the fresh group (Figures 5A,B). However,
when melatonin or Mdivi-1 were added, the ROS level was lower
(P < 0.05) than in the corresponding vitrification group, and
not different (P > 0.05) from the fresh group. Furthermore,
incidence of early apoptosis (Figures 5C,D) and Cytochrome C
content (Figures 5E,F) were higher (P < 0.05) in the vitrification
group than in the fresh group. However, when melatonin or
Mdivi-1 were added, the early apoptosis level and Cytochrome
C content were lower (P < 0.05) than in the corresponding
vitrification group, and not different (P > 0.05) from the fresh
group. Gene expressions of Bax, Caspase9 and Caspase3 were
higher (P < 0.05) in the vitrification group than in the fresh
group (Figure 5G). When melatonin or Mdivi-1 were added,
gene expressions were reduced (P < 0.05): the expression of
Caspase3 was not different (P > 0.05) from the fresh group, and
the expression of Caspase9 was lower (P < 0.05) than in the fresh
group. However, the expression of Bax was lower (P < 0.05)
compared to the fresh group after treatment of Mdivi-1, but its
expression was not different (P> 0.05) from the fresh group after
melatonin treatment.

DISCUSSION

In the present study, the expression level of Drp1 did not change
during in vitro maturation of vitrified-warmed mouse GV
oocytes, whereas the level of p-Drp1 Ser616 was significantly
increased at M II stage of vitrified oocytes. These results
were consistent with changes caused by other stress factors.
For instance, p-Drp1 Ser616 was significantly increased
when rat hearts were preserved at 4◦C (43) or neonatal rat
cardiomyocytes were treated with high (33mM) glucose
(44). In this study and previous research, the abnormal
level of p-Drp1 Ser616 was restored to the level of the
control group by adding melatonin or Mdivi-1, improving
in vitro maturation rate and parthenogenetic development
of oocytes to the blastocyst stage of vitrified-warmed mouse
GV oocytes (in this study), effectively protecting the rat
heart from mechanical trauma-induced cardiac dysfunction
(23), and protecting the mouse cardiac microvascular
endothelial cells from ischemia/reperfusion injury (34).
Melatonin regulated the level of p-Drp1 Ser616 to alleviate
stress-induced damage, promoting cell development and
functional recovery.

Frontiers in Veterinary Science | www.frontiersin.org 9 September 2021 | Volume 8 | Article 752001

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Qin et al. Melatonin Improved Vitrified Oocytes’ Development

FIGURE 5 | Effects of melatonin on oxidative stress and apoptosis in MII oocytes derived from vitrified-warmed mouse GV oocytes. (A) Representative images of

oocytes staining with DCHFDA. Scale bar, 100µm. (B) The fluorescence intensity of ROS levels was recorded using ImageJ software. In total, n = 150 MII oocytes

were used in this assay (F: n = 32; V: n = 41; VM: n = 42; VMD: n = 35). (C) Representative images of oocytes staining with Annexin V. Scale bar, 50µm.

(Continued)
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FIGURE 5 | (D) The fluorescence intensity of Annexin V was recorded using ImageJ software. In total, n = 145 MII oocytes were used in this assay (F: n = 41; V: n =

37; VM: n = 36; VMD: n = 31). (E) Representative images of Cytochrome C in mouse MII oocytes. Scale bar, 50µm. (F) The fluorescence intensity of Cytochrome C

was recorded using ImageJ software. In total, n = 172 MII oocytes were used in this assay (F: n = 40; V: n = 39; VM: n = 46; VMD: n = 47). (G) The expression levels

of pro-apoptosis related genes. Data are presented as mean ± SEM of three independent experiments. Groups without a common superscript are significantly

different (P < 0.05).The four experimental groups: Fresh control (F), vitrification (V), vitrification + MT (VM), and vitrification + Mdivi-1 (VMD).

Cryopreservation has been implicated in mitochondrial
damage and reduced vitality (2, 14, 38, 45). TOMM20 is
a marker of mitochondrial (46, 47). In the present study,
TOMM20 expression in MII oocytes was significantly
decreased after cryopreservation of mouse GV oocytes.
Similarly, this alteration of TOMM20 expression also
occurred in porcine MII oocytes derived from vitrified-
warmed GV oocytes (16). Furthermore, this disorder
of TOMM20 was restored by addition of melatonin
or Mdivi-1, suggesting that melatonin can reduce
cryopreservation-induced mitochondrial damage by regulating
p-Drp1 Ser616.

Mitochondrial biogenesis is the embodiment of mitochondrial
function, with an important role in maintaining mitochondrial
homeostasis (48, 49). Cryopreservation altered biogenesis-related
expression of mitochondrial genes. For example, expressions
of Sirt1, Pgc-1α and Tfam genes were significantly decreased
after cryopreservation of porcine GV oocytes (16) and 2-
cell mouse embryos (15). In the present study, a similar
phenomenon was also observed after cryopreservation of
mouse GV oocytes. Sirt1 mediated activation of Pgc-1α
through Pgc-1α deacetylation (50, 51), potentially regulating
mitochondrial biogenesis and mitochondrial metabolism (52).
Meanwhile, Pgc-1α could also activate Tfam, which is required
for mtDNA transcription and mtDNA replication, through
co-activation of nuclear respiratory factor 1 (Nrf1) (53).
Disordered expression of genes affects mitochondrial ATP
synthesis through Sirt1-Pgc-1α or Sirt1-Pgc-1α-Nrf1-Tfam
pathways (54, 55). Therefore, it seems that in the present
study, abnormal expression of Sirt1, Pgc-1α and Tfam in
mouse MII oocytes derived from vitrified-warmed GV oocytes
could decrease concentrations of MMP and ATP, potentially
leading to imbalances in energy metabolism. Furthermore,
abnormalities in the expression of genes Sirt1, Pgc-1α and
Tfam, MMP and ATP content were corrected after addition
of melatonin or Mdivi-1, suggesting that melatonin can
improve mitochondrial function and maintain mitochondrial
energy metabolism by regulating p-Drp1 Ser616 during in
vitro development of vitrified-warmed mouse GV oocytes.
Thereby, it promoted in vitro maturation of mouse GV
oocytes and their subsequent embryonic development after
parthenogenetic activation.

Mitochondria are the major energetic sites of the cell,
producing ATP through oxidative phosphorylation. While
producing ATP, mitochondria are also the main source of
ROS (56, 57). In the present study, excessive ROS production
induced by the vitrification of mouse GV oocytes appeared
in mouse MII oocytes during in vitro maturation. This was
also observed in previous reports from our laboratory (2) and
others (58). Excessive ROS impairs mitochondrial function (59).

Mitochondrial damage increased the opening of mitochondrial
permeability transition pore (MPTP), leading to the outflow
of Cytochrome C from intermembrane spaces. Cytochrome C
binds to deoxyadenosine triphosphate (dATP) and apoptotic
protease activating factor 1 (Apaf-1) to form an apoptosome,
and then activated procaspase 9 initiates the apoptosis program
(60). Therefore, in the present study, increased Cytochrome C
level in mouse MII oocytes could have increased early apoptosis
after cryopreservation of mouse GV oocytes. However, the
release of Cytochrome C and the apoptosis of MII oocytes
developed from vitrified-warmed mouse GV oocytes were
decreased after supplementation of melatonin or Mdivi-1 in
the warming and maturation solutions. These beneficial effects
of melatonin were also observed in somatic cells. Melatonin
relieved PrP106−126-induced apoptosis mouse N2a cells (35),
reduced mechanical damage-induced apoptosis in H9C2 rat
cardiomyocytes (23), and protected human SH-SY5Y cells from
rotenone-induced damage (33) via reduction of the release of
Cytochrome C. In addition, melatonin or Mdivi-1 alleviated
apoptosis in mouse MII oocytes derived from the vitrified-
warmed GV oocytes by reducing expression of pro-apoptosis
related genes (Bax, Caspase9, Caspase3) in the present study,
thereby promoting in vitro development of vitrified-warmed
GV oocytes.

CONCLUSIONS

Cryopreservation of mouse GV oocytes resulted in a high
level of p-Drp1 Ser616, a low level of mitochondrial mass
marker-TOMM20, and the mitochondrial dysfunction
that was characterized by alterations in MMP, ATP and
expression of Sirt1, Pgc-1α and Tfam genes. Cryopreservation
also increased ROS and apoptosis levels in MII oocytes
and decreased their in vitro developmental potential.
However, addition of 10−7mol /L melatonin restored the
mitochondrial function, reduced oxidative stress, decreased the
expression of pro-apoptosis-related genes (i.e., Bax, Caspase9,
Caspase3) and the release of Cytochrome C, and inhibited
apoptosis by regulating p-Drp1 Ser616. Collectively, these
ameliorative effects of melatonin resulted in the improved
in vitro maturation of vitrified-warmed mouse GV oocytes
and their subsequent development to blastocysts after
parthenogenetic activation.
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