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SUMMARY
We have established and efficient system to specify NG2/PDGF-Ra/OLIG2+ oligodendrocyte precursor cells (OPCs) from human embry-

onic stem cells (hESCs) at low, physiological (3%) oxygen levels. This was achieved via both forebrain and spinal cord origins, with up to

98% of cells expressing NG2. Developmental insights reveal a critical role for fibroblast growth factor 2 (FGF-2) in OLIG2 induction via

ventral forebrain pathways. TheOPCsmature in vitro to express O4 (46%) and subsequently become galactocerebroside (GALC), O1, and

myelin basic protein-positive (MBP+) multibranching oligodendrocytes. These were cultured alongside hESC-derived neurons. The elec-

trophysiological properties of human OPCs are similar to those of rat OPCs, with large voltage-gated sodium currents and the ability to

fire action potentials. Exposure to a selective retinoid X receptor agonist increased the proportion of O4+ oligodendrocytes that express

MBP from 5% to 30%. Thus, we have established a developmentally engineered system to investigate the biological properties of human

OPCs and test the effects of putative remyelinating agents prior to clinical application.
INTRODUCTION

The ability to generate human oligodendrocyte precursor

cells (OPCs) and oligodendrocytes in vitro, and thereby

study the signals that promote OPC differentiation, matu-

ration, and myelination, could provide new insights into

human demyelinating diseases such as multiple sclerosis

(MS), as well as other neurological disorders in which oligo-

dendrocyte lineage cells play a key role, including periven-

tricular multifocal leukoencephalopathy, multiple system

atrophy, and malignant gliomas (Liu et al., 2011; Papp

and Lantos, 1994; Mázló and Tariska, 1980). Human

embryonic stem cells (hESCs), by virtue of their dual char-

acteristics of self-renewal and pluripotency, have the great-

est potential to provide the large numbers of these cells that

are required for such studies. However, techniques that

were developed in mouse ESC-based systems (Billon et al.,

2002; Brüstle et al., 1999; Glaser et al., 2005) have not

readily translated to human cells in culture. Few studies

have reported successful specification of human OPCs

from hESCs (Nistor et al., 2005; Kang et al., 2007; Izrael

et al., 2007; Hu et al., 2009; Sundberg et al., 2010; Wang

et al., 2013), and still fewer have convincingly shown

in vitro generation of mature human oligodendrocytes

(and then only in small numbers; Izrael et al., 2007; Hu

et al., 2009; Wang et al., 2013).

The difficulty of applying methods developed in mouse

ESCstohESCs likely reflectsa criticaldifference in thedefault
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identity of NPCs generated from the two different species.

Sonic hedgehog (Shh) signaling predominates in themouse

system, whereas WNT signaling predominates in human

cells, resulting inNPCswith a default ventral (mouse) versus

dorsal (human) phenotype (Gaspard et al., 2008; Li et al.,

2009). Since the earliest OPCs are derived from ventral ori-

gins under the control of Shh (Kessaris et al., 2006; Lu

et al., 2000), this indicates a requirement for ventralizing

morphogens in human systems (Hu et al., 2009).

A further technical challenge has been the inability to

maintain human OPCs in culture long enough for more

than a minority of the cells to mature into multibranching

oligodendrocytes (Hu et al., 2009; Wang et al., 2013). This

may be due to the particular sensitivity of the oligodendro-

cyte lineage to oxidative stress (Casaccia-Bonnefil, 2000), as

well as the universal use of a 20%oxygen (O2) environment

in previous hESC-based studies. Oxygen levels in the brain

are far removed from the 20% environment typically used

for in vitro studies, with an average level of 3% (ranging

from 2.5% to 5.3% in gray matter and 0.8% to 2.1% in

white matter of the cortex; Ereci�nska and Silver, 2001).

We previously demonstrated the beneficial effects of low,

physiological oxygen (3%) on the survival and long-term

culture of hESC-derived NPCs, and the directed differentia-

tion of these cells into dopaminergic and motor neurones,

using chemically defined, serum-free conditions (Stacpoole

et al., 2011a). Notably, we found that OLIG2 induction was

2-fold greater at 3% O2 than at 20% O2. Additionally,
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evidence from studies of human, mouse, and rat cortical

NPCs shows that culture at 2%–5% O2 significantly

increases the number of O4+ oligodendrocytes generated

(Pistollato et al., 2007; Chen et al., 2007; Stacpoole et al.,

2013). Furthermore, maturation into myelin basic pro-

tein-positive (MBP+) oligodendrocytes is enhanced by

culture at low, physiological O2 (Akundi and Rivkees,

2009; Stacpoole et al., 2013). Taken together, these obser-

vations provide a strong rationale for investigating hESC-

derived NPC specification into the oligodendrocyte lineage

at low, physiological oxygen levels.

Previous hESC-based studies have aimed to generate

human OPCs for transplantation purposes. Although one

study used an in vitro system to investigate the develop-

mental pathways involved in OPC specification via the

pMN domain of the spinal cord (Hu et al., 2009), there

are no comparable reports of generating OPCs from a fore-

brain origin; of OPC specification at low, physiological O2

tensions; or of using these human OPCs to advance an

understanding of their biological characteristics or as a

translational resource.

We therefore set out to establish a reliable system for

generating OPCs and oligodendrocytes from both fore-

brain and spinal cord origins using our previously estab-

lished hESC-neuralizing system at 3% O2 (Stacpoole

et al., 2011a). We find a distinct requirement for fibroblast

growth factor 2 (FGF-2) in OLIG2 induction via the ventral

forebrain route, in contrast to the ventral spinal cord, and

report that the small-molecule agonist of SHH signaling

(SAG) is an effective alternative to purmorphamine (PM)

in this system. We show that human OPCs can mature

into multibranching oligodendrocytes that form close

associations with hESC-derived neurons. These human

OPCs have large voltage-gated sodium currents, can fire

action potentials, and respond to retinoid X receptor

(RXR) signaling by significantly upregulating MBP in this

physiologically relevant in vitro system.
RESULTS

Two Distinct Routes to OPCs from hESC-NPCs

Previously, we demonstrated that NPCs can be derived effi-

ciently fromhESCs at 3%O2 (Stacpoole et al., 2011a). NPCs

generated through this chemically defined system have a

default dorsal and rostral identity, and therefore require

redirection toward either ventral spinal cord or ventral

forebrain fates in order to generate oligodendrocytes (Fig-

ure 1A). Directed differentiation toward the pMN domain

of the spinal cord can be achieved by application of estab-

lished protocols, involving retinoic acid (RA) to caudalize

the NPCs and ventral differentiation using the SHH agonist

PM, inducing expression of HOXB4, NKX6.1, and OLIG2
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(Hu and Zhang, 2009; Stacpoole et al., 2011a). We previ-

ously reported that using this approach, OLIG2 induction

at day 28 is 2-fold greater at 3% O2 than at 20% O2 (Stac-

poole et al., 2011a). In the current study, the combination

of RA and PM at 3% O2 achieved OLIG2 induction in

57.3% ± 2.8% of NPCs by day 24 (Figure 1B). Since

OLIG2 is essential for oligodendrocyte specification

throughout the entire neuraxis, except for the hindbrain

(Lu et al., 2000; Zhou and Anderson, 2002; Zhou et al.,

2000), OLIG2 expression is a useful earlymarker of success-

ful respecification of hESC-NPCs toward OPC-generating

domains of the forebrain and spinal cord.

Simple removal of RA from this technique, leaving SHH

activation as the only exogenous signal, did not result in

efficient specification toward ventral forebrain, as evi-

denced by low levels (14.3% ± 0.7%) of OLIG2 induction

at day 24 (Figure 1B). We hypothesized that FGF-2 is an

additional requirement forOLIG2 induction via the ventral

forebrain route, following the recent report that it cooper-

ates with Shh to specifyOPCs from themurine ventral fore-

brain (Furusho et al., 2011). Application of 10 ng/ml FGF-2

in combinationwith a SHH agonist (1 mm) resulted in a 4.5-

fold increase in OLIG2 induction in the absence of RA to

58.0% ± 4.9%, similar to levels achieved through the estab-

lished RA- and PM-driven spinal cord route (p = 0.932; Fig-

ure 1B). Comparable efficiency was achieved with the

HUES-9 line, with OLIG2 induction via the FGF-2/SHH

agonist ventral forebrain route of 53.1% ± 4.2% (p = 0.57;

Figure S1A available online). The SHH agonist used was

either PM or SAG, both of which activate SHH signaling

by binding directly to smoothened (unlike the endogenous

ligand, which binds to patched, releasing its inhibition of

smoothened and thus activating the signaling pathway;

Chen et al., 2002; Sinha and Chen, 2006). SAG was used

because it has a higher potency than PM, with an EC50 of

3 nM compared with 1 mM in Shh-LIGHT2 cells, and PM

is difficult to use in protracted protocols because of its

narrow working range and toxicity above 1.5 mM (Li

et al., 2008; Hu and Zhang, 2009). We found that SAG

had efficacy equivalent to that of PM at 1 mM (p = 0.13),

but a wider working range up to 5 mM (Figures 1B–D).

One possible explanation for the efficacy in inducing

OLIG2 expression using the combination of FGF-2 and

SHH signaling is that FGF-2 caudalizes the cells. However,

expression of caudal genes such as HOXB4 was not

observed, in contrast to the effect of RA plus PM. Instead,

the ventral forebrainmarkersGSX2 andNKX2.1were upre-

gulated alongside OLIG2, specifically in the FGF-2/SHH

agonist condition (Figure 1E). Thus, both FGF-2 and SHH

signaling pathways are required to direct differentiation

of hESC-NPCs toward the ventral forebrain, whereas RA

and SHH are sufficient to specify hESC-NPCs toward the

pMN domain of the spinal cord.
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Figure 1. Efficient OLIG2 Induction Can Be Achieved with or without RA, Revealing a Distinct Role for FGF-2 in OLIG2 Induction
from Human Forebrain Origins
(A) In order to direct differentiation of hESC-NPCs toward the OLIG2-defined ventral regions of the forebrain and spinal cord, from which
the earliest OPCs arise, strategies both with and without the caudalizing morphogen RA were considered.
(B) OLIG2 expression was efficiently induced by a combination of RA and PM, with 57.3% ± 2.8% of NPCs expressing OLIG2 by D24.
Removal of RA led to a significant reduction in the levels of OLIG2 expression to 14.3% ± 0.7% (p < 0.001), but the combination of FGF-2
with a SHH agonist restored OLIG2 induction to levels (58.0% ± 4.9%) similar to those obtained with the protocol including RA
(p = 0.932).
(B–D) SHH is the key ventralizing morphogen, and the small-molecule hedgehog agonist SAG demonstrates a concentration-dependent
ability to induce OLIG2, peaking at 1,000 nM, and demonstrating efficacy equivalent to that of PM for inducing OLIG2 expression in
combination with 10 ng/ml FGF-2 (p = 0.13). OLIG2 staining is shown on 12-mm-thick neurosphere sections.
(E) RT-PCR analysis of positional identity markers showed that FGF-2 did not caudalize the NPCs because, in contrast to results from the RA-
based spinal cord protocol, the caudal gene HOXB4 was not upregulated. Instead, ventral forebrain genes such as GSX2 and NKX2.1 were
induced by the combination of SHH agonist and FGF-2, in contrast to the effects of RA and SHH signaling. b-actin was used as a loading
control. Scale bar, 50 mm; percentages are given ± SEM; *p < 0.001.
See also Table S1.
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OLIG2+ NPCs Generate Large Numbers of Human

OPCs

hESC-NPCs that were regionally specified to OLIG2-

expressing cells by day 24 (D24), either with or without
Stem Cell R
RA, were expanded with 1 mM PM or SAG in addition to

10 ng/ml FGF-2 between days 24 and 50 (Figure 2A). The

purpose of the FGF-2 at this stage is to prevent differentia-

tion into neuronal precursors, based on the observation
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Figure 2. OPCs Can Be Efficiently Generated from hESC-NPCs Specified to OLIG2-Expressing Regions of the Ventral Forebrain or
Ventral Spinal Cord
(A) A schematic illustrates two alternative routes to generate human OPCs from ESCs: with RA (via the pMN route) or without RA (ventral
forebrain).
(B) Seven days after regionally specified D100 hESC-NPCs were plated for terminal differentiation, vimentin+ processes radiated out from
the spheres. OLIG2-expressing cells appeared to migrate along these processes.
(C) Coexpression of NKX2.2 and OLIG2 also occurred at this time point.

(legend continued on next page)

440 Stem Cell Reports j Vol. 1 j 437–450 j November 19, 2013 j ª2013 The Authors

Stem Cell Reports
Functional hESC-Derived OPCs at Low Oxygen



Stem Cell Reports
Functional hESC-Derived OPCs at Low Oxygen
both in vitro and in vivo that at early time points NPCs give

rise to neurons, whereas at later time points they become

gliogenic (Bouhon et al., 2006; Hu et al., 2009; Joannides

et al., 2007; Krencik et al., 2011). At D50, the FGF-2 was

replaced with 10 ng/ml platelet-derived growth factor

(PDGF) and 40 ng/ml T3 to promote the survival and

proliferation of OPCs. Spheres were plated for terminal dif-

ferentiation at D100 on pdl-laminin-coated glass coverslips

in Dulbecco’s modified Eagle’s medium (DMEM) 3:1 F12,

supplemented with 1% N2, 1% penicillin streptomycin

fungizone (PSF), 10 ng/ml PDGF, 10 ng/ml insulin growth

factor 1 (IGF-1), 10 ng/ml NT3, 40 ng/ml T3, and 1 mM

cyclic AMP (cAMP). We added 10 ng/ml brain-derived

neurotrophic factor (BDNF) after 7 days, because BDNF

secreted by active neurons is thought to promote OPC

maturation into oligodendrocytes (Du et al., 2003).

After 1 week, vimentin+ processes, suggestive of a radial

glial identity, projected tangentially from differentiating

spheres. On closer inspection, OLIG2+ cells could be

seen, apparently migrating along these processes (Fig-

ure 2B). Coexpression of OLIG2 and NKX2.2 was also

observed at this time point (Figure 2C). At D100 plus

3 weeks, the vast majority of cells (up to 98%) migrating

out from the spheres labeled with NG2. A high proportion

(up to 87%) of these NG2+ cells, but not all, also expressed

OLIG2 (p = 0.03; Figures 2D and 2E). Both forebrain and

spinalcorddirected differentiation protocols gave rise to

human OPCs with comparable efficiency: the relative pro-

portions of cells expressing NG2 were 91% ± 7% from the

forebrain route and 77% ± 13% from the spinal cord route

(p = 0.12), whereas for OLIG2 the relative proportions were

77% ± 10% and 65% ± 18% (p = 0.35; Figure 2D).

Further immunocytochemical characterization demon-

strated that most NG2+ cells coexpressed PDGF-Ra

(Figure 2F). At this relatively early stage, only a few cells ex-

pressed O4, with a typical bipolar or minimally branching

morphology, overlapping in expression with NG2 (Fig-

ure 2G). There was no coexpression between O4 and b-III

TUBULIN or NG2 and glial fibrillary acidic protein

(GFAP) within this precursor population, indicating that

these markers are selectively expressed by oligodendrocyte

lineage cells rather than neurons or astrocytes (Figures S2A

and S2B). NESTIN, expressed in both NPCs and immature

astrocytes, generally overlapped with NG2 expression,

except in cells that also expressed GFAP (Figures S2B

and S2C).
(D and E) Three weeks after differentiation of D100 hESC-NPCs, up to
OLIG2. There was no significant difference in the efficiency of specific
cells expressed both markers, significantly more cells (p = 0.03) expr
(F and G) Most NG2 cells also labeled with PDGF-Ra, and at this early
lineage marker O4. Scale bar = 100 mm; percentages are given ± SEM
See also Figures S1 and S2.
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Taken together, these results show that after 3 weeks of

differentiation of D100 NPCs, the majority of cells gener-

ated through either route were OPCs.

Human OPCs Mature into O4-, O1-, Gal-C-, and

MBP-Expressing Oligodendrocytes

After 4 weeks of terminal differentiation of D100 hESC-

NPCs, large numbers of O4- and OLIG2-copositive oligo-

dendrocyte lineage cells emerged with a bipolar or sparsely

branching morphology (Figure 3A) and matured into mul-

tibranching oligodendrocytes over a further 1–2weeks (Fig-

ure 3B). Up to 43% ± 5% of cells derived from H9 ESCs

expressed O4 (Figure 3C). Comparable efficiency (46% ±

6%; p = 0.71) was achieved from the HUES-9 line (Fig-

ure S1B). Multibranching oligodendrocytes also labeled

with GAL-C, O1, and MBP (Figures 3D–3F and S1C). We

observed no significant difference in efficiency of oligoden-

drocyte generation between the two different develop-

mental pathways (Figure 3C).

Reminiscent of the behavior of rodent OPCs in vitro (Raff

et al., 1983; Franklin et al., 1995), human OPCs also gener-

ated GFAP+ cells (23% ± 6%). Although the vastmajority of

NG2+ cells differentiated into glia, small numbers of b-III+

neurons (10% ± 3%) were also observed after 5 weeks of

terminal differentiation of D100 NPCs.

Toward a Human Myelination Assay

The generation of large numbers of not only OPCs but also

mature, multibranching human oligodendrocytes repre-

sents a significant advance and led us to consider the

possibility of establishing myelinating cocultures of

hESC-NPC derived neurons and oligodendrocytes. The

ability to generate such myelinating cultures would allow

investigation of the signaling molecules involved in

human myelination, providing a platform to evaluate the

efficacy of putative remyelinating agents.

The observation that differentiating cultures of hESC-

NPCs can be maintained long-term at 3% O2 (at least

3 months), even in the absence of exogenous growth fac-

tors, highlights a useful feature of thismore physiologically

relevant cell culture system (Stacpoole et al., 2011a).

Furthermore, the finding that early ESC-NPCs typically

differentiate into neurons, whereas later ESC-NPCs become

glia, recapitulating the situation in development, should

help to specify these different populations from hESC-

NPCs (Joannides et al., 2007; Bouhon et al., 2006; Krencik
91% ± 7% of cells expressed NG2 and up to 77% ± 10% expressed
ation of NG2+ precursor cells from either route, but although most
essed NG2 than OLIG2 (arrows indicate NG2 single positive cells).
stage a few cells also expressed the more mature oligodendrocyte
.
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Figure 3. Oligodendrocytes Can Be Generated from hESC-NPCs at 3% O2
(A) After 4 weeks of terminal differentiation of D100 hESC-NPCs at 3% O2, O4+ oligodendrocytes with a bipolar or sparsely branching
morphology emerged.
(B) Over a further 7–14 days, these O4+ cells took on a multibranching morphology more typical of mature oligodendrocytes.
(C–F) Multibranching oligodendrocytes also expressed GALC, O1, and MBP. Quantification from the forebrain and spinal cord pathways
of the percentage of cells expressing the pan-lineage marker OLIG2 (p = 0.32), the oligodendrocyte marker O4 (p = 0.63), and the
mature oligodendrocyte marker MBP (p = 0.90) after 5 weeks of terminal differentiation is shown. Scale bar = 100 mm; percentages are
given ± SEM.
See also Figure S1.
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Figure 4. Toward In Vitro Myelination of Human Neurons
(A) After 5 weeks of terminal differentiation at D100, hESC-NPCs generated mainly O4+ oligodendrocytes, but also GFAP+ astrocytes.
(B and C) At the same time point following differentiation of D50 hESC-NPCs, there was no difference in the number of OLIG2 (p = 0.20) or
O4+ (p = 0.44) cells generated, but at this earlier stage, oligodendrocyte lineage cells developed alongside hESC-NPC-derived neurons.
(D and E) After 8 weeks of terminal differentiation of D50 NPCs, MBP-expressing oligodendrocytes emerged among these neural networks.
(E and F) The pattern of MBP expression was suggestive of appropriate engagement with hESC-NPC-derived neurons. Scale bar = 100 mm in
(A)–(E) and 50 mm in (F); percentages are given ± SEM.
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et al., 2011; Liu and Zhang, 2011). Consistent with these

observations, and using the RA-based pathway, D50

hESC-NPCs differentiated for 5 weeks showed no differ-

ence in the number of OLIG2+ (p = 0.20) and O4+ (p =

0.44) oligodendrocyte lineage cells generated compared

with D100 hESC-NPCs differentiated for 5 weeks (Fig-

ure 4C). However, whereas D100 hESC-NPCs generated as-
Stem Cell R
trocytes alongside oligodendrocyte lineage cells after

5 weeks of differentiation, oligodendrocytes from D50

hESC-NPCs developed among an extensive network of

hESC-NPC-derived neurons (Figures 4A and 4B).

MBP+ oligodendrocytes emerged after 6–8 weeks of

terminal differentiation of D50 hESC-NPCs, typically

with well-aligned processes, appropriately oriented along
eports j Vol. 1 j 437–450 j November 19, 2013 j ª2013 The Authors 443



Figure 5. Electrophysiological Investigation Reveals Spiking and Nonspiking Groups of Human OPCs
(A) LY-filled cells were identified after electrophysiological recordings were performed and colabeled with O4 and either PDGF-Ra or NG2,
confirming their identity as OPCs.
(B) Low recovery rates of LY-filled cells led to the development of an O4 prestaining protocol (top row), which was validated by postfixation
immunocytochemistry (bottom row).
(C–E) Characterization of the electrophysiological properties of human OPCs revealed that they have an average resting membrane
potential of �71.7 mV and the majority (n = 107/116) have voltage-gated sodium channels and outward rectifying potassium channels,
with an average sodium current of �602.6 pA in response to a depolarizing voltage step.

(legend continued on next page)
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the axons (Figures 4D–4F). Confocal imaging showed a

close approximation of MBP+ processes with b-III

TUBULIN-labeled neurons, revealing engagement of axons

by oligodendrocytes (Figure 4F). Beyond 10 weeks, fewer

O4+ cells remained, suggesting a time window between 5

and 10 weeks in which further manipulation of the culture

environment might allow myelinating human cocultures

to be established.

Spiking and Nonspiking Human OPCs

The ability to reliably generate large numbers of human

oligodendrocyte lineage cells from hESCs provides a valu-

able resource for addressing important biological and trans-

lational questions.

Studies in rats showed that some OPCs fire action poten-

tials, whereas others do not (Káradóttir et al., 2008);

however, this is a controversial finding that has not been

replicated in mice (Ziskin et al., 2007). We therefore investi-

gated the electrophysiological properties of human OPCs.

Weperformedwhole-cell patch-clamp recordings onhuman

OPCs thatwere initially selectedon the basis ofmorphology,

with postfixation staining for O4 and either PDGF-Ra or

NG2 used to confirm the OPC identity of lucifer yellow

(LY)-filled cells (Figure 5A). Although 100% of the cells that

were located following immunolabeling were positive for

either or both of the OPC markers applied, the overall low

yield of recovery of LY-filled cells (19%) led us to develop

an O4 prestaining protocol (used in conjunction with

morphology-based selection) to obtain real-time confirma-

tion that the cells selected for electrophysiological record-

ings were of the oligodendrocyte lineage (Figure 5B, top

row). O4 was chosen because it is the first definitive marker

of the oligodendrocyte lineage expressed on the cell surface

(labelingcells ranging fromlate-stageOPCs tomature,multi-

branching MBP+ oligodendrocytes), whereas NG2 and

PDGF-Ra labeling, taken alone, could potentially identify a

wider range of cells in this ESC-based system. Recordings

were obtained from cells (n = 41) after O4 prelabeling, and

postfixation immunocytochemistry was also performed to

validate the technique (Figure 5B, bottom row; 32 of 33 O4

prelabeled and LY-filled cells that were retrieved costained

with PDGF-Ra or NG2, and the remaining O4+ cell had the

multibranching appearance of a mature oligodendrocyte).

Electrophysiological investigation showed that the

average resting membrane potential of human OPCs

was �71.7 ± 2.4 mV. The majority of human OPCs (92%;
(D) Amplitude trace for an example OPC, demonstrating an inward sodi
to 0 mV.
(E–G) The majority (75.3%) of OPCs with sodium channels (n = 70/93)
24.7% did not, even when depolarized to 0 mV.
(H) Occasional cells (n = 3/70) fired trains of action potentials that w
blocker TTX and returned following its removal. Scale bar = 50 mm.
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n = 116) had sodium channels and outward rectifying

potassium currents, with an average sodium current

of �602.6 ± 41.4 pA in response to depolarization by a

voltage step (Figures 5C–5E). Consistent with these large

inward sodium currents, approximately three-quarters of

theOPCs fired a spike or action potential in response to cur-

rent injection (n = 70/93); a smaller proportion of OPCs

(24.7%) did not respond, even when depolarized above

0mV(Figures 5E–5G).Occasional cells (n=3/70) fired trains

of action potentials that were blocked by the application of

tetrodotoxin (TTX) and returned after it was removed

(Figure 5H). TTX was also applied to OPCs that fired spikes

or single action potentials, blocking this activity (n = 47/

54) and confirming that it represents action potentials

driven by activation of voltage-gated sodium channels

(and not other voltage-gated channels such as calcium

channels). Although spikes or single action potentials

were a typical feature of the majority (75%) of OPCs from

which recordings were obtained, the infrequent finding of

trains of action potentials suggests that this particular

feature is not typical of human OPCs, and it is possible

that these cells (whichwere recordedbefore theO4prestain-

ing protocol was instituted) may in fact be neuronal.

Human OPCs Respond to RXR Signaling

These human oligodendrocyte lineage cells also provide a

valuable resource for assessing the effects of putative remye-

linating agents on human cells prior to clinical translation.

RXRg signaling was recently identified as a key pathway

involved in OPC maturation and remyelination (Huang

et al., 2011). We investigated whether human OPCs can

respond to RXR signaling by applying the selective RXR

agonist PA0124 to D100 NPC cultures after 3 weeks of

terminal differentiation into OPCs, as characterized in Fig-

ure 2 (Nishimaki-Mogami et al., 2008). After 2 weeks, the

number of O4+ oligodendrocytes that also expressed MBP

increased by 6-fold, from 4.7% ± 2.7% to 29.9% ± 5.5%

(p = 0.006; Figures 6A, 6B, and 6D). Application of the selec-

tive antagonist HX331 did not significantly affect matura-

tion (Takahashi et al., 2002), indicating that RXR signaling

is not a major contributor to OPC maturation under basal

conditions in this human system (Figures 6C and 6D). These

results showthatactivationofRXRsignaling inhumanOPCs

promotesdifferentiation intoMBP+oligodendrocytes, estab-

lishing this invitro systemas ausefulmodel for investigating

the activity of putative remyelinating agents in human cells.
um current with a maximum amplitude of 1,092 pA when depolarized

fired a spike or action potential in response to current injection, but

ere abolished by application of the voltage-gated sodium channel
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Figure 6. RXR Signaling Promotes the Maturation of hESC-NPC-Derived Human Oligodendrocytes
(A and B) Application of the RXR-selective agonist PA024 (0.75 mM) to the NG2+ OPC population generated after 3 weeks of terminal
differentiation of D100 hESC-NPCs promoted their maturation into MBP+ oligodendrocytes over the subsequent 2 weeks.
(C) The antagonist HX331 (0.75 mM) did not significantly affect human OPC maturation (p = 0.50).
(D) Quantification of the percentage of O4+ oligodendrocytes expressing MBP after 5 weeks of terminal differentiation of D100 hESC-NPCs,
with or without RXR signaling modulation, shows a significant increase in MBP expression among the O4+ oligodendrocytes following
activation of RXR signaling (p = 0.006). Scale bar = 100 mm; percentages are given ± SEM.
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DISCUSSION

We have established a system for directing differentiation

of hESCs toward the oligodendrocyte lineage, via both

ventral forebrain and ventral spinal cord origins, under

physiologically relevant 3% O2 conditions. This in vitro

resource provides a powerful tool for investigating develop-
446 Stem Cell Reports j Vol. 1 j 437–450 j November 19, 2013 j ª2013 The
mental pathways, the efficacy of small molecules in

achieving in vitro specification of OPCs, the basic biolog-

ical characteristics of these human cells, and the effects of

putative remyelinating agents on humanOPCmaturation.

The critical and hitherto unrecognized role of FGF-2 in

the specification of human OPCs via ventral forebrain ori-

gins has been clearly demonstrated in this in vitro system.
Authors
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Similarly,wewere able to show that SAG is an effective alter-

native small-molecule agonist of SHH signaling to PM in

this system, establishing anoptimalworking concentration

for OLIG2 induction of 1 mMSAG in the presence of 10 ng/

ml FGF-2. Robust generation of both OPCs and oligoden-

drocytes will facilitate the development of an in vitro

humanmyelination assay. Our electrophysiological studies

reveal that themajority of humanOPCshave sodiumchan-

nels and can fire action potentials, which is consistent with

observations in their rat counterparts but in contrast to

results in mice. Our system provides a platform for extend-

ing such electrophysiological studies to compare OPCs

derived from different developmental origins and investi-

gate responses to neurotransmitters such as glutamate

and NMDA receptor signaling (Káradóttir et al., 2005).

The observation that human OPCs respond to RXR

signaling is exciting, especiallywhen it considered alongside

the observation that the borders of chronically active MS

plaques contain OPCs expressing RXRg (Huang et al.,

2011). These same areas were previously reported to contain

so-called premyelinating oligodendrocytes (Wolswijk, 1998;

Chang et al., 2002), and it is thought that their failure to

differentiate into myelinating oligodendrocytes is a critical

factor in the development of progressive disease. Further-

more, it has been proposed that the key factor influencing

this failureof remyelination is age (Franklin, 2002). Intraper-

itoneal delivery of 9-cis RA (a ligand for RXR activation) to

aged rats with a focal area of demyelination was shown to

enhance remyelination (Huang et al., 2011). Thus, our

data provide further evidence to support a clinical trial of

an RXR agonist in patients with secondary progressive MS.

Taken together, our findings indicate that this develop-

mentally engineered, physiologically relevant system for

generating humanOPCs and oligodendrocytes fromhESCs

has the potential to provide further insights into pathways

involved in human myelination and remyelination, and

thus may ultimately lead to new therapeutic approaches

in the treatment of MS.
EXPERIMENTAL PROCEDURES

Cell Culture
H9hESCsweremaintained under feeder-free conditions at 20%O2

in chemically defined medium (CDM; 50% IMDM [Invitrogen],

50% F12 [Invitrogen], 7 mg/ml insulin [Roche], 30 mg/ml trans-

ferrin [Roche], 5 mg/ml BSA [Sigma], 1% lipid 1003 [Invitrogen],

and 450 mM monothioglycerol [Sigma]) (Brons et al., 2007), sup-

plemented with 12 ng/ml FGF-2 (R&D Systems) and 10 ng/ml

activin, between passages 56 and 85. All cultures were supple-

mented with 1% penicillin and streptomycin (Invitrogen). Six-

well plates (Nunc) were coated overnight with mouse embryonic

fibroblast (MEF) medium (advanced DMEM F12 [Invitrogen],

10% fetal bovine serum [Biosera], 1% L-glutamine [Invitrogen],
Stem Cell R
and 0.1 mM b-mercaptoethanol [Sigma]) and colonies were

passaged with 1 mg/ml collagenase (Invitrogen) every 3–5 days.

HUES-9 cells (hES Facility, Harvard University), between passages

30 and 42, were grown on irradiated MEF feeders supplemented

with 10 ng/ml FGF-2, 10 ng/ml activin, and 10 ng/ml insulin.

For neural conversion, colonies were lifted off with liberase

125 mg/ml (Roche) after incubation for 15–20min, allowed to settle

in 15 ml tubes, and rinsed with CDM before they were chopped

with a McIlwain Tissue Chopper (Mickle Engineering) at 120 mm

distances in two directions perpendicular to each other (Joannides

et al., 2006). The resulting cellular aggregates were then suspended

in repellent tissue culture flasks (Nunc) at a density of approxi-

mately 200,000 cells/ml of CDM in the absence of growth factors.

From this point onward, cells were cultured in a 3% O2 and 5%

CO2 incubator, with oxygen displaced by nitrogen. The resultant

sphereswere fed every other day (50%media change) and chopped

again at day 10 before they were transferred to an orbital shaker to

prevent aggregation (Stacpoole et al., 2011b).

From D10 onward, morphogens were applied as described in the

text (Figure 2A). In the FGF-2-based ventral forebrain protocol, we

added 10 ng/ml FGF-2 plus 5 mg/ml heparin (Sigma) between D14

andD50,1mMPM(Calbiochem)or1mMSAG(Smoothenedagonist;

Enzo Life Sciences) between D14 and D100, and 10 ng/ml PDGF

plus 40 ng/ml T3 between D50 and D100. For the RA-based, spinal

cord method, we added 0.1 mM RA between D10 and D24, 1 mM of

PM between D14 and D100, 10 ng/ml FGF-2 plus 5 mg/ml heparin

between D24 and D50, and 10 ng/ml PDGF plus 40 ng/ml T3 be-

tween D50 and D100. A 50% change of medium was performed

every 2–3 days and spheres were passaged bymechanical chopping

every 2 weeks.

For terminal differentiation, NPCs were plated onto coverslips

coated with 10 mg/ml poly-D-lysine/laminin (Sigma), and cultured

in DMEM3:1 F12/1%N2 (Invitrogen)/1% penicillin-streptomycin

supplemented with 10 ng/ml PDGF (Peprotech), 10 ng/ml IGF-1

(Peprotech), 10 ng/ml NT3 (Peprotech), 40 ng/ml T3 (Sigma),

and 1 mM cAMP (Sigma), with a 50% medium change every

2–3 days. After 7 days, 10 ng/ml BDNF (Peprotech) was added. A

50% media change was performed every 2–3 days.

Betweenweeks 3 and 5, we investigated the role of RXR signaling

in OPC maturation by adding 0.75 mM of the agonist PA024 or

0.75 mM of the antagonist HX331 to the differentiation media of

D100 hESC-NPCs that had been plated for terminal differentiation.
RNA Isolation and RT-PCR
Total cellular RNAwas extracted using the RNeasyMini isolation kit

(QIAGEN). RNA samples (2 mg) treated with RNase-free-DNase (New

England Biolabs) were reverse transcribed in 100 ml with random

hexamers using MMLV RT (Invitrogen) according to the manufac-

turer’s protocol. PCRwas conducted in a 25ml reaction volumeusing

2 ml cDNA with BioTaq polymerase (BioLine). Primer sequences are

shown in Table S1. b-actin was used as a housekeeping control. The

amplificationproductswere analyzedby agarose gel electrophoresis.
Immunocytochemistry
Cells were fixed with 4% paraformaldehyde (Sigma) for 15 min at

room temperature and rinsed three times with PBS. Spheres were

fixed for 45 min, rinsed three times with PBS, and cryoprotected
eports j Vol. 1 j 437–450 j November 19, 2013 j ª2013 The Authors 447
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with 30% sucrose overnight before theywere embedded in optimal

cutting temperature medium. Blocks were cut on a cryostat at

12 mm intervals and collected on Superfrost Plus-charged slides.

Samples were blocked for 1 hr at room temperature with 5% goat

serum/0.2% Triton X-100 (Sigma)/PBS and incubated overnight

at 4�C with primary antibodies (see Table S2 for a complete list)

in 2% goat serum/0.2% Triton X-100/PBS. (Triton was omitted

throughout for NG2, PDGF-Ra, galactocerebroside [GALC], O4,

O1, and MBP staining). After three rinses in PBS, Alexa Fluor

secondary antibodies (Invitrogen 488, 555, or 647) were applied

1:1,000 in 1% goat serum/0.2% Triton X-100/PBS/Hoescht

1:4,000 for 1 hr at room temperature. Sphere sections and cover-

slips were mounted with FluorSave (Calbiochem).

Cells and sections were viewed under a Leica microscope (AF-

6000) with appropriate filters for cell identification and counting.

Confocal imaging using a scanning laser confocal microscope

(TCS-NT-UV; Leica) was also performed; typical stacks were

composed of 10–20 optical sections of 0.5–1.0 mm thickness.
Electrophysiology
O4 prelabeling was used as an adjunct to morphology-based selec-

tion of OPCs for electrophysiological investigation. Live staining

at 37�C and 3% O2 involved 30 min incubation with O4 primary

antibody in terminal differentiation medium (1 in 200), followed

by 3 3 5 min rinses with warm DMEM, then 30 min incubation

with IgM-555 secondary (also in differentiation medium [1 in

400]), and finally three further rinses with warm DMEM before

replacement with differentiation medium. Two to three coverslips

were stained in tandem and were used for recordings within 6 hr.

Whole-cell current clamping of OPCs was performed at room tem-

peratureusingglassmicroelectrodesof 5.5–9MU resistance contain-

ing internal solution (130 mM potassium gluconate, 4 mM NaCl,

10 mM HEPES, 10 mM BAPTA, 4 mM MgATP, 0.5 mM Na2GTP,

0.5mMCaCl2, and2mMK-LY, pHadjusted to 7.3withKOH). Series

resistance was 19 ± 1.25 MU. Cultures were continuously perfused

with external solution (144mMNaCl, 2.5 mMKCl, 10mMHEPES,

10mMNaH2PO4, 2.5 mMCaCl2, 10mM glucose, 2 mMgCl2, buff-

ered with HEPES, pH adjusted to 7.35 with NaOH), which also con-

tained glycine (100 mM) and strychnine (5 mM). The voltage-gated

sodium channel blocker TTX (1 mM)was applied as described in the

text. Recordings were corrected for �14 mV junctional potential

and data were analyzed using Clampfit 10.2. After recordings were

completed, coverslips were fixed with 4% paraformaldehyde for

15 min at room temperature. OPCs were further stained for PDGF-

Ra or NG2 using the methods described above.
Quantification and Statistical Analysis
All experiments were performed at least three times unless

otherwise stated. Student’s unpaired t test was used for statistical

analysis; p values < 0.05 were considered significant and data are

presented as mean ± SEM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and two tables,
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