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A commentary on

Mycobacterial dormancy systems and host responses in tuberculosis
by Peddireddy V, Doddam S, Ahmed N. Front Immunol (2017) 8:84. doi: 10.3389/fimmu.2017.00084

Mycobacterium tuberculosis (M.tb), an obligate slow-growing human pathogen, resides within 
the macrophage after phagocytosis and develops strategies to escape immune surveillance. It can 
cause active disease or can persist in a latent stage depending on the host immune responses. The 
mycobacterial cell wall consists of complex layers of arabinogalactan, peptidoglycan, and unusually 
long branched mycolic acids that are covalently linked with each other. The cell wall of mycobacteria, 
containing high proportion of lipids, has 15 times less density of pores in comparison to the outer 
membrane of Gram-negative bacteria (1). This low density of pores might cause more difficulty in 
absorption of nutrients and could contribute to slow growth of mycobacteria. The other reasons for 
slow growth are higher GC content of the promoters, differential orientation of the genes in relation 
to the direction of replication, low RNA/DNA ratio in growing mycobacteria, and presence of a 
single ribosomal RNA operon present apart from the oriC. Proteins involved in the formation of the 
substrate-specific energy-dependent transporters ABC transport systems (ATP-binding cassette) are 
coded by only 2.5% of the M.tb genome that is very less compared to 5% in case of the Escherichia 
coli genome (2).

During infection, M.tb targets several host pathways such as induction of glycolytic flux (3), 
endoplasmic reticulum stress (4, 5), disruption of mitochondrial membrane (6), inhibition of apop-
tosis (7), induction of necrosis (3), phagosome maturation, suppressing host signaling pathways (8), 
and regulate autophagy to survive within host cell (9). Inside the granuloma, both the mycobacteria 
and the macrophages survive under stress conditions because of limitation of nutrients. To persist 
under such unfavorable conditions, both bacteria and macrophages have to conserve their energy by 
decreasing metabolic rate to allocate available resources toward the production of dedicated stress 
management proteins. Stress granules formation is a major adaptive defense mechanism through 
translation repression for stress survival of host cell infected with mycobacteria (4, 5).

Intracellular mycobacteria are found in different vacuolar compartments in distinct physiol-
ogical state, gene expression, and survival (10, 11). It has been shown that mycobacterial infection 
activated phagocytes to secrete different cytokines after triggering several host receptors such as type 
C lectins such as DC-SIGN (12, 13), NOD/NACHT receptors (14), mannose receptors (15), and 
toll-like receptor 2 (16). Mincle receptor [macrophage inducible Ca2+-dependent (C-type) lectin] is 
a calcium-dependent lectin that is a receptor for mycobacterial cord factor, trehalose-6,6’-dimycolate 
(TDM). Mincle expression on neutrophils is required for TDM infiltration that binds to both the 
sugar portion of the glycolipid and the hydrocarbon tail (17).

We have reported several key proteins of M.tb that may be functionally important for pathogen-
esis and survival. Prominent among these are M.tb PE/PPE proteins that have multiple role in terms 
of providing antigenic variation to the pathogen, acting as a molecular switch toward virulence 
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and altering Th1/Th2 host immune response for survival (18–20), 
immune quorum sensing (21), etc. Interaction of M.tb virulence 
factor RipA with chaperone MoxR1 was required for transport 
through TAT secretion system (22). Inhibition of M.tb chaper-
onic proteins such as PpiA and PpiB can derail protein folding 
machinery in M.tb (23) and reticence intracellular bacterial 
survival through alteration of host cytokine profile (24). PpiB 
also regulates formation of biofilm and can contribute to drug 
tolerance. Several M.tb proteins, such as DATIN, modulate host 
cytokine profile by interacting with TLR-2 (25), Rv2626c induce 
the production of pro-inflammatory cytokines through NF-κB 
(26). Rv2430c induces strong B-cell response (27), while Rv2608 
induces different humoral and T-cell response in various catego-
ries of TB patients (28). Inhibitors of these proteins can help boost 
host immune system within host and provide an unfavorable 
environment for M.tb to survive. M.tb ORF Rv1475c encoded 
aconitase is an iron binding protein that has conserved residues of 
the iron-responsive class of proteins and binds to iron-responsive 
elements in case of iron depletion (29). It is one of the several M.tb 
proteins identified in 30-day infected guinea pig lungs indicating 
its role in host–pathogen interaction (30).

There are several proteins present in mycobacteria which 
help in its survival inside host by slowing down growth at the 

level of replication (31), transcription (32), and translation  
(33, 34) (Figure 1). A recent report (35) has described different 
mycobacterial strategies against host immune responses such 
as manipulation of the TLR responses, host cytokine responses, 
antigen presentation by MHCs, inhibition of phagolysosomal 
fusion, and resistance to reactive nitrogen intermediates. The 
role of toxin antitoxins systems in mycobacterial growth regu-
lation in unfavorable conditions and role of Clp proteases in 
reactivation of latent bacilli have been described in detail. It has 
been shown that arrest of protein synthesis induces formation of 
persisters (36) that may have similar metabolic and physiologi-
cal state as the dormant bacteria (37). The persisters are drug 
tolerant non-grower bacteria, genetically similar sibling of drug 
susceptible bacteria but physiologically resistant (persistent) 
against various bacterial drugs (38). Comparative genomic 
analyses revealed genes associated with survival, virulence, 
antibiotic resistance, and biofilm formation (39). Many of these 
genes can act alone or in combination with other genes and thus 
inhibitors against such genes can prove vital in targeting the 
virulence and survival of M.tb. Drug re-purposing is an emerg-
ing strategy where drugs already in clinical use or approved by 
US FDA for treatment of mental illness, diabetes, malaria, etc. 
are being tested against some of the pathogen targets described 

FiGure 1 | Growth regulation by Mycobacterium for adaptation to stress/dormancy. Mycobacterium tuberculosis (M.tb) IciA (inhibitor of chromosome 
initiation) binds to the A + T rich oriC region of the M.tb genome and inhibits helix opening resulting in the arrest of chromosomal DNA replication (31). Activated 
toxin–antitoxin (TA) systems cleave mRNA to shut down metabolic activity (32). Peddireddy et al. (35) have also described the role of TA systems in M.tb and 
Mycobacterium smegmatis to remain in non-replicating phase that help bacteria in antibiotic tolerance. Highly expressed protein DATIN/RafH of Mycobacterium 
inhibits translation by binding with the ribosome under conditions of stress (33, 34). Confirmed and putative roles are indicated with continuous and dashed arrows, 
respectively.
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above. Targeting those host cellular pathways that are also  
commonly utilized by M.tb for its survival is yet another mode 
of developing new drugs.
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