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INTRODUCTION

Ankylosing spondylitis (AS) is a common autoinflammatory 
disease that affects the axial skeleton and is characterized by ex-
cessive osteoblast activity and new bone formation at local sites 
of entheses [1,2]. Clinically, anti-tumor necrosis factor (TNF) 

and anti-interleukin-17A therapies reduce inflammation in pa-
tients with AS, but they do not inhibit radiographic progression 
[3]. Thus, an understanding of pathological osteoblasts is need-
ed to develop a specific therapeutic target for bony ankylosis in 
AS patients.

Bone morphogenic proteins (BMPs) are originally identified 
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Objective: Bone morphogenetic protein receptor type 2 (BMPR2) has been associated with radiographic changes in ankylosing 
spondylitis (AS), but further characterization of the cellular signaling pathway in osteoprogenitor (OP) is not clearly understood. 
The aim of this study was to investigate the expression of BMPR2 and bone morphogenetic protein 2 (BMP2)-mediated responsi-
bility in AS.
Methods: We collected 10 healthy control (HC) and 14 AS-OPs derived from facet joints. Subsequently, we then conducted RNA 
sequencing with two samples per group and selected BMP-related genes. Facet joint tissues and derived primary OPs were evalu-
ated by validation of selected RNA sequencing data, immunohistochemistry, and comparison of osteogenic differentiation poten-
tial.
Results: Based on RNA-sequencing analysis, we found that BMPR2 expression is higher in AS-OPs compared to in HC-OPs. We 
also validated the increased BMPR2 expression in facet joint tissues with AS and its derived OPs in messenger RNA and protein 
levels. Additionally, primary AS-OPs showed much greater response to osteogenic differentiation induced by BMP2 and a higher 
capacity for smad1/5/8-induced RUNX2 expression compared to HCs.
Conclusion: The expression of BMPR2 was found to be significantly increased in facet joint tissues of patients with AS. These 
findings suggest that BMPR2 may play a role in the BMP2-mediated progression of AS.
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as growth factor morphogens that are tightly involved in the 
cascade of skeletal development and bone formation. BMPs 
can induce diverse signaling pathways in cells. Among these 
pathways, the BMP-SMAD protein signal is well-known. Upon 
BMP binding, the serine–threonine kinase activity of type I 
BMP receptors (BMPRs) fully activates the phosphorylation 
of smad1/5/8 protein to translocate it to the cell nucleus. Sub-
sequently, the phosphorylated smad1/5/8 protein accumulates 
to upregulate the transcription level of BMP-response genes. 
BMPRs forms of type I and 2 type II kinase receptors oligomer-
ize [4]. Many studies suggest that type I BMPRs are a general 
component of BMP signaling, yet the functional role of type II 
BMPRs remains largely unknown.

BMP2 is strongly associated with initiation and progression 
in AS [5-8], and an association between BMP2 variants and 
susceptibility to AS was reported [9]. Shen et al. put forward the 
notion that BMP2 has significant effects on the proliferation and 
differentiation of human mesenchymal stem cells of AS, and 
upregulated BMPR1A expression triggers fat metaplasia to form 
new bone in AS [10,11]. Intriguingly, a genetic study revealed 
that BMPR2 variants are strongly associated with radiographic 
changes in AS [12]. Additionally, it appears that high expression 
of BMPR2 in adipocytes has strong osteogenic potency [13]. 
However, it remains unclear whether extracellular BMP2 ago-
nists discriminate BMPR2 and which smad1/5/8 protein signal-
ing pathways are activated by BMP2 in AS.

MATERIALS AND METHODS

Patients
This study was carried out in accordance with institutional 

guidelines and approval from the Ethics Committee of Han-
yang University Seoul Hospital with written informed consent 
provided by participants (IRB 2014-05-002). Facet joints were 
obtained from 14 patients (all male; mean age, 42.4±8.0 years) 
diagnosed according to the modified New York criteria [14] and 
10 patients (all male; mean age, 56.3±11.2 years) with non-in-
flammatory spinal diseases as healthy control (HC). The clinical 
characteristics of human facet joint samples are shown in Table 
1.

Isolation of human osteoprogenitors (OPs) from facet 
joints

Facet joints were cut into ≤1 cm bone chips with scissors. 

The bone chips were washed in serum-free Dulbecco’s modi-
fied Eagle medium (DMEM) (SH30243.01; Hyclone Laborato-
ries, Logan, UT, USA) containing 1% penicillin–streptomycin 
(15140122; Gibco Laboratories, Gaithersburg, MD, USA) an-
tibiotics and incubated in DMEM growth medium containing 
penicillin–streptomycin and 10% fetal bovine serum (15140122; 
Gibco Laboratories) at 37°C for 2 weeks to isolate primary OPs. 
Cell suspensions were filtered through a nylon mesh, washed 
in serum-free DMEM several times, and seeded for culture. All 
isolated OPs were assessed with mycoplasma negative using a 
polymerase chain reaction (PCR)-based method (Takara, 6601).

RNA sequencing
Two HC-OPs and two AS-OPs were involved in total RNA 

extraction and RNA sequencing. Data analysis was carried out 
by EBIOGEN Inc. (Seoul, Korea). Briefly, RNA library construc-
tion was performed using the QuantSeq 3’ mRNA-Seq Library 
Prep Kit (Lexogen, Inc., Greenland, NH, USA) according to the 
manufacturer's protocol. Analysis of differentially expressed 
genes andgene ontologieswas carried out using the Microsoft 
Excel–based Differentially Expressed Gene Analysis (ExDEGA) 
software package provided by EBIOGEN Inc. Heatmap genera-
tion and clustering analysis were performed using R (version 
3.6.0; R Foundation for Statistical Computing, Vienna, Austria) 
and MeV (version 4.9.0) for selected genes.

Real-time quantitative PCR (RT-qPCR) and 
immunoblotting

RNA and protein extractions were completed as previously 
described [15,16]. RNA and proteins were extracted from 
stimulated cells with Trizol (15596026; Thermo Fisher Scien-
tific, Waltham, MA, USA) and 1× radioimmunoprecipitation 

Table 1. Clinical characteristics of human facet joint samples
Control (n=10) AS (n=14)

Male 10 (100) 14 (100)

Age (yr) 56.3±11.2 42.4±8.0

HLA-B27 positivity N/A 13 (92.8)

Use of anti-TNF N/A 6 (42.8)

ESR (mm/h) N/A 44.4±38.2

CRP (mg/dL) N/A 4.1±2.2

Values are presented as number (%) or mean±standard deviation. 
AS: ankylosing spondylitis, ESR: erythrocyte sedimentation rate, 
CRP: C-reactive protein, N/A: not available.



245https://doi.org/10.4078/jrd.2023.0024

Elevated BMPR2 expresssion in AS

assay buffer, respectively. Complementary DNA was generated 
from 1 μg of total RNA with reverse transcriptase (#EP0442; 
Thermo Fisher Scientific). The cells were lysed with 1× radioim-
munoprecipitation assay buffer containing phosphatase (5870S; 
Cell Signaling Technology, Danvers, MA, USA) and protease 
(#535140; Calbiochem, San Diego, CA, USA) inhibitors. Pro-
teins were quantified with a Bradford assay. A total of 30 to 50 
μg of protein was subjected to immunoblotting.

We used the following RT-qPCR primers: RUNX2 for-
ward, 5’-TGAGCTGAGAGGACATATGGCC-3’; RUNX2 

reverse, 5’-TAGACACCAAACTCCACAGCCC-3’; OCN 
forward, 5’-ATGAGAGCCCTCACACTCCT-3’; OCN re-
verse, 5’-CTTGGACACAAAGGCTGCAC-3’; BMPR1A 
forward, 5’-CAGCATTCGATGGCTGGTTT-3’; BMPR1A 
reverse, 5’-TCTAAGGACAACAGGCACGC-3’; BMPR1B 
forward, 5’-GCCCAGTGACCCCTCTTATG -3’; BMPR1B 
reverse, 5’-GTTTGGGAATGAGGGGCGTA -3’; BMPR2 for-
ward, 5’-CCACTAGAAGGTGGCCGAAC -3’; and BMPR2 
reverse, 5’-TCACCTATCTGTATACTGCTGCC -3’; ALK1 
forward, 5’-CTCTGCCTACCACCTCCTCT-3’; ALK1 re-
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Figure 1. BMPR2 is highly expressed in patients with AS. (A) Two healthy control (HC)-OPs and two AS-OPs conducted RNA sequencing. 
Heatmap with the BMP-related genes were selected and shown. (B) BMPR1A, BMPR1B, BMPR2, ALK1, and ALK2 expressions were 
validated by RT-qPCR (HC-OPs: n=8; AS-OPs: n=8). BMPR2 and ALK1 expressions were validated by (C) immunoblotting (HC-OPs: n=2, AS-
OPs: n=6) and (D) immunohistochemistry (HC: n=6; AS: n=6). BMPR2-positive cells in bone-lining cells were counted. Representative images 
are shown from two individual samples per group. (D) The scale bar showed is 200 μm. AS: ankylosing spondylitis, OP: osteoprogenitor. 
Values are the mean±standard error of the mean. Statistical significance was determined with *p<0.05, **p<0.01, by Mann–Whitney U 
test.
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verse, 5’-CAAGCTGGTGGGCTTGTTTC-3’; ALK2 for-
ward, 5’-AATCCCCGAGACGTGGAGTA-3’; ALK2 reverse, 
5’-TTCCCGACACACTCCAACAG-3’.

The antibodies used for immunoblotting and immunofluo-
rescence were as follows: RUNX2 (12556; Cell Signaling Tech-
nology), BMPR2 (sc-393304; Santa Cruz Biotechnology, Dallas, 
TX, USA), ALK1 (AF370; R&D Systems, Minneapolis, MN, 
USA), phos-smad1/5/8 (sc-12353; Santa Cruz Biotechnology), 
total-smad1/5/8 (sc-6031-R; Santa Cruz Biotechnology), OPG 
(sc-390518; Santa Cruz Biotechnology), phos-ERK (5683; Cell 
Signaling Technology), phos-p38 (9215; Cell Signaling Technol-
ogy), and GAPDH (2118; Cell Signaling Technology).

Immunohistochemistry
Immunohistochemistry was performed as previously de-

scribed [15,16]. The facet joint samples were fixed in 10% 
formalin for 1 week, dehydrated, and embedded in paraffin. Tis-
sues were sectioned into 5-μm-thick slices and used for immu-
nohistochemistry for BMPR2. The images were obtained using 
an Eclipse microscope (Nikon, Tokyo, Japan) with transmitted 
light at 4× and 20× magnifications.

Osteogenic differentiation and quantitative methods
Osteogenic differentiation and its quantitative methods were 

previously reported [16-20]. Briefly, primary OPs from the facet 
joints were seeded in DMEM growth medium (SH30243.01; 

Hyclone Laboratories) and then differentiated with osteogenic 
medium (ascorbic acid, β-glycerophosphate, and dexametha-
sone) into mature osteoblasts for indicated days. Matrix matu-
ration of differentiation was assessed by alkaline phosphatase 
(ALP) staining and activity. Matrix mineralization were assessed 
by alizarin red (ARS), von Kossa (VON), and hydroxyapatite 
(HA) staining. Differentiation medium was changed every 3 
days.

Statistical analysis
Data were generated and analyzed by GraphPad Prism ver-

sion 7.0 (GraphPad Software, San Diego, CA, USA). Statistical 
analysis was performed using the Mann–Whitney U test with 
unpaired tests. Values are shown as mean±standard error of 
the mean from ≥3 independent experiments. The asterisks 
represent the level of statistical significance (p<0.05, p<0.01, 
p<0.001).

RESULTS

To distinguish the basal level of BMP-related genes, we col-
lected 2 HC-OPs and 2 AS-OPs and conducted RNA sequenc-
ing. As shown in Figure 1A, the messenger RNA (mRNA) 
expression of BMP3 and BMP6 was upregulated and down-
regulated in AS-OPs compared to HC-OPs, respectively. 
BMPR1A and BMPR1B expression was not different between 
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Figure 2. AS-OPs had a greater capacity for induction of RUNX2 by BMP2. (A) AS-OPs were treated with exogenous BMP2 as indicated 
dose for a day and subjected to immunoblotting (upper) and RT-qPCR (lower). (B) AS-OPs were treated with 50 ng/mL BMP2 as 
indicated time and subjected to immunoblotting. (C) Both HC-OPs and AS-OPs were stimulated with 50 ng/mL BMP2 as indicated time 
and subjected to immunoblotting. HC: healthy control, AS: ankylosing spondylitis, OP: osteoprogenitor. Values are the mean±standard 
deviation. Statistical significance was determined with ***p<0.01, by Mann–Whitney U test. 
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the OP groups, whereas BMPR2 and ALK1 expressions were 
obviously elevated in AS-OPs (Figure 1A). We then validated 
BMPRs using RT-qPCR and revealed that BMPR2 expression, 
but not BMPR1A, BMPR1B, ALK1, or ALK2 expression, was 
significantly increased in AS-OPs (Figure 1B). ALK1 protein 
expression is statically different between HC-OPs and AS-OPs, 
but an increase in BMPR2 protein expression in AS-OPs was 
confirmed (Figure 1C). Moreover, BMPR2-expressing bone-
lining cells were more abundant and statistically elevated in facet 
joints with AS (Figure 1D). Collectively, we found that BMPR2 

expression is significantly higher in patients with AS compared 
to HCs.

Since BMP2 is well-known as a trigger for excessive osteoblas-
tic activity in AS, we treated AS-OPs with various BMP2 doses. 
BMP2 treatment dramatically upregulated the mRNA and pro-
tein expression of RUNX2 in AS-OPs (Figure 2A). There were 
no substantial changes in OPG, phos-ERK, and phos-p38 pro-
tein levels, but BMP2 treatment led to an increase in the phos-
smad1/5/8 and RUNX2 protein concentrations of AS-OPs in a 
time-dependent manner as well as a decrease in total-smad1/5/8 
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and BMPR2 protein concentrations (Figure 2B). Consistent 
with a previous report [10,21], AS-OPs exhibited greater phos-
phorylation of smad1/5/8 and sustained BMPR2 and induction 
of RUNX2 protein in BMP2 treatment compared to HC-OPs 
(Figure 2C). These results indicate that AS-OPs have a greater 
capacity for induction of RUNX2 by BMP2 than do HC-OPs.

Finally, we treated both HC-OPs and AS-OPs with BMP2 (50 
ng/mL) during osteogenic differentiation and observed bone 
matrix maturation and matrix mineralization of osteoblasts on 
indicated days. For matrix maturation, ALP staining and activity 
was markedly pronounced in AS-OPs compared to control-OPs 
(Figure 3A and B). For matrix mineralization, ARS, VON, and 
HA staining and quantification data revealed that BMP2 treat-
ment accelerated matrix mineralization in AS-OPs compared to 
HC-OPs (Figure 3C and D). As expected, expression of RUNX2 
and OCN mRNA was increased to a greater degree in AS-OPs 
(Figure 3E). Therefore, BMP2 treatment had an additive effect 
on both matrix maturation and matrix mineralization of AS-
OPs compared to HC-OPs.

DISCUSSION

Long-term follow-up studies covering anti-TNF use have 
commonly reported reductions in inflammation and allevia-
tion of ankylosis progression [22]. However, this effect cannot 
fully explain how chronic TNF exposure is related to new bone 
formation in AS. Thus, uncertainties exist regarding the precise 
pathogenesis of AS. Surprisingly, Lories et al. [6] highlighted 
BMP to play a critical role in onset and progression of spinal an-
kylosis, implicating that clinical application of the BMP axis for 
new bone formation. In line with the above, our results support 
the notions that BMPR2 is increased in AS-OPs and is much 
more sensitive to mediating bone formation activity in AS pa-
tients than HCs.

RUNX2 is a master regulator of bone formation and devel-
opment [23,24]. RUNX2 is known to positively regulate ALP 
and OCN expression levels [25]. ALP is an early marker and 
a sign of osteogenesis; OCN is a late osteogenic marker that 
forms calcified nodule complexes. We previously reported that 
the ALP basal level is high in AS patients compared to RA and 
helps promote bone-forming activity [15,16,18,19]. In line with 
other previous reports, we confirmed that BMP2 is a trigger for 
RUNX2 expression [25]. BMP2 showed a potent function in ac-
celerating osteoblast differentiation of mesenchymal stem cells 

derived from AS [10,21]. Our data highlighted that BMPs show 
substantially low expression in peripheral blood mononuclear 
cells but relatively high expression in OPs (Supplementary Fig-
ure 1).

BMP2 serum level is positively associated with proinflam-
matory cytokines, high bone-forming activity, and disease 
progression in AS patients [6,26-29]. Thus, we treated OPs with 
diverse proinflammatory cytokines such as TNF, interleukin-
17A, and interleukin-23 but BMP2 expression in OPs was not 
altered following these treatments. Additionally, Ding et al. [7] 
reported that overexpression of BMP2 significantly induced 
BMPR2 expression in fibroblasts derived from AS, while we re-
vealed that changes in BMPR1A, BMPR1B, and BMP2 mRNA 
expression did not differ between vehicle and BMP2 treatment 
groups. As shown in Figure 2, BMP2 treatment reduced BMPR2 
protein expression in AS-OPs to induce upregulation of RUNX2 
transcript by smad1/5/8 pathway activation. Collectively, AS-
OPs showed much higher sensitivity to BMP2 for an increase in 
RUNX2 by smad1/5/8 signaling, reflecting high bone-forming 
activity in AS.

It is clear that BMPs and their receptor (ALK2; activin type I 
receptor) have a distinct role in promoting bone formation in 
AS [5]. Intriguingly, Breban et al. suggested that genetic HLA-
B27 specifically interacts with BMPRs and influences the phos-
phorylation of SMAD proteins, which leads inflammation and 
ossification in AS development [30,31]. In addition, the antago-
nist of BMPRs exerts inhibitory functions on pathological bone 
features in mouse and Drosophila models of AS [30,32,33]. Less 
is known about the functional role of BMPR2 in AS. However, 
our results provide additional insight into BMP-mediated path-
ological bone features such as new bone formation, promoting 
ossification, and accelerated bone-forming activity.

This study has several limitations. First, the exact mechanisms 
behind the induction of the smad1/5/8-RUNX2 pathway are yet 
to be determined. Second, BMPR is a commonly formed het-
erodimer, and further molecular characterization and structure 
complexes of BMPR1A or BMPR1B based on BMPR2 should 
be determined. Third, it is unclear which stimulant can induce 
BMP2 expression and BMPR function. Fourth, BMP2K expres-
sion was increased in AS-OPs, but functional study remains 
necessary. Last, the effect of BMPR inhibition on AS in in vitro 
and in vivo models needs further study.
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CONCLUSION

The most important finding of the current study is that 
BMPR2 is strongly expressed in AS-OPs, albeit with a stronger 
tendency towards osteoblast differentiation and bone-forming 
activity through smad1/5/8-RUNX2 regulation in response to 
BMP2 stimulation. Additionally, cytological observation re-
vealed that BMPR2 is predominantly expressed in bone-lining 
cells of AS patients compared to HCs.
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