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Abstract
Background: The increasing number of protein sequences and 3D structure obtained from
genomic initiatives is leading many of us to focus on proteomics, and to dedicate our experimental
and computational efforts on the creation and analysis of information derived from 3D structure.
In particular, the high-throughput generation of protein-protein interaction data from a few
organisms makes such an approach very important towards understanding the molecular
recognition that make-up the entire protein-protein interaction network. Since the generation of
sequences, and experimental protein-protein interactions increases faster than the 3D structure
determination of protein complexes, there is tremendous interest in developing in silico methods
that generate such structure for prediction and classification purposes. In this study we focused on
classifying protein family members based on their protein-protein interaction distinctiveness.
Structure-based classification of protein-protein interfaces has been described initially by Ponstingl
et al. [1] and more recently by Valdar et al. [2] and Mintseris et al. [3], from complex structures that
have been solved experimentally. However, little has been done on protein classification based on
the prediction of protein-protein complexes obtained from homology modeling and docking
simulation.

Results: We have developed an in silico classification system entitled HODOCO (Homology
modeling, Docking and Classification Oracle), in which protein Residue Potential Interaction
Profiles (RPIPS) are used to summarize protein-protein interaction characteristics. This system
applied to a dataset of 64 proteins of the death domain superfamily was used to classify each
member into its proper subfamily. Two classification methods were attempted, heuristic and
support vector machine learning. Both methods were tested with a 5-fold cross-validation. The
heuristic approach yielded a 61% average accuracy, while the machine learning approach yielded an
89% average accuracy.

Conclusion: We have confirmed the reliability and potential value of classifying proteins via their
predicted interactions. Our results are in the same range of accuracy as other studies that classify
protein-protein interactions from 3D complex structure obtained experimentally. While our
classification scheme does not take directly into account sequence information our results are in
agreement with functional and sequence based classification of death domain family members.
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Background
The genomic revolution has provided vast protein data
resources now waiting to be transformed into usable
knowledge that can be applied to solve pressing biological
problems. Classification remains a favorite method for
performing such transformations because of its intuitive-
ness and robustness against errors. Several schemes have
now been proposed for automatic classification of pro-
teins [4,5]. They range from simple amino acid sequence
comparisons, through more localized motif-based meth-
ods [6-8] further improved by position specific scoring
matrices [9] and finally to hidden Markov model profile-
based methods [10]. Alternatively, structure-based classi-
fication provides a more direct means of inferring func-
tion, albeit on the much smaller structural databases
[11,12]. Recently, groups have taken an integrated
approach that blends the advantages of the methods dis-
cussed above [13,14].

The high-throughput generation of protein-protein inter-
action data from a few organisms has been carried out
[15-18]. This wealth of experimental data requires new
computational mining approaches to help us understand
molecular recognition in protein-protein interaction net-
works. Since the generation of sequences and experimen-
tal protein-protein interactions increases faster than the
3D structure determination of protein complexes, there is
tremendous interest in developing in silico methods that
could predict macromolecular structures and assembly for
prediction and classification purpose.

For example, computational approaches based on
sequence, expression and literature abstract data have
been developed to predict protein-protein interactions
[19]. These methods are based on the assumption that
non-homologous pairs of genes that show correlated
behavior across data from different sources should inter-
act with each other. In addition, structure-based classifica-
tion of protein-protein interfaces has been described
initially by Ponstingl et al. [1] and more recently by Valdar
et al. [2] and Mintseris et al. [3], from complex structures
that have been solved experimentally.

The last decade has seen enormous progress in the relia-
bility and accuracy of 3D structure-based in silico tech-
niques including 3D structure prediction based on
sequence homology and macromolecular docking. Com-
petitions in both domains have spurred the ingenuity nec-
essary for tackling these challenging problems [20,21]. In
this study we combine these two approaches to perform
protein classification.

To efficiently dock two molecules that participate in a pro-
tein-protein or protein-ligand interaction, a certain
number of steps have to be determined [22]. The process

first involves an efficient search and matching algorithm
that covers the conformational space, and then one or
more selective scoring functions that can eliminate effi-
ciently between native and non-native solutions. Docking
algorithms are defined and classified by the extent of flex-
ibility that they attempt to address (1) Rigid body dock-
ing, where the two molecules are rigid solid bodies, (2)
Semi-flexible docking where one molecule, the receptor,
is considered a rigid body while the ligand, generally
smaller, is considered flexible, and finally (3) flexible
docking where both molecules are considered flexible.
Flexible docking is now becoming more popular because
it takes into account conformational changes that gener-
ally occur when proteins interacts with each other. How-
ever, rigid body docking simulation has already been
widely employed and used successfully in the docking of
protein-protein complexes [22,23]. In this method flexi-
bility can be incorporated through a "soft belt" into which
atoms from the second molecule can penetrate, reducing
drastically the complexity [22] and increasing the speed of
the simulation. Rigid body docking is based on the obser-
vation that 3D protein complexes reveal a close geometric
match at the interface of a receptor and a ligand. Since
many false positives with better scores than the true solu-
tion are very often obtained, additional rescoring func-
tions have been introduced to eliminate these wrong
solutions [24].

In this study, rigid body docking is applied to the classifi-
cation of protein-protein interactions in the death
domain superfamily. We chose rigid body docking
because of its higher speed. The scheme uses in silico pro-
tein-protein interaction predictions, applied to 3D pro-
tein structures built using homology modeling, as its
exclusive means of performing classifications. We imple-
mented the approach in a system called HODOCO
(HOmology modeling, DOcking, and Classifying Oracle),
and used Residue Pair Interaction Profiles (RPIPs) as a
means to summarize protein interaction characteristics.
The system was applied successfully to the problem of
classifying members of the human death domain super-
family. We show that despite the limited reliability of cur-
rent docking algorithm, interaction profile-based
classification of this family can be obtained with 90%
accuracy.

Results and Discussion
The goal of this study was to perform protein classification
from in silico predicted protein-protein interaction. We
chose to concentrate on the death domain superfamily as
our model family. The superfamily consists of four fami-
lies: Caspase-associated recruitment domain (CARD),
death effector domain (DED), death domain (DD), and
pyrin/AIM/ASC/DD-like domain (PAAD). Each domain
in the superfamily has a characteristic 6-helix bundle fold
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called the "death fold", and performs protein-protein
interactions between members of the same subfamily
class. Interaction between superfamily members has been
shown to be a functional mechanism of signal transduc-
tion in apoptosis (programmed cell death), and therefore
is key to many vital life processes such as the proper main-
tenance of homeostasis and the immune system, as well
as diseases such as neurodegenerative disorders and can-
cer. The characteristics of the superfamily, such as the low

intrafamily sequence identity (30% on average), the high
interfamily structural similarity, and the fact that family
membership is primarily defined by the ability of mem-
bers of the same family to interact exclusively with each
other [35,36] make it ideal for classification based on
interaction profiles. The combined literature survey from
the database of Protein FAMily http://pfam.wustl.edu,
and an iterative BLAST search resulted in 80 sequences,
distributed moderately evenly across families. Nine had

Table 1: Human death domain superfamily members with known structures. PDB codes are followed by chain identifiers; an underscore 
represents the only chain http://www.rcsb.org.

Family Gene Name PDB Code

CARD APAF1 1c15:A 2ygs:A 3ygs:C 1cy5:A 1cww:A
CARD CASP9 3ygs:P
CARD ICEBERG 1dgn:A
CARD CRADD 3crd:_
DED FADD 1a1w:_ 1a1z:_
DEATH FADD 1e3y:A 1e41:A 1fad:A
DEATH NGFR 1ngr:_
DEATH TNFRSF6 1ddf:_
DEATH TNFRSF1A 1ich:A
Total: 9

Table 2: Gene names and RefSeq IDs of the sequences used in this study. Data from the UCSC Genome Browser [42] April 2003 
assembly. 

CARD DED DD PAAD

Gene Name RefSeq ID Gene Name* RefSeq ID Gene Name RefSeq ID Gene Name RefSeq ID

APAF1 NM_001160 CASP10(19) NM_001230 ANK1 NM_000037 AIM2 NM_004833
ASC NM_013258 CASP10(114) NM_001230 ANK2 NM_001148 ASC NM_013258
BCL10 NM_003921 CASP8(2) NM_001228 ANK3 NM_001149 CIAS1 NM_004895
BIRC2 NM_001166 CASP8(100) NM_001228 CRADD NM_003805 DEFCAP NM_014922
BIRC3 NM_001165 CFLAR(1) NM_003879 DAPK1 NM_004938 MEFV NM_000243
CARD10 NM_014550 CFLAR(92) NM_003879 FADD NM_003824 NALP10 NM_176821
CARD11 NM_032415 DEDD NM_004216 IRAK1 NM_001569 NALP2 NM_017852
CARD12 NM_021209 DEDD2 NM_133328 IRAK2 NM_001570 NALP8 NM_176811
CARD14 NM_024110 FADD NM_003824 IRAK3 NM_007199 PYC1 NM_152901
CARD6 NM_032587 PEA15 NM_003768 LRDD NM_018494 PYPAF4 NM_134444
CARD9 NM_022352 MYD88 NM_002468 PYPAF5 NM_138329
CASP1 NM_001223 NGFR NM_002507 RNO2 NM_033297
CASP2 NM_001224 RIPK1 NM_003804
CASP4 NM_001225 THOC1 NM_005131
CASP5 NM_004347 TNFRSF10A NM_003844
CASP9 NM_001229 TNFRSF10B NM_003842
CRADD NM_003805 TNFRSF1A NM_001065
DEFCAP NM_014922 TNFRSF21 NM_014452
ICEBERG NM_021571 TNFRSF25 NM_003790
RIPK2 NM_003821 TNFRSF6 NM_000043
TUCAN NM_014959 TRADD NM_003789
Total: 21 10 21 12

*Gene names followed by parentheses have more than one death effectors domain. The number in parentheses is the first amino acid of the domain 
according to Pfam release 10.0.
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solved 3D structures (Table 1). The rest had to be modeled
in silico, and those that could not be modeled to a reason-
able degree of confidence were removed from the study.
What remained were 64 models (i.e. m = 64): 21 CARD,
10 DED, 21 DD, and 12 PAAD (Table 2).

Great care was taken during the model building process to
ensure that the highest quality models were accepted. This
degree of caution was required to avoid the risk of propa-
gating inaccuracies throughout the system. GRAMM was
chosen as the docking engine for its ability to obtain raw
putative complexes that have not been further filtered,
thereby allowing us to estimate a signal-to-noise ratio

from the raw data and in turn allowing us to devise a pro-
cedure for reducing the search space. Docking algorithm
was used to build a database that could be mined for spe-
cific complexes with properties unique to a given family.
We chose to perform docking only between members of
the same family as the intrafamily complexes provided a
broad enough sampling to yield high accuracy rates and
limit our computational cost. Keeping in mind GRAMM's
asymmetric algorithm, 212 + 102 + 212 + 122 = 1126 dock-
ing simulations were conducted each offering 1000 puta-
tive complexes, for a total of over 1.1 million putative
complexes.

The HODOCO system architectureFigure 1
The HODOCO system architecture. (a) The process for determining the missing 3D structures of family members from 
their amino-acids sequence; (b) The classification engine creation pipeline; and (c) The process for classifying new family mem-
bers. Light boxes represent computation steps. Within each computation step is a description (above the line) and a list of pro-
grams that the step uses (below the line). Dark boxes represent data sources and/or sinks. Edge labels represent the data 
passed from one step to the next.

(a) Model Building (b) Creating the Classifier (c) Classifying
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In transforming the putative complexes into interaction
profiles, we had to answer the question: If a pair of models
forms 2000 putative complexes, how can we identify
those that are most valuable for identifying family mem-
bership? Ideally, the algorithm should agree with the two
known 3D protein complexes (APAF1/CASP9 and Pelle/
Tube) that have been solved in the superfamily. Further-
more, we considered that a protein's interaction signature
should not only consist of its binding domains and spe-
cific binding partners, but should be characterized by a
gradient of different binding specificity. Our first intuition
was to mine for frequently occurring putative complexes. To
visualize what we mean by this, it is possible to plot all
putative complexes in a 3D environment (see Figure
4(a)). The figure shows that points represent docking hits
form clusters, and that these clusters represent frequently
occurring putative complexes. However, contrary to our
intuition, when these clusters were compared to the two

known 3D protein complexes of death domain there were
no spatial proximity between the position of the model
with the position of the cluster representing the different
docking solutions (Figure 4(b)). These data shows that
the rescoring of the protein complexes solutions obtained
by docking needed to be performed to eliminate false
solutions from the real one. Effectively, GRAMM's
method considers geometrical fit and hydrophobicity, but
does not have optimal molecular mechanics force fields
and desolvation parameters that can eliminate false posi-
tives. As a result we applied a rescoring algorithm [37] to
the "raw" docking results to improve the ranking. The res-
coring algorithm has the luxury of considering a much
broader spectrum of factors due to the reduced search
space. As a result, the list of complexes was re-ranked and
a cutoff imposed with increased confidence, resulting in
11,260 complexes.

As a means of further filtering the docking results, we
applied the notion of sister list intersection. Recall that sister
lists are those that are returned from docking model µi
against model µj and vice versa, for i, j ∈ [1...m]. The moti-
vation behind sister list intersection is that, since we are
only interested in domain-domain interactions, theoreti-
cally there should be no difference between the two lists.
With this and the fact that the lists are predominantly false

Intersection of sister listsFigure 2
Intersection of sister lists. Complex 1 resulted from 
docking µi against µj, i, j ∈ [1...m]. Complex 2 resulted from 
docking µj against µi. µi is represented as a cross with an 
arrowhead; µj as a cross with a bulb. The different shades of 
gray are used to distinguish instances of the same model. In 
this case, if we align the two complexes by superimposing 
both instances of µi, then the distance between the centers 
of the two instances of µj is less than or equal to the cutoff, 
dc, so both complexes are retained. Note that the instances 
of µj are not superimposed; only their centers coincide. 
Here, µi is the aligned model and µj is the orientation-inde-
pendent model. When we align the two complexes by super-
imposing both instances of µj, then the distance between the 
centers of µi is greater than the cutoff. However, once a 
complex is retained, it is never again rejected.

Complex 1 
Complex 2 

Complex Alignment 
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Construction of an RPIPFigure 3
Construction of an RPIP. Each sphere represents the 
model (µ) of a death domain superfamily member and each 
plane represents an informative interface (ι). Note that every 
interface has an associated model, but that the number of 
models (m) may be different than the number of interfaces 
(n). Here, ι1, ιi and ιn are associated with µ1, µj and µm, 
respectively. The target's RPIP is the collection of RPScores 
calculated for each interface ιi, for all i ∈ [1...n].
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positives in mind, we argue that sister list intersection is a
logical means of filtering. When implementing the algo-
rithm, we discovered that the routine for comparing com-
plexes was best left with a level of flexibility. In other
words, complexes need not be identical to be considered
on the list, they simply must be sufficiently similar (recall
Figure 2). The reason for this is that if identity were to be
upheld, the resulting lists would not contain enough ele-
ments to allow for classification. By combining sister list
intersection then rescoring the protein complex solution
obtained from the raw data we were able to reduce the 1.1
million putative complexes down to 913 informative
interfaces (i.e. n = 913). When we applied this mining
procedure to the solved complex APAF1/CASP9, of the
2000 putative complexes returned from GRAMM output
only two informative interfaces were found, one of which
was the true interface. By filtering out the majority of puta-
tive complexes we were given the advantage of not having
to perform exhaustive docking for each of the new family
members we wanted to classify. Instead, we limited the
translation/rotation space to the informative interfaces
with the understanding that they form a representative
population of the important interactions.

When arriving at the definition of the RPIP, the goal was
to find a profile that was fast and easy to calculate, and
that suitably described a protein's interaction behavior so
that it could be successfully classified. We should note
that the RPIP was not designed to have a direct physico-
chemical interpretation. As mentioned in the methods
section, every RPIP element is associated with an inform-
ative interface, which in turn is associated with a model.
Since every model corresponds to a member of the super-
family, we can assign a family to each of the RPIP ele-
ments. In this way, the RPIP can be divided into four
sections, one for each family. In the family-based classifier
we hypothesized that RPIP elements corresponding to the
target's true family would, on average, be greater than the
elements corresponding to the incorrect families. Figure 5
illustrates the hypothesized RPIP against a typical
observed RPIP. As the figure implies, the family-based
classifier performed poorly with an average 5-fold cross-
validation accuracy of 61%. Alternative summary statistics
for representing the families including mean, maximum
and standard deviation, did not significantly improve the
accuracy. Moreover, removing RPIP elements whose
scores were consistently high or low across families simi-

Unfiltered Predicted complexesFigure 4
Unfiltered Predicted complexes. (a) Clusters of predicted complexes for each of the four families. Receptor models are 
shown as α-carbon traces in red. Each gray point indicates the center position of a GRAMM hit. (b) Predicted complexes vs. 
the known complex for APAF1/CASP9. The receptor (APAF1) of the predicted complexes is shown as α-carbon trace in gray; 
the ligand center points are shown as gray points with direction vectors. The known complex is shown in blue. Note that the 
known (blue) and predicted (gray) APAF1's have been aligned, and that the known CASP9 center is not within the dense 
regions of predicted centers.

      

 (a) Family Clusters (b) APAF1/CASP9 Complex 
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larly did not result in higher accuracy (data not shown).
The most obvious implication of these results is that an
interface that is particularly stereo-chemically favorable to
one family member is not necessarily favorable to another
family member.

Unlike the family based classifier, the SVM-based classifier
made no assumptions about how true family member-
ship is related to RPIP element family membership;
instead it relied on machine learning to automatically
find correlations in the elements. The SVM-based classifier
performed significantly better with an average cross-vali-
dation accuracy rate of 89%. Figure 6 shows an example
SVM output from HODOCO. The increased performance
of the SVM can be attributed to its ability to detect weaker
patterns in the RPIPs, than the heuristic approach taken
by the family based classifier. In particular, it can consider
multiple simultaneous interaction propensities to arrive
at its final decision. It is interesting to note that some
sequences were consistently misclassified by the SVM. Fig-
ure 6 shows that APAF1's true family (CARD) is predicted
to be the least probable amongst the four families. In this

case, misclassification is due to the fact that it effectively
has very unique binding and sequence properties com-
pared to other members of the superfamily. It forms a
supra-molecular complex called the apoptosome with
CASPASE-9 (CASP9) and NAC [38] which involves a pro-
tein-protein interface not present in other family
members.

Conclusions
The goal of this work was to show that in silico interaction-
based protein classification can be obtained reliably for
the death domain superfamily. We developed a classifica-
tion pipeline that allows us to obtain protein
classification.

While others have used in silico interaction profiles to
characterize the docking ability of small molecules bind-
ing to experimentally determined 3D structures [39], or to
discover novel protein interactions using known 3D
complexes [40], our method is unique in that it applies to
3D molecular models of proteins complexes, and it not

RPIP and family based classifierFigure 5
RPIP and family based classifier. This RPIP was generated from a CARD family member. The hypothesis of the family 
based classifier stated that RPIP elements corresponding to the target's true family should on average be greater than the oth-
ers. The series in gray illustrates the predicted model where the RPScores corresponding to the CARD family (indices 0 
through 304) should be generally greater than the rest. Note, however, that the observed values in black do not agree with the 
hypothesis, instead showing a generally even trend across all families.
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only considers multiple binding partners, but also multi-
ple interfaces for each partner.

In future, there is much further work that can be done.
Similar to [39], RPIPs could be used to cluster models
rather than classify them. Here the goal would be to find
alternative "families" based on interaction data, without
regard to sequence homology. For example, discovering
groups of models, sharing a common interaction interface
or that are an outlier with a unique interface. Such a prop-
erty has been highlighted by the constant misclassifica-
tion of the CARD domain of APAF1 obtained in this study
that has unique binding properties in the family.

It is very important to note that this study is only as pow-
erful as the methods it builds upon. In particular, docking
is still a highly active area of research with much work
remaining to be done on model flexibility, solvent simu-
lation, and force field optimization. Similarly, model
building of the protein complex remains a difficult proce-
dure requiring great care, making it difficult to accurately
automate [41]. Our results have shown that despite the
introduction of error in the classification pipeline due to
the reliability of the underlying tools, interaction-profile
based protein classification can be obtained with confi-
dence. The fact that multiple parties have independently
begun researching the potential of interaction profiles
suggests that it may become a popular method for biolog-
ical data mining in the future.

Methods
HODOCO is an in silico protein characterization and clas-
sification system consisting of three parts, a model build-
ing subsystem, a classifier building subsystem, and the
classifier itself. An overview of the three major compo-
nents is shown in Figure 1. When building the classifier
the input to the system is a set of 3D structures, termed
models (µ1 through µm), that belong to the superfamily of
interest. Since 3D structures for the majority of proteins
are unsolved, a major aspect of the system is the model
building subsystem (Figure 1(a)). Once the models are
built, docking is performed to find putative complexes,
which are then used to find what we call informative inter-
faces (ι1 through ιn to be discussed later). The informative
interfaces are directly related to calculating the RPIPs,
which in turn are used to build the classifier (Figure 1(b)).
The model building subsystem and the classifier building
subsystem have been designed to be fully independent so
that improvements to their respective underlying tools
can be applied to one without necessitating changes to the
other. The final subsystem, the classifier, however is
tightly bound to the second subsystem, and its distinction
is mostly conceptual (Figure 1(c)). Each step in the system
is now explained in detail.

Superfamily dataset collection
Three parallel approaches were used to obtain the set of
human death domain protein sequences examined in this
study. First, a literature survey was conducted to identify

Classification of death domain family members using SVMFigure 6
Classification of death domain family members using SVM. Each RPIP (x-axis) has four SVM scores associated with it; 
one from each family. The family with the highest score is the predicted family. Here, correct classifications include 19/21 
CARD members; 8/10 DED members, with one near-tie; 21/21 DD members; and 10/12 PAAD members.
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an incomplete set of protein sequences from well-known
family members. Second, the Pfam database was con-
sulted to extract a set of protein sequences from members
of the CARD, DED, DEATH and PAAD/DAPIN/PYRIN
families. Third, the sequences found in the previous two
methods were pooled to conduct a distant homologue
search via an iterative BLAST procedure [25].

3D-structure modeling and alignment
Atomic coordinates from solved 3D protein structures
were retrieved from the Protein Data Bank [26] and used
for docking studies where available. Atomic coordinates
from the remaining family members were obtained by
homology modeling. Each amino acid sequence (the tar-
get sequence) from the death domain superfamily was
submitted into the Polish metaserver [27]. Once Pair-wise
alignments between the target sequence and a template
were generated, a pair-wise alignment with the best score
and the template's structure were submitted into the
MODELLER program [28] to generate homology models
for the target sequence. The default parameters for
MODELLER were used, while the "loop-modelling"
option was enabled. A total of 6 models were generated
for each target, and the models were refined by molecular
dynamics with simulated annealing (a functionality in
MODELLER) to improve the quality of the model. All 6
models were verified for favorable geometrical and stere-
ochemical properties using Verify 3D [29] and
PROCHECK [30], and the rms deviation between the
model and the template from which the model origi-
nated. From these criteria the best one was selected as the
representative model for the target. Low quality models
were discarded if they exhibited an RMSD greater than 1.5
Å on the total main chain atoms with the structure tem-
plate from which they were built. All remaining models
were then used as input to the classification analysis, as if
they were the original input to the system. Models were
structurally superimposed on a reference model (ASC)
using the Combinatorial Extension method [31] for dock-
ing studies. We refer to the models as µ1 through µm,
where m is the number of models.

Model interaction prediction
Putative complexes were predicted through computa-
tional docking using GRAMM [32]. GRAMM performs an
exhaustive 6-dimensional search of all translations and
rotations between a given pair of macromolecules and
returns a list of high scoring complexes based on rigid-
body geometric fit and hydrophobicity. It should be men-
tioned that, due to GRAMM's algorithm, the order of the
models is important. Specifically, the list of complexes
returned from docking molecule A against molecule B is
not guaranteed to be the same as the list returned from
docking molecule B against molecule A. We refer to these
related lists as sister lists. GRAMM's parameters chosen

such that the two known death domain superfamily
complexes, human caspase recruitment domains of
APAF1 with pro-Caspase-9 (PDB: 3YGS) and drosophila
death domains of PELLE with TUBE (PDB: 1D2Z) had the
best rank possible when docking their respective individ-
ual monomers were: Matching mode = generic, grid step =
1.5, repulsion attraction = 5, attraction double range = 0,
potential range type = atom_radius, projection = black
and white, representation = all, number of matches to out-
put = 1000 and angle of rotation = 10. Each model within
each family was docked against every other model within
the same family and the top 1000 complexes from each
docking simulation were retained in a MySQL database
for further filtering. It could be argued that the GRAMM
parameters giving the best rank, when obtained from the
docking of the individual monomers of the two known
protein complexes (bound form), could not be optimal
when each death domain superfamily member are docked
against each others (unbound form). Effectively docking
from unbound monomers has to consider conforma-
tional changes of the protein partners upon binding that
do not occur when a protein monomer belongs to a
known protein complex. To limit the complexity of the
problem and allow comparison between our simulations
we used the low resolution docking parameters of
GRAMM. In such a procedure flexibility is handled
through a "soft belt" into which atoms from the second
molecule can penetrate reducing drastically the complex-
ity [22], and increasing the speed of the simulation.

Mining for informative interfaces
The database of resulting complexes was mined for those
with the maximum information gain with respect to fam-
ily classification. We refer to the mined complexes as
informative interfaces, since each complex defines an inter-
face between the component models. We labeled the
informative interfaces ι1 through ιn, n the number of inter-
faces. The mining procedure consisted of two parts: (i)
Rescoring the complexes and (ii) Taking the intersection
of sister lists, described shortly. All mining was performed
via a combination of shell scripts, Perl scripts and C++
programs.

Rescoring of complexes
The first mining technique was to rescore each complex
using the software Rpdock – a member of the 3D-Dock
suite [33] and reject those below a threshold. Rpdock uses
evidence gathered empirically to quantify the probability
of a complex's existence and returns a score (RPScore)
based on the results. The algorithm uses residue pair
potentials across protein interfaces [34] as the basis for the
score. Ranked via this alternative scoring system, the top
10 complexes from each docking experiment were
retained, while the other 990 complexes were rejected.
Page 9 of 11
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Intersection of sister lists
The second mining technique applied took advantage of
the input-model order dependence of GRAMM. Every pair
of sister lists was examined for complexes found in both
lists. More precisely, every pair-wise combination of com-
plexes from all sister lists was considered in turn. Recall
that complexes in sister lists are composed of the same
two models (call them µi and µj, i, j ∈ [1...m]). If after the
two instances of µi were structurally superimposed, the
distance between the two instances of µj fell below a given
threshold then both complexes were retained. Complexes
never retained in this way were rejected (see Figure 2).
Note that the two instances of µj need not be exactly struc-
turally superimposed. We refer to µi as the aligned model
and µj as the orientation-independent model. The informa-
tive interface is then the interface that lies between these
models.

RPIP construction
The set of informative interfaces was used to generate vec-
tors of RPScores; one vector per model. Each RPScore was
calculated as follows.

1. Given the 3D structure of a sequence of interest (the tar-
get), and an informative interface, ιi (i ∈ [1...n]), consist-
ing of an aligned model and an orientation independent
model, the aligned model was replaced with the target
ensuring preservation of orientation. (Recall that all mod-
els were previously structurally superimposed to a refer-
ence model, thereby normalizing rotations across
models). We refer to this modified complex as the hybrid
complex.

2. Rpdock was used to calculate the RPScore of the hybrid
complex, and the result was stored in element i of the
target's RPIP. Note that the RPScore of the hybrid complex
could be grossly different from that of the unmodified
complex.

For a given model, the collection of RPScores resulting
from performing the above calculation on each of the
informative interfaces was placed into a vector and termed
the model's Residue Potential Interaction Profile, or RPIP
(see Figure 3). Note that there is a one-to-one correspond-
ence between RPIP elements and informative interfaces.
To avoid bias, all informative interfaces that involved the
model itself were assigned a null RPScore and ignored in
all future steps.

Building the classifier
Two methods of classification were attempted. First, it was
postulated that the RPIP elements pertaining to a model's
true family would be, on average, greater than those not.
Thus, a classifier was built that compared the median
RPScores across RPIP elements for each of the four fami-

lies, and made a prediction based on the greatest mean.
This classifier was termed the family-based classifier.

The second method used the RPIPs to build four support
vector machines one for each family. This classifier was
termed the SVM-based classifier. The software SVM light
was used in this study http://svmlight.joachims.org. Each
machine was trained to discriminate members of one
family, so that all four machines would have to be used to
make a final prediction. A linear kernel was used when
building the machines to avoid undue distortion of the
underlying RPScores.

Testing
To test the accuracy of HODOCO we conducted five runs
of 5-fold cross-validation for each classification method.
Generally, k-fold cross-validation randomly divides the
target dataset into k equal-sized partitions, iteratively
using one partition for testing and the other partitions for
training. Method accuracy is measured as the average
number of correctly classified models divided by the total
number of models over a series of cross-validation runs.
Referring back to Figure 1(c), a target is classified by build-
ing its model, building its RPIP and finally applying one
of the classification methods to the RPIP. Note that it is
assumed that the unknown sequence has been previously
screened to be a member of the superfamily.
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