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Glucocorticoids are a class of steroid hormones secreted from the adrenal glands. The
strong anti-inflammatory effects make it be one of the most popular and versatile drugs
available to treat chronic inflammatory diseases. Additionally, supramolecular materials
have been widely exploited in drug delivery, due to their biocompatibility, tunability, and
predictability. Thus, steroid-based supramolecular materials and the release of steroids
have been applied in the treatment of inflammatory diseases. This mini-review summarized
recent advances in supramolecular materials loaded with glucocorticoid drugs in terms of
hydrophobic interactions, electrostatic interactions, hydrogen bonding, and π-π stackings.
We also discussed and prospected the application of the glucocorticoid drugs-based
supramolecular system on chronic rhinosinusitis, multifactorial inflammatory disease of the
nasal and paranasal sinuses mucosal membranes. Overall, supramolecular materials can
provide an alternative to traditional materials as a novel delivery platform in clinical practice.
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INTRODUCTION

Glucocorticoids belong to the family of cholesterol-derived hormones produced by the adrenal
glands. They have been discovered and applied into clinical medicine in the 1940s (Vandewalle et al.,
2018) and can be administered orally, intravenously, or topically (Luhder and Reichardt, 2017).
Considering their strong and efficient anti-inflammatory effects, glucocorticoids has been generally
introduced to the treatment of rheumatoid arthritis (Aletaha and Smolen, 2018), asthma (Barnes,
2011), atopic dermatitis (Mayba and Gooderham, 2017), allergic rhinitis (Wheatley and Togias,
2015) and chronic rhinosinusitis (Hopkins, 2019). However, the side effects of glucocorticoids
cannot be ignored. They can arise hypothalamic-pituitary-adrenal suppression-related
complications such as hyperglycemia, aseptic necrosis of the femoral head, negative calcium
balance, mood disorders, and Cushing’s syndrome (Chotiyarnwong and McCloskey, 2020). It is
urgent to develop a novel therapeutic regimen for steroids delivery and release.

Traditional chemistry used in the synthesis and application of glucocorticoids focuses on the
covalent bond; however, supramolecular chemistry mainly examines the weaker and reversible non-
covalent interactions such as hydrophobic, electrostatic, hydrogen bonding, and π-π stackings
(Mendes et al., 2013). In general, molecules self-assembled by non-covalent interactions in specific
solvent and formed supramolecular materials (Zhang et al., 2020a). Supramolecular materials have
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biocompatibility, tunability, and predictability (Zhou et al., 2017;
Yu et al., 2020). Thanks to the advantages of supramolecular
materials, significant advances have been made in drug delivery.
Glucocorticoid drugs have many characteristics for loading onto
supramolecular materials. Firstly, their typical hydrophobic
structure promotes the combination with amphiphilic
supramolecular materials. Secondly, the incorporation of
anionic groups assists in combining with materials through
electrostatic interactions. Lastly, their ordered structure and
abundant π electrons indicate the existence of hydrogen bonds
and π-π stackings.

In this review, we outlined the recent progress on basic
theories and biomedical applications in supramolecular
materials with glucocorticoid drugs via four kinds of
interactions including hydrophobic interaction, electrostatic
interaction, hydrogen bond, and π-π stackings. We hope our
review would provide new ideas for the application of steroids-
based supramolecular materials in the treatment of more diseases.

HYDROPHOBIC INTERACTIONS

Hydrophobic interaction is a tendency of nonpolar substances to
aggregate in an aqueous solution, which increases hydrogen
bonds between water molecules and decreases the area of
contact between water and nonpolar molecules. Distinct from
electrostatic interactions and hydrogen bonds, hydrophobic
interactions can be elucidated as a thermodynamic effect with
changes in free energy, entropy, enthalpy, and heat capacity
rather than one of the fundamental types of molecular
interactions (Shen et al., 2017; Yadav et al., 2020). When
hydrophobic groups of molecules contact with water
molecules, the entropic effect leads to a rearrangement of
water molecules. Researchers have increasingly focused more
attention on biomaterials to make the best use of hydrophobic
interactions. It is commonly observed that without applying
amphiphilic materials or combining with hydrophilic
molecules, hydrophobic drugs alone fail to self-assemble to
nanostructures (Wang et al., 2012). Therefore, some bonds
such as disulfide, thioether, ester bonds, or amphiphilic
materials were added to the hydrophobic drugs to self-
assemble into nanostructures in aqueous solutions (Wang
et al., 2014).

It has been demonstrated that the glucocorticoids could
attenuate inflammations in acute lung injury (Tu et al., 2017),
arthritis (Aletaha and Smolen, 2018), and atherosclerosis (van der
Sluis and Hoekstra, 2020). Compared to normal cells,
inflammatory cells tend to overexpress reactive oxygen species
(ROS), accompanied by the inflammatory process. Hence, ROS-
responsive nanoparticles have been introduced as targets for
precise drug release treatment in inflammatory diseases. Ma
et al. (Ma et al., 2020) reported that a ROS-responsive linkage
was used to bridge the prednisolone and two-photon fluorophore
(TP), constituting a diagnosis-therapy compound named TPP.
Adding TP to prednisolone promoted the hydrophobic
interaction of steroids obviously and provided a dimensional
location for inflammation. The compound TPP was then

packaged with an amphipathic diblock copolymer poly (2-
methacryloyltoxyethyl phosphorylcholine)-poly (2-methylthio
ethanol methacrylate) (PMPC-PMEMA) via hydrophobic
interaction. The compound TPP and amphipathic copolymer
PMPC-PMEMA were dissolved in the DMSO and methanol
solution with phosphate-buffered saline (PBS) was added
dropwise, stirred, and filtered. Afterward, the self-assembled
form was obtained. With PMPC serving as a hydrophilic
segment and PMEMA as a hydrophobic block, PMPC-
PMEMA exhibited great superiority of protein adsorption
resistance, biocompatibility, and responsiveness to ROS. The
results showed that the particle size increased and
prednisolone was released with the increased concentration of
H2O2, an oxidizer that induces reactive ROS formation (Ogawa
et al., 2004). Prednisolone was slowly released without the
stimulation of H2O2, while it showed rapid release under the
H2O2 effect. After 48 h, there was approximately 89% of
prednisolone delivery. After being treated with H2O2 for 4 h,
noncompact micelles started to aggregate due to the hydrophobic
interaction of TP, suggesting the outstanding reversibility of these
supramolecular materials (Figure 1A).

In recent years, some in vivo disease models have been
established to evaluate the effectiveness of the supramolecular
materials loaded with glucocorticoids. They found that the
supramolecular materials loaded with glucocorticoids
treatment could significantly inhibit the pulmonary edema in
the acute lung injury mice model than saline group. In addition,
the supramolecular materials loaded with glucocorticoids
treatment also exhibited a more detumescence effect than the
untreated group in the collagen-induced arthritic joints model.
Furthermore, it could strongly reduce oxidized low-density
lipoprotein uptake and inhibit foam cell formation for
atherosclerosis in vitro and in vivo. The outstanding
theragnostic of inflammation for the glucocorticoid drug
delivery system has been proved in the treatment of acute
lung injury, arthritis, and atherosclerosis (Ma et al., 2020).

Moreover, Chung et al. Chung et al. (2020) reported the
synthesis of another supramolecular material combined with
steroids. Poly (ethylene glycol) (PEG) played a hydrophilic
role, while rosmarinic acid (RA), an anti-inflammatory and
anticancer component, played a strong hydrophobic role. They
were prepared and self-assembled, relying on hydrophobic
interactions when dexamethasone was incorporated into the
solution. Steroid-based hydrogel treatment could recover colon
length dose-dependently in the dextran sulfate sodium salt (DSS)
induced colitis mice model (Chung et al., 2020).

Generally, hydrophobic interaction is a common non-covalent
interaction widely applied to various fields. As for steroids, a kind
of prominent hydrophobic drug, hydrophobic interaction with
supramolecular materials might be a trend in the future of drug
delivery (Figure 2; Table 1).

ELECTROSTATIC INTERACTIONS

Electrostatic interactions are long-range non-covalent
interactions between two charged ions or molecules, occurring
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when ions or molecules with opposite charges attract each other
(Schneider, 2009). Changes in the pH and ionic strength of the
solution can moderate the forces of electrostatic interactions
(Shen et al., 2017). Electrostatic interactions have been used
widely in some positively or negatively charged parts of the
body. For instance, drugs encapsulated in cationic carriers
could rapidly penetrate negatively charged cartilage (Bajpayee
and Grodzinsky, 2017). Another drug was provided with a
positive charge to bond with the negatively charged bladder
mucosa to achieve sustained drug release (Guo et al., 2017).

Contrary to the cartilage and bladder, the drug delivery problem
that should be overcome in mucosal tissues is rapid removal by
the mucus. Drugs can be trapped in mucosa via electrostatic or
hydrophobic interactions (Dunnhaupt et al., 2015). A high
density of positive and negative surface charges facilitates drug
delivery through the mucosal layer by minimizing the
electrostatic interactions with mucus.

As a typical case of the mucosa, in the field of non-infectious
uveitis, Zhou et al. Zhou et al. (2018) designed and synthesized
steroidal drug-based supramolecular hydrogels by electrostatic

FIGURE 1 | Schematic representations of possible interactions between supramolecular materials and steroids. The supramolecular materials bind to steroids
possibly via (A) hydrophobic interactions, (B) electrostatic interactions, (C) hydrogen bonds, and (D) π-π stacking interactions.

FIGURE 2 | The biomedical applications of the glucocorticoid drug delivery systems. Glucocorticoid drugs based supramolecular systems have been widely used
in acute lung injury, arthritis, atherosclerosis, inflammatory bowel disease, non-infection uveitis, and dental impact application.
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interactions and metal coordination. Firstly, a carboxylic acid
group was added to dexamethasone to enhance electronegativity.
Succinate dexamethasone (Dex-SA) was suspended in PBS,
followed by incorporating Na2CO3 solution to provide a
transparent solution. Next, due to the incorporation of various
cations (Mg2+, Ca2+, Zn2+, Fe2+, Cu2+, and NH4

+), Dex-SA self-
assembled to form steroidal supramolecular hydrogels. Besides,
the results showed distinct gelation ability among cations in the
order of Mg2+>Ca2+>Zn2+≈Fe2+˃NH4

+. Divalent cations
exhibited strong gelation ability due to two sites coordinating
with a carboxylic acid. The ability of various divalent cations to
induce gelation might be affected by the radii of cations. Cations
with smaller radii lead to a stronger ability for gelation. Among
the above cations, Ca2+ ions are most widely distributed in
humans; therefore, attention has been focused on the synthesis
and application of the Ca2+-Dex-SA supramolecular hydrogel.
This Ca2+-Dex-SA supramolecular hydrogel exhibited good drug
delivery ability modulated by changes in the Ca2+ concentration.
Within 6 h, almost all Dex-SA and dexamethasone were
completely released from the hydrogel. In addition, Ca2+-Dex-
SA supramolecular hydrogel showed good reversibility upon
large-amplitude oscillatory shear cycle. With an increase in
Ca2+ concentration, the drug release rate slowed down,
suggesting that the supramolecular material is Ca2+ responsive.

In addition, steroid-based supramolecular materials might be
very effective for inflammation of non-infection uveitis. The non-
infection uveitis rabbit model was induced by the carrageenan
injection to increase epithelial thickness and the appearance of a
horny superficial layer on the corneal surface. The triamcinolone
acetonide incorporated into micellar solution treatment could
improve the histological architecture of the cornea and nearly
normal epithelial pattern for the corneal tissue (Safwat et al.,
2020). With the rapid development of nanotechnology, the more
and more extensive biological application of steroid-based
supramolecular materials has been achieved (Figure 2;
Table 1). And the widespread distribution of Ca2+ ions in the
human body certainly provides us with a good prospect for
further applications of supramolecular materials via
electrostatic interactions (Figure 1B).

HYDROGEN BONDS

A hydrogen bond is an electrostatic interaction between the
hydrogen with a partial positive charge atom or atomic group

with a partial negative charge, where there is evidence of a bond
formation. The electronegative atom directly connected with
hydrogen bond by covalent bond is the hydrogen bond donor,
while the hydrogen bond acceptor is the other electronegative atom
which is not covalently attached to the hydrogen but participating in
the formation of hydrogen bond. It is stronger than a van der Waals
bond and weaker than fully covalent or electrostatic bonds. Of all the
noncovalent bonds, a hydrogen bond is the one with the most
pronounced directionality (Schneider, 2009). Some research teams
synthesized layer-by-layer films employing hydrogen bonds between
biologically compatible poly (acrylic acid) and a biodegradable block
copolymer micelle to fully utilize the sensitive and directional
characteristics of hydrogen bonds (Kim et al., 2008).

Concerning the use of hydrogen bonds on steroids, researchers
dissolved dexamethasone and Ca2+ in distilled water to form
dexamethasone supramolecular hydrogel. X-ray diffraction
(XRD) analysis of dexamethasone supramolecular hydrogel
suggested that the ordered structure exhibited a greater
tendency to form hydrogen bonds and π-π stackings (Wu
et al., 2017). The study speculation was reasonable, but no
experimental verification was carried out to prove the
formation of hydrogen bonds. The release of dexamethasone
from hydrogel was categorized into a rapid release within the first
24 h and a sustained release in the subsequent 48 h. They also
found that dexamethasone-based supramolecular hydrogel
injection could significantly efficacy on the suppression of the
uveal inflammatory response, while the saline group exhibited a
severe inflammatory response in the anterior chamber
accompanied by a large amount of purulent exudate (Wu
et al., 2017) (Figure 2; Table 1).

Fraile et al. validated the formation of hydrogen bonds on
dexamethasone through Fourier transform infrared (FT-IR)
spectra and nuclear magnetic resonance (Fraile et al., 2016).
They used laponite as a carrier for the controlled delivery of
dexamethasone via hydrogen bonds. Dexamethasone was
dissolved in ethanol or acetone, and laponite was added to
this solution and stirred at room temperature; the solution
self-assembled to form transparent colloidal dispersions. After
removing the solvent, the whole amount of dexamethasone was
deposited on the solid laponite. It is known that hydrogen bonds
shift the X-H stretching frequency to a lower energy level
(Feldblum and Arkin, 2014). The spectra results showed that,
compared to the laponite alone group, the same C�O and C�C
bands were slightly enlarged in the dexamethasone/laponite
group, indicating that hydrogen bonds had formed in

TABLE1 | Features and medical applications of different supramolecular interactions used for the delivery of steroids.

Interactions Medical applications References (PMID)

Hydrophobic interaction Ma et al. (2020) Acute and chronic inflammation PMID: 32379416
Chung et al. (2020) Acute inflammatory bowel disease PMID: 32449857

Electrostatic interactions Zhou et al. (2018) Non-infectious uveitis PMID: 29803956
Wu et al. (2017) Non-infectious uveitis PMID: 28501709

Hydrogen bond Fraile et al. (2016) Posterior segment ocular diseases PMID: 27594212
Wu et al. (2017) Non-infectious uveitis PMID: 28501709

π-π stacking interaction Jung et al. (2015) Dental implant applications PMID: 25909563
Wu et al. (2017) Non-infectious uveitis PMID: 28501709
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dexamethasone (Figure 1C). Furthermore, the carbonyl groups
suffered a significant downfield shift in the 1H spectrum due to
the decline in electronic density when accepting a hydrogen bond.
The release of dexamethasone was based on the equilibrium
between the physiosorbed and the dissolved forms of
dexamethasone. The release of dexamethasone increased when
its concentration was low. Self-assembled through hydrogen
bonds, supramolecular materials loaded with steroid drugs will
improve their responsiveness, biocompatibility, and tunability.

π-π STACKING INTERACTIONS

A π-π stacking interaction refers to a type of noncovalent
interaction involving unsaturated hydrocarbon predominantly
containing π bonds (Wheeler, 2013). The π-π interaction can be
categorized into T-shaped (edge-to-face stacked) and F-shaped
(offset stacked and face-to-surface stacked), depending on the
three-dimensional morphology of aromatic group interactions
(Butterfield et al., 2002; Sinnokrot et al., 2002; Yu et al., 2020).

It was reported that supramolecular nanomaterials made of
graphene had a honeycomb lattice framework where every
carbon atom has its π electrons (Shim et al., 2017). The high
density of π electrons makes it possible to use graphene-based
nanomaterials for drug delivery via π-π interactions (Shim et al.,
2016). Thus, there are quite a few aromatic drugs containing π
electrons loaded on the graphene surface, suggesting that π-π
stacking interactions play an outstanding role in designing
chemical drug delivery systems (Lee et al., 2011).

In a study on multi-pass caliber-rolled Ti alloy of Ti13Nb13Zr
(MPCR-TNZ) for dental implant applications, the high mechanical
strength MPCR-TNZ was surface-modified with graphene oxide and
loadedwith the osteogenic drug dexamethasone. Theweak strength of
π-π interactionmakes accuratemeasurements difficult in experiments
(Zhuang et al., 2019). Considering the ordered structure in graphene
and a large number of π electrons in graphene and dexamethasone,
π-π stacking interactions could easily be speculated (Jung et al., 2015)
(Figure 1D). In vitro, 10% of a total load of dexamethasone was
released for a week, suggesting a long-term anti-inflammatory effect.
The MPCR-TNZ loaded with dexamethasone showed facilitated
differentiation of progenitor cells into osteoblasts compared to
MPCR-TNZ material alone. Also, the dexamethasone-MPCR-TNZ
group exhibited a significant amelioration in calcium-nodule
formation and remarkable osteocalcin expression (Figure 2;Table 1).

Additionally, a study speculated the formation of π-π stacking and
hydrogen bond interactions in dexamethasone supramolecular
hydrogel (Wu et al., 2017). Although the application of π-π
stacking interactions loaded with steroid drugs is relatively limited,
π-π stacking interaction still has a good application prospect because
of the ordered structure of steroids.

CONCLUSIONS AND PERSPECTIVES

This review discussed and summarized the hydrophobic
interactions, electrostatic interactions, hydrogen bonds, and
π-π stackings between supramolecular materials with steroid

drugs and their biomedical applications. Understanding the
basic theory of their hydrophobic groups, ordered structure
and abundant π electrons clearly will help us to make more
effective supramolecular materials-based steroid drugs.

At present, the steroid-based supramolecular systems have been
widely used in acute lung injury, arthritis, atherosclerosis,
inflammatory bowel disease, non-infection uveitis, and dental
impact application. There are still some diseases that require
better use of this steroid-based supramolecular system to develop
new treatment strategies. For example, chronic rhinosinusitis (CRS)
is a chronic heterogeneous disease that encompasses complex
multifactorial inflammatory conditions of the nasal and paranasal
sinuses mucosal membranes. According to current guidelines,
intranasal glucocorticoids, systematic glucocorticoids, and
functional endoscopic sinus surgery (FESS) are the principal
therapeutic approaches for CRS (Fokkens et al., 2019). While
only surgery may not control the persistent inflammation, it is
essential to control postoperative inflammation and scarring, and
these postoperative patients thus require ongoing oral or topical
corticosteroids to reduce the inflammatory burden in the sinuses
(Kohanski et al., 2018). In the recent decade, a new type of
bioabsorbable steroid-eluting stent that engineered from
polylactide-co-glycolide (PLGA) impregnated with steroid
medication has emerged for CRS treatment (Murr et al., 2011;
Han et al., 2014; Janisiewicz and Lee, 2015; Smith et al., 2016;
Kern et al., 2018). The steroids were combined with PLGAmaterials
using a physical coating method via dipping, spraying, brushing, or
the layer-by-layer (LBL) assembly technology (Rykowska et al.,
2020). However, there are some limitations in the application of
PLGA. For example, the acidic by-products of PLGA can cause
inflammation in the surrounding tissues. Additionally, the drug-
eluting coronary stents reported that biodegradable stents (including
PLGA stents) were associated with a higher stent thrombosis rate
(Cassese et al., 2016). Also, an in vitro and in vivo study found
prominent inflammation, eosinophil infiltration, and fibrotic tissue
after stent implantation, indicating a prominent foreign-body
reaction (Nikoubashman et al., 2018). Considering these
limitations, specific research is necessary on promising materials
to be utilized as a steroid-eluting stent. Owing to the properties in
ordered superstructures, high responsiveness, biocompatibility,
reversibility, tunability, and predictability, the combination of
steroids and supramolecular materials may be expected to achieve
sustained release as well as reduce the complications. Utilizing the
responsiveness and reversibility, the self-assembly/disassembly
processes of steroids can be controlled under chemical, physical,
and biological stimuli.

Although supramolecular materials can be optimized to become a
new generation of steroid drug delivery systems by skillfully adjusting
these interactions. Nevertheless, several challenges limit the application
of supramolecular materials containing steroids. Firstly, in most cases,
the drug release time of supramolecular materials is less than that of
macromolecular polymers. To achieve a long-lasting anti-
inflammatory effect, prolonging drug release time will undoubtedly
have a significant impact on optimizing supramolecular materials. The
combination of supramolecular materials and macromolecular
polymers might become a new drug delivery platform. Secondly,
efforts are needed to develop bio-signaling-based release
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mechanisms. In tumors and some inflammatory diseases (Zhang et al.,
2020b), the pH (Deirram et al., 2019), temperature (Zavgorodnya et al.,
2017), redox potential (Raza et al., 2018), and even specific
overexpressed proteins (Shigemitsu et al., 2020) could serve as
stimulations to trigger the drug release of supramolecular materials.
Besides, other steroid drugs and macromolecular drugs have been
poorly developed in supramolecularmaterials (Geng et al., 2020). Some
macromolecular drugs, such as the monoclonal antibodies, which play
a specifically anti-inflammatory role in CRS, might fail to be delivered
by supramolecular materials due to their large sizes. Further research is
necessary for new strategies to recognize proteins through
heteromultivalency or macrocycles with much larger cavity sizes for
protein delivery.

Traditional drug delivery systems have widely been used in
many fields of biomedicine. Moving forward, we anticipate that
more supramolecular materials can replace traditional materials
as novel delivery platforms in clinical practice.
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