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Current studies have indicated the association of chronic sterile inflammation (inflam-
mation in the absence of pathogens) with the pathogenesis of age-related and metabolic
diseases. The inflammation is under the control of transcription factor NF-«B through an
antagonistic crosstalk between SIRT1, PARP-1, and -2 signaling pathways. The transcriptio-
nal activity of NF-kB is increased in various tissues with aging and metabolic abnormalities
and is related with various aging and metabolic diseases such as Alzheimer’s disease,
diabetes, and osteoporosis. Furthermore, NF-«B activation with chronic inflammation is con-
nected with many known life span and metabolic regulators including DNA damage, obesity,

PARP-1 SIRT, and PARP. Thus, the crossroads between PARP and SIRT signaling pathways represent
PARP-2 efficient therapeutic targets for extending health span without metabolic diseases.
SIRT1 © 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
. regulator 2 (Sir2), which require nicotinamide adenine dinu-
1. Introduction

There are many reports that demonstrate the molecular
regulation between inflammatory response, metabolic and
age-related diseases.'” As an innate host defense mecha-
nism, inflammation engages specific stages, such as acute and
resolution stages of acute infection, and chronic sterile condi-
tions of metabolic and age-associated degenerative diseases.
The transcription factor NF-«kB plays an important role in mod-
ulating innate immunity-mediated inflammation.*® There
is abundant evidence indicating that NF-«B activity can be
controlled by sirtuin (SIRT)1 and poly(adenosine diphosphate-
ribose) polymerases (PARPs). SIRTs are a family of deacetylases
with homology to Saccharomyces cerevisiae silent information

cleotide (NAD)* as a cofactor for their enzymatic activity.
In mammals, seven sirtuins are known, and the SIRTs con-
tain a conserved central core deacetylase domain flanked by
diverse length N- and C-termini. Interestingly, as SIRTs need
NAD* cofactor for their enzymatic activity, it is speculated that
these deacetylases react to changes in environment, oxidative
stress, and metabolism.”

SIRT1 regulates the diverse cellular targets and functions,
so it became the most widely studied SIRT in mammals.

The expression of seven mammalian SIRTs is quite com-
mon and everywhere, and they share a conserved catalytic
domain of 275 amino acids. However, each of the SIRTs
shows distinct features with specific functions. Initially, their
difference can be found in their subcellular localization.
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Fig. 1 - Two typical NAD+ consuming enzymes, PARP and SIRT1, uses NAD+ for PARylation and deacetylation, respectively.

That is, SIRT1 can shuttle between the nucleus and the
cytosol, and its predominant localization depends on vari-
ous cell types and environmental causes.”® SIRT2 is mostly
cytosolic.” By contrast, SIRT3, SIRT4, and SIRTS are regarded
as mitochondrial proteins, whereas SIRT6 and SIRT7 are
located in the nucleus. However, while SIRT6 is placed in
the heterochromatin, SIRT7 is predominantly found in the
nucleolus.’

PARPs consist of enzymes with a conserved catalytic
domain. PARPs have mono- or poly(ADP-ribosyl)transferase
activity using NAD* as a donor of ADP-ribose units. PARP-
1 and PARP-2 have various functions in the maintenance
of genome stability, regulation of chromatin structure and
transcription, cell proliferation, and apoptosis.” Because
Poly(ADP-ribose)(PAR) is negatively charged and noncova-
lently couples with nuclear proteins, (PARylation), ° PAR can
act as a scaffolding for chromatin remodeling and DNA repair
processes (Fig. 1). PARP1 is activated by oxidative and geno-
toxic stresses. The activated PARP1 causes the conversion of
NAD* into PAR chains, which noncovalently convert nuclear
proteins.™®

Thus, we review the current knowledge of the antagonis-
tic interactions considering the biochemical reaction of the
crosstalk and the pathophysiological consequences. In addi-
tion, we will overview the pharmacological involvement to
regulate PARP and SIRT enzymes for the attenuation of the
inflammatory metabolic and age-related diseases (Fig. 2).

Inflammation

m < PARPs

SIRT1

71

Fig. 2 - A schematic presentation on the antagonistic
interactions between NF-kB, SIRT1, and PARP in the
regulation of inflammation and energetic homeostasis.

2. Antagonistic crosstalk between PARP
and SIRT1

Oxidized and reduced Nicotinamide Adenine Dinucleotide
(NAD* and NADH respectively) are crucial metabolites in
metabolic reactions. PARP-1 and PARP-2 use NAD" as a
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Fig. 3 - An antagonistic crosstalk between SIRT1 and PARP in the double-strand break-induced DNA damage response. DNA
double-strand break on oxidative stress activates PARP, leading to the depletion of NAD+ and subsequent inactivation of
SIRT1 deacetylase activity. By contrast, SIRT1 regulates PARP activity by deacetylating PARP1.

NAM, nicotinamide mononucleotide; NAMPT, nicotinamide phosphoribosyltransferase; NMNAT, nicotinamide

mononucleotide adenyltransferase.

cofactor in their catalytic activity. Continuous PARP activa-
tion can reduce intracellular levels of NAD* by 80% and raises
nicotinamide (NAM).'! SIRT1 is a NAD*-dependent protein
deactelyase.’ It has been known that the decrease of NAD*
and the increase of NAM ensured by enhanced PARP activity
correlates with a downregulation of SIRT1 activity.’>** Sim-
ilarly, the activation of SIRT1 reduced PARP activity.’? These
observations raised four possible crosstalks between SIRT1,
PARP-1, and -2 (Fig. 3).

2.1. Competition for NAD*

PARPs and SIRT1 may compete for the limiting NAD* sub-
strate because they are NAD* dependent enzymes.’ The
SIRT1 activity induced the fluctuations in NAD* levels as the
Km of SIRT1 falls in the bounds of physiological cellular NAD*
change.™ It is well known that NAD* levels upon excessive
DNA damage is decreased due to PARP activation. In the exces-
sive DNA damage, NAD* levels may decrease to 20-30% of the
control that is likely to be rate limiting of SIRT enzymes.'”
SIRT1 activity is dramatically declined under these conditions
which might consequently lead to decreased SIRT1 expression
(Fig. 4-a).'®

2.2. Cross-modification

The cross-action of both activities of PARRs and SIRT is that
PARPS could PARylate SIRT1 and that SIRT1 could deacety-
late PARPs.” It has not been demonstrated that SIRT1 was
PARylated by PARPs. However, it was reported that PARP-
1 could be deacetylated by SIRT1.!®'° Overexpression of
SIRT1 or resveratrol treatment induced the deacetylation of

PARP-1 in cell culture. It is also reported that SIRT1-mediated
deacetylation obstructs PARP-1 activity.”’ Thus, the increase of
SIRT1 activity would decrease PARP-1 activity through direct
deacetylation (Fig. 4-b).

2.3.  Transcriptional corepression

The SIRT1 promoter activity has been shown to be regulated
by several transcription factors including PARPs.'”?! It was
demonstrated that the SIRT1 promoter has the binding site
of PARP-2 and suggested that PARP-2 operates as a suppressor
of SIRT1 transcription.'®?! Thus, under the condition of PARP-
2 deletion, the activity of the SIRT-1 promoter that translated
into higher SIRT1 mRNA and protein levels in skeletal muscle,
liver, and pancreas was enhanced.’>?! Since the depletion of
PARP-1 had no effect on the activity of the SIRT1 promoter,
PARP-2 appears specific for it (Fig. 4-c).

2.4. Regulation of common targets

According to Bai et al,"’ the increase of energy expenditure
drives the metabolic phenotype of the PARP-1 knockout mice.
This effect is likely induced by a potentiation in SIRT1 activ-
ity and the activation of key transcriptional factors including
the transcriptional coactivator PGC-1a.'® PGC-1a regulates
the enhanced mitochondrial biogenesis in skeletal muscle
fibers.?? The forkhead box O (FOXO) family of transcriptional
factors is also a major subsequent effector of SIRT1 in the reg-
ulation of oxidative metabolism.?® SIRT1 deacetylates FOXOs,
prompting their activation of genes related to lipid oxidation
and stress resistance.?* In coincide with SIRT1 activation, mice
with genetically or pharmacologically impaired PARP activity
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Fig. 4 - Antagonistic crosstalks between PARP-1 or -2 and SIRT in the various cellular situations. See the details in the text.

demonstrate a clear deacetylation of PGC-1a and FOXO1 in
a metabolic tissue such as skeletal muscle.!” Corresponding
to the activation of genes related to mitochondrial biogen-
esis, the muscles of PARP-1 deficient mice showed a huge
increase of mitochondrial content and an improved oxida-
tive profile in their muscle fibers.” The brown adipose tissue
(BAT) is well known to have a vital role in thermogenesis.
The BAT from the PARP-1 deficient mice is characterized by
increased NAD* substance and SIRT1 activity as well as the
deacetylation and activation of PGC-1a.” This causes the
mitochondrial matter to increase in the BAT of the mice. All
of these phenomena shown in the PARP-1 deficient mice rep-
resent that the transcriptional coactivators including PGC-1a
and FOXO1 are cross-regulated by PARP and SIRT1, respectively
(Fig. 4-d).

3. Signaling crosstalk between PARP and
SIRT in the diseases

3.1.  PARP-SIRT interaction in age-related diseases

Muiras et al?® found increased PARP activities in cells from
centenarians, suggesting larger capacity of PARP activation is
related with successful aging. The larger PARylation ability is
postulated to be reliable DNA repair that prevents the DNA
damage-related diseases including neoplasms.?®?’ Recently,
many data demonstrate that the hPARP-1 mouse overex-
pressed PARP-1 are prevented against neoplastic disease.?®
However, other age-related pathologies such as inflammatory
diseases is increasingly occurred by PARP-1 overexpression.”®
Aging is strongly related with enhanced oxidative stress.
This oxidative stress and increased PARP activation?” in old
age place a considerable strain on NAD* homeostasis. As
a result, NAD"* levels and accompanied SIRT1 activities are
decreasing with aging. The decrease in SIRT1 activity induces

mitochondrial dysfunction, which represents a characteristic
of aging and is probably a leading cause of various age-related
chronic inflammatory and metabolic diseases.

3.2 PARP-SIRT interaction in metabolic diseases

Two articles by Bai et al’>" expanded the physiological roles
of PARP-1 and -2 to the area of metabolism of energy homeo-
stasis. The authors observed that PARP-1 or PARP-2 deficient
mice display enhanced energy consumption and protection
against diet-induced obesity. This metabolic phenotype is
partly gained via SIRT1 activation, either by increasing NAD*
levels by PARP-1 deficiency or by promoting SIRT1 expres-
sion by PARP-2 deficiency.”® They characterized the metabolic
phenotypes of PARP-1~/~ mice to know the role of PARP-1 in
metabolic homeostasis. PARP~~ mice showed the following
characteristics.

Although food intake was increased, the mice were more
lean with less fat accumulation, increased energy expendi-
ture, and enhanced glucose oxidation. PARP-1~/~ mice also
demonstrated higher mitochondrial content, along with the
increase of oxidation- and respiration-associated gene expres-
sion in metabolic tissues, such as muscle and BAT.3° PARP-1/~
mice have similar results in which SIRT1 is overexpressed or
chemically activated.?!

Interaction between PARP-1 and SIRT1 is suggested by
the results since they are intensively regulated by cellular
NAD* levels.®® In a second study, the authors investigated
that RNA interference-mediated depletion of PARP-2 did not
alter cellular NAD* levels, but increased the levels of SIRT1
messenger RNA (mRNA), protein, and activity.!” This was rep-
resented by the reduction of acetylation of SIRT1 targets, as
well as enhanced mitochondrial biogenesis and oxidation.
The authors demonstrated that PARP-2 localizes to the SIRT1
promoter, where it operates as a suppressive transcription reg-
ulator.
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To sum it up, the capacity of PARP enzymes to regulate
SIRT1 activity and the resulting PAPR-NAD*-SIRT1 path-
way additionally intensifies the encouraging potential of
modulating PARP and SIRT1 activities in the control of meta-
inflammation for metabolic diseases.

4. Pharmacological modulation of
PARP-SIRT1 axis

PARP-SIRT1 axis can be modulated pharmacologically,3?3°
allowing the regulation of both ends of the axis. Especially,
there is important data that genetical and pharmaco-
logical regulation of PARP activity influences the other
associate,!’?0.36-38 suggesting that it is possible to appropri-
ately regulate the PARP-SIRT balance through pharmacological
agents. Indeed, various small molecules could effectively
inhibit the ability of PARP-1 and -2. The therapeutic applica-
tion of PARP inhibitors has lately attracted a lot of attention
due to their capacity in the treatment of cancers. How-
ever, the possibility of therapeutic applications of PARP
inhibitors stretch beyond cancer to various chronic inflam-
mation, such as cardiovascular diseases, metabolic disorders,
diabetes, and autoimmunity, and any disease with sterile
inflammation.”*°*3 PARP-1 makes a contribution as a regu-
lator of cell adaptation to a changing circumstance. In various
disease beyond cancers, enhanced cellular stress generates
unregulated PARP-1 activation and subsequent inflammation,
cell death, and tissue damage. In this respect, PARP inhibitors
have been investigated as treatment channels to protect cell
death, tissue damage, and aging or oxidative damage-related
pathologies.”-3%4043 The recent finding of the metabolic func-
tions of PARP-1 and PARP-2, in accordance with SIRT1 by using
knockout mouse models indicates the possibility of thera-
peutics of PARP inhibitors in metabolic disorders.'>'” The
common context to various aforementioned diseases is a fun-
damental inflammatory response. Therefore, the effects of
PARP inhibitors as well as SIRT activators in these diseases
may share the inhibition of inflammatory pathways as a com-
mon mechanism. Inflammation is nowadays regarded as an
indication of cancer.** In other words, the effects of PARP
inhibitors on inflammatory responses may play a role in the
therapeutic effects of cancers. Therefore, study for the mod-
ulation and function of PARP-1 and -2, as well as SIRT1 in
chronic inflammatory pathways is critical for the develop-
ment of PARP inhibitors and SIRT1 activators as therapeutic
agents.

5. Conclusion

Cellular responses act against various extrinsic and intrinsic
stress signals caused by metabolic, oxidative, and genotoxic
stresses. The PARP-NAD*-SIRT1 pathway plays an impor-
tant role in cellular stress responses, where NAD+ and its
redox counterpart, NADH, are essential metabolites in the
metabolic reactions.’?' Major functions of PARP are regu-
lated by using NAD* as a substrate. SIRT1 is NAD*-dependent
deacetylase associated in the same stress responses as PARP.
In order to get homeostasis, PARP and SIRT enzymes may
interact with each other. In this short review, the crosstalk

between SIRT1 and PARP-1 and -2 in consideration of the
biochemical nature of the interaction (competition for NAD",
cross-modification, transcription corepression, and regulation
of common targets) is discussed, along with the resulting con-
sequences of the crosstalks (chronic low-grade inflammatory
metabolic and age-related diseases). Finally, the pharmaco-
logical modulation of PARP and SIRT1 axis is reviewed. Our
current knowledge on the crosstalk between SIRT1, PARP-
1 and -2 is rapidly expanding into further research in the
field.
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