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Abstract: Quorum sensing (QS) regulates the expression of several genes including motility, biofilm
development, virulence expression, population density detection and plasmid conjugation. It is based
on “autoinducers”, small molecules that microorganisms produce and release in the extracellular
milieu. The biochemistry of quorum sensing is widely discussed and numerous papers are available to
scientists. The main purpose of this research is to understand how knowledge about this mechanism
can be exploited for the benefit of humans and the environment. Here, we report the most promising
studies on QS and their resulting applications in different fields of global interest: food, agriculture
and nanomedicine.

Keywords: quorum sensing (QS); quorum quenching (QQ); QS inhibition (QSI); food; agriculture;
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1. Introduction

Microbial populations inhabit terrestrial and aquatic microenvironments, with a great
variety of ecological systems [1]. In order to successfully colonize an ecological niche,
microorganisms develop a great capability to adapt to multiple environmental parameters,
such as temperature, pH, salt concentration and hydrostatic pressure. Moreover, their
establishment and persistence in a specific ecosystem is strictly correlated to competition
dynamics and ecological interactions. Intra- and inter-species microbial interactions and
even microorganism–host interactions have a key role in preserving species diversity of
specific microenvironments, which is correlated to the increasing of the competitive ability
of the community [2]. These complex network systems can be beneficial (mutualism, com-
mensalism), neutral (neutralism) or disadvantageous (amensalism, parasitism, competition)
for the individual microorganism [3,4]. Recent development of multi-omic approaches
have given a strong boost to the understanding of bacterial communities, but the prediction
of their complex relationships is still difficult to interpret [5].

The idea that bacteria were autonomous unicellular organisms without capacity of
collective behavior has been abandoned. Nowadays, it is generally accepted that microor-
ganisms are able to communicate with each other by means of a molecular language.
A density-dependent cell-signaling system has been described as quorum sensing by Fuqua
in 1994 [6], and pioneered the concept of social microbiology [7]. Quorum sensing (QS)
is based on small signal molecules, named autoinducers (AI), which bacteria release in
the extracellular milieu. These molecules are sensed by the bacterial community (links to
receptor protein) and activate the coordinated gene expression only when the cells reach
a quorum [8]. This concentration-dependent transcriptional regulation is associated with
various phenotypes and physiological activities, including motility, biofilm development,
virulence expression, population density detection and plasmid conjugation [9,10].
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2. Quorum Sensing and Autoinducers

Different classes of signal/receptor couples have been described, which regulate
different QS systems. The most studied signal molecules are N-Acyl-Homoserine Lactones
(AHLs), used by many Gram-negative bacteria and involved in the QS AI-1 system [11].
The AI-1 mechanism is based on AHL synthetases (LuxI or LuxM) which produce the
AHL from S-adenosylmethionine (SAM); the chemical signal is released in the extracellular
milieu and, when a certain concentration is reached, it binds to intracellular luxR-type
receptors which mediate a concentration-dependent transcriptional regulation.

Gram-positive bacteria mainly communicate with each other by synthesizing mod-
ified oligopeptides (or autoinducer peptides—AIP) [12]. These short peptide chains are
synthesized by ribosomes as pro-peptides and post-translationally modified. Two major
QS pathways have been described in Gram-positive bacteria. AIPs are secreted in the extra-
cellular milieu where they reach a threshold concentration. Then, in the “Self-Signaling
Pathway” they are reinternalized via an oligopeptide transporter system; differently, in
the “Two Component Pathway”, they bind and activate a receptor His kinase on the cell
membrane, which eventually activates an intracellular regulator via phosphor transfer,
inducing an increased expression of the target gene [13].

Small cyclic furanone compounds (AI-2 system) participate in signal transduction in
different bacterial species; because they are widespread among Gram-positive and Gram-
negative bacteria, AI-2 has been proposed as a “universal signaling system”, but this role
is still debated [14]. Autoinducer-2 is a byproduct of the activated methyl cycle, with 4,5
dihydroxy-2,3-pentanedione (DPD) as a precursor that can rearrange to R- or S-2-methyl-
2,3,3,4-tetrahydroxytetrahydrofuran, which can form borate complexes in the presence of
environmental boron [15]. Figure 1 summarizes the most common QS mechanisms.
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Figure 1. Simplified QS circuit diagrams of (a) AI-1, (b) AI-2 and (c) AIP (“Self-Signaling” and “Two 
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Since the study of QS is expanding, attracting growing interest of researchers, novel QS
signals have been discovered. Recently, the structural, biochemical and functional charac-
terization of a third autoinducer system, AI-3, has been identified, and 3,6-dimethylpyrazin-
2-one was designated as the involved signal molecule [16,17].

Cis-2-unsaturated fatty acids have been reported as a QS signal in different Gram-
negative bacteria pathogens and have been described as a diffusible signal factor (DSF) [18,19].

From diverse species of Pseudomonas and Burkholderia, 4-Hydroxy-2-alkylquinolines
(HAQs) have been isolated which have been reported as an additional QS molecule
class [20].

The presence of QS has been observed among eukaryotes as well. Specifically, it was
first observed in the fungal pathogen Candida albicans, in which farnesol was indicated as
responsible for QS activity [21]. Since then, several autoinducers have been described in
fungi, mainly aromatic alcohols derived from the amino acids tyrosine (tyrosol), pheny-
lalanine (2-phenylethanol) and tryptophan (tryptophol), but also lipids (oxylipins) and
peptides (pheromones) [22,23].

In Vibrio cholerae, virulence gene expression is regulated by the concerted action of AI-2
and V. cholerae autoinducer-1 (CAI-1). In particular, CAI-1 ((S)-3-hydroxytridecan-4-one) is
synthesized by the CqsA and released out of the cell; when the threshold concentration is
reached, it binds the membrane protein CqsS which is phosphorylated and activates LuxO
(via LuxU) [24].

Even if further research is needed, the detection of signal molecules, mainly AHLs,
in the extracellular media of extremophilic microorganisms (which thrive in harsh en-
vironments), demonstrates the ubiquity of QS systems, making research on molecular
communication even more intriguing and with multidisciplinary interests [25].

3. Quorum Sensing in Agriculture and Food

The constant growth of the world population and the consequent need to produce a
sufficient quantity of food has become a central topic of political and public debate. In fact,
in the last 20 years, with an even higher rate since 2009, several projection studies on
food safety have been published. The analysis of this research showed that between 2010
and 2050, food demand is expected to grow between +35% and +56%, with a consequent
risk of rising global hunger [26]. In this scenario, the development of sustainable food
production strategies becomes a primary challenge, in order to increase both production and
quality of food items, limiting harmful environmental effects. In fact, intensive agricultural
production is currently dependent on the use of chemical fertilizers and manures, as well
as pesticides, with known negative effects on the environment (leaching of nitrate into
ground water, phosphorus and nitrogen run-off, aquatic ecosystem eutrophication).

To fill the growing need for food, the synergistic action of several strategies is necessary:
increase in production yield, reduction in food spoiling, and gain in food quality.

As far as agriculture is concerned, a higher yield can be achieved, in a sustainable way,
through technological systems based on the inoculation of selected microorganisms [27].
We refer to plant growth promotion and plant disease control as innovative techniques
which modulate the microbial population associated with the plant to favor its growth
and its resistance to adverse situations (diseases, pathogens, drought, etc.) [28]. It is clear
that multicellular organisms collectively form a holobiont with their microbiota, which
deeply contributes to their physiology and development [29]. The network between the
plant host and the related microbial community is strictly correlated to quorum-sensing
signaling systems, and it is of primary importance for the constitution of the holobiont.
Interkingdom signaling affects the balance of pathogenic or beneficial bacteria and their
host plants, influencing plant growth and immunity. It has been reported that bacterial
AHL signals influence plant performance, even if the specific molecular mechanisms of
their action on the plants needs further study to be fully elucidated [30]. Several studies
investigated the effects of AHL signals on the most popular model plant Arabidopsis thaliana.
Depending on the molecular structure of the QS signal, it has been demonstrated that AHLs
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induce changes in the phytohormone balance, mediate morphological changes in roots
(stimulation of root growth, and primary root elongation), enhance tolerance to salt stress,
etc. [31]. Moreover, the presence of luxR-solo or luxR-orphan genes were found in different
plant-associated bacteria; it is a special condition in which the microbial chromosome
harbors the luxR gene, while the gene encoding the corresponding luxI-type AHL synthase
is missing. These so-called solo luxR genes may respond to exogenous AHL or even
signals from plants, which open a new perspective on the understanding of interkingdom
interactions [32].

Furthermore, it is reported that QS is involved in the optimization of virulence also
in plant pathogenic bacteria; therefore, interference in QS can lead to a reduction in their
pathogenicity. Specifically, quorum quenching (QQ) is the term adopted to describe the
disruption of quorum sensing. Quenching certain pathogen signals can be considered a
promising strategy to counteract plant infections [33].

On the other hand, a reduction in food waste can be achieved by reducing its spoilage.
The finding of innovative and sustainable strategies against food deterioration is attracting
more and more attention in the world of research. The spoilage is mainly correlated with the
enzymatic activity of microorganisms that, finding a favorable environment, grow inside
the food and cause varying degrees of change in its characteristics. Food should in fact be
analyzed as an ecosystem, in which the microbial network plays a pivotal role in the edible
product quality. Foodborne pathogens and food spoilage organisms represent a problem
of global concern. Microbial toxins contaminate any type of food and water, endangering
public health conditions. The classical examples of food and waterborne pathogens are
Staphylococcus aureus, which produces heat-stable enterotoxins, causing gastrointestinal
symptoms, and Salmonella Typhimurium, which causes Typhoid fever and salmonellosis
by synthesized enterotoxin. Takó et al. recently described the most common foodborne
pathogenic microorganisms, linking them with the main contaminated food sources, their
produced toxins and their effect on human health [34]. The metabolic end products of
proteolytic, lipolytic, pectinolytic and saccharolytic activity can be correlated with food
spoiling. Several of those enzymes are under QS control; therefore, a better understanding
of communication mechanisms in food ecosystems can contribute to reducing food waste,
limiting its deterioration [35]. Moreover, foodborne pathogens can easily form biofilms on
a wide variety of abiotic or biotic surfaces, such as plastic, glass, metal and wood, which are
generally used as packaging by the food industry. This specific lifestyle of microorganisms,
which are embedded in a self-produced extracellular polymeric matrix, improves their
capability to survive under adverse environmental factors, decreasing their susceptibility to
antibiotics, making them more difficult to eliminate by mean standard cleaning and disinfec-
tion procedures [36]. Biofilm development, mainly in the sessile growth phase, is regulated
by intracellular QS interaction [37]. This happens also in different pathogens, including,
for example, Pseudomonas aeruginosa, which can colonize and then be transmitted also by
food, establishing opportunistic infections with high mortality rates [38]. The potential role
of QS in spoilage has recently attracted growing research interest. QS signal molecules,
mainly belonging to AI-1 and AI-2 systems, have been detected in food sources (such as
meat, meat products and vegetables) [39]. In particular, most studies mainly point to the
exploitation of QS inhibitors (QSI) in the fight against food spoilage microorganisms and
foodborne pathogens as a promising strategy in controlling bacterial biofilm formation [40].
Several molecules and extracts from natural sources (plants, bee products, bacteria, algae),
such as phenolic compounds and flavonoids, have demonstrated quorum-sensing inhi-
bition against microorganisms which cause food spoilage, with a consequent potential
use in the food industry to disrupt the biofilm formation or eliminate already preformed
ones. Natural products are preferred by consumers compared to chemically synthesized
preservatives, which make them increasingly recognized as relevant for food companies;
therefore, an intensification of the efforts in the research for natural QSI is needed [41].

The above-described strategies to counteract the food crisis in an eco-friendly manner
are summarized in Table 1.
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Table 1. Representative eco-friendly strategies to overcome food crisis, exploiting QS mechanism.

Target Strategy Mechanism Involvement of QS References

Enhancement in yield
and quality of

agricultural products.

Development of
systems to influence

(improve) plant
performance based on
microbial inoculation

(plant growth
promotion, plant
disease control).

Improvement in plant
growth, resistance to

parasites, drought and
salinity tolerance, yield

increase and
improvement in the

quality of the
final product.

Influence of plant growth
performance by bacterial AHL
signals. Ability of bacteria to
respond to plant signals, also
via LuxR solo (orphan LuxR).
Quorum quenching (QQ) of

pathogen signals.

[28–33]

Increasing the shelf life
of food products.

Development of
systems/materials to

counteract food
spoilage and reduce

food waste.

Inhibition of the
enzymatic (proteolytic,
lipolytic, pectinolytic

and saccharolytic
activity) activity of

foodborne pathogens.

Involvement of QS in the
enzyme and biofilm

production of several
foodborne pathogenic

microorganisms. Exploitation
of QS inhibitors (QSI) as a

promising strategy in the fight
against food spoilage
microorganisms and

foodborne pathogens.

[34–41]

Moreover, standard laboratory settings are ideal and highly controlled, but cannot
extensively represent realistic environments, in which chemical and physical conditions dy-
namically change. Consequently, further efforts are needed in the study of QS in microbial
mixtures of species that mimic real habitat parameters [42].

4. Quorum Sensing and Nanomedicine

The use of nanotechnology to prevent and treat human diseases has remarkably
developed since the 1990s. Currently, traditional molecular drugs prevail in drug de-
sign and development research; however, this research is often accompanied by the use
of nanotechnology with the aim to improve the efficiency and to decrease side effects.
Indeed, nanotherapeutics frequently display improved effect compared to traditional drugs
because of their features (size of 10–100 nm; large surface-area-to-volume ratio; flexibility
of surface functionalization and extensive reactivity). These features provide nanothera-
peutics an enhanced bioavailability, low toxicity, better pharmacokinetics and therapeutic
efficacy. Moreover, the effective delivery and release of drugs to a target is still the main
challenge to enhance available therapies for several human diseases. The use of NPs as
“transporters” represents a promising strategy for enhancing delivery, targeting and pro-
tection of drugs [43,44]. Nanotechnology is a hopeful research area for the treatment and
management of bacterial infections, in particular against multidrug-resistant strains and
bacterial biofilms. The QS mechanism plays a key role in biofilm formation by pathogenic
microorganisms; therefore, innovative therapeutic approaches based on the disruption of
microbial QS signaling (QQ) can be effective in the prevention of biofilm-associated infec-
tions [45,46]. Several natural compounds, mainly terpenoids (eugenol, carvacrol, phytol,
linalool, D-limonene and α-pinene), phenolic acids (salicylic acid, rosmarinic acid, cin-
namic acid, chlorogenic acid, p-coumaric acid and caffeic acid), flavonoids (epigallocatechin,
naringenin, quercetin, naringin, quercetin 4′-O-β-D-glucopyranoside, taxifolin and morin)
from plants, as well as enzymes (mainly lactonases, acylases and oxidoreductases) and
antibodies (monoclonal antibodies, mAbs RS2-1G9, able to inhibit 3-oxo-C12-AHL-based
QS signaling in P. aeruginosa), are reported as QQ agents. They display inhibitory activities
through different mechanisms and may act on the synthesis of autoinducers (by deregulat-
ing the QS gene expression) or by blocking the cellular receptor [47–49]. The development
of nanotechnology in medicine has led researchers to design nanostructured materials
(nanoparticles and nanocapsules) able to interfere with QS involved in biofilm production
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and growth. The advantages of use of nanomaterials are the controlled release, the precision
targeting and the ability to preserve the carrier drug from the unfavorable environment.

The abilities of metals and metallic nanoparticles to exert QQ activity have been
particularly pointed out [50]. Silver nanoparticles have been reported as an innovative
nanomaterial, exhibiting a remarkable QS inhibition activity [51–53]. Selenium (SeNPs)
and tellurium (TeNPs) nanoparticles were also examined in two bacterial processes me-
diated by QS: violacein production by Chromobacterium violaceum and biofilm formation
by P. aeruginosa. Both showed an important disruption of the QS signaling system, sup-
porting nanotechnology as a promising strategy to combat against the bacterial resistance
related to bacterial biofilm formation [54]. Furthermore, both gold nanoparticles (GNPs)
and GNPs functionalized with tobramycin or/and antimicrobial peptide Pediocin AcH
and Listeria adhesion protein (LAP) (GNP–Pediocin–LAP) were reported as very effective
against biofilm formation [55,56]. Functionalized nanoparticles of gallium and bismuth also
displayed a significant activity against bacterial biofilm by acting on the quorum-sensing
mechanism of P. aeruginosa [57,58]. The aforementioned examples of representative research
in this field are summarized in Table 2.

Table 2. Representative examples of nanoparticles or drugs functionalized with nanoparticles devel-
oped to produce bacterial biofilm inhibition.

Nanomaterial Bacterial Model Observed Results References

Selenium (SeNPs) and
tellurium (TeNPs)

nanoparticles

P. aeruginosa (biofilm
formation); C. violaceum ATCC

12472 and CV026
(violacein production).

Biovolume reduction in biofilm
developed by P. aeruginosa. Inhibition in
the violacein production by C. violaceum.

Putative disturbance of the AI
biosynthesis (SeNPs) and QS signal
perception and response (TeNPs).

[54]

GNPs functionalized
with tobramycin

P. aeruginosa
(biofilm formation)

Not a suitable nanocarrier due to the
premature release of tobramycin from the

liposomes upon functionalization
with AuNP.

[55]

GNPs functionalized with
antimicrobial peptide

Pediocin AcH and Listeria
adhesion protein (LAP)
(GNP–Pediocin–LAP)

Listeria monocytogenes
(biofilm formation)

GNP–Pediocin–LAP showed high
antibiofilm activity. [56]

Liposomal gentamicin
formulation with gallium

metal (Lipo-Ga-GEN)

P. aeruginosa (biofilm
formation); Agrobacterium

tumefaciens A136
(AHL production).

Complete eradication of P. aeruginosa
biofilms. Lipo-Ga-GEN prevented AHL

production of A. tumefaciens (A136)
[57]

Liposomal Bismuth-
Ethanedithiol-Loaded

Tobramycin (LipoBiEDT-TOB)

P. aeruginosa (antimicrobial
efficacy, inhibition of

virulence factor production);
A. tumefaciens strain A136

(AHL production)

Antimicrobial efficacy and reduction in
virulence factor production P. aeruginosa.

Inhibition of
N-3-oxo-dodeccanoylhomoserine lactone

and N-butanoylhomoserine lactone
synthesis (A. tumefaciens strain A136).

[58]

It is noteworthy the use of functionalized chitosan nanomaterials as an attractive
strategy against chronic infections by attenuating quorum sensing, and their use for the
preparation of medical devices [59]. The biodegradability, nontoxicity and biocompat-
ibility of chitosan make it suitable in medical use for the delivery and controlled drug
release. In particular, chitosan nanoparticles (ChNPs), due to their chemical property and
biological activity, have been used for drug delivery, mainly as functionalized NPs [60,61].
The QQ compounds could be encapsulated in chitosan nanocapsules and could be deliv-
ered in response to electrostatic interaction of nanocapsules with bacteria, resulting in an
enhancement in QS inhibition activity [62].
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5. Perspective

In the last 10 years, studies on quorum sensing have risen exponentially, revealing
its complexity and its key role in different microbial behaviors. Meanwhile, the search for
new technology has increased due to the need for innovative and sustainable strategies
in agriculture, medicine and the environment. In this context, the understanding of how
microbes communicate with each other means to know “when, where and how” to act in
order to drive their behavior, both to promote beneficial microbial traits (i.e., plant growth
promotion) and to prevent those that are dangerous (i.e., biofilm formation). The most
recent investigations are mainly addressed towards the search for new strategies to block the
QS mechanism, by targeting autoinducers and/or receptors (quorum quenching), resulting
in the development of new antibiotic therapies. Further efforts should be conducted in
the promotion of beneficial aspects of QS, such as the progress and management of new
eco-sustainable strategies in agriculture (PGPB and bioremediation).
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