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Abstract

Objective: To improve the efficiency of computed tomography (CT)-magnetic reso-

nance (MR) deformable image registration while ensuring the registration accuracy.

Methods: Two fully convolutional networks (FCNs) for generating spatial deform-

able grids were proposed using the Cycle-Consistent method to ensure the

deformed image consistency with the reference image data. In all, 74 pelvic cases

consisting of both MR and CT images were studied, among which 64 cases were

used as training data and 10 cases as the testing data. All training data were stan-

dardized and normalized, following simple image preparation to remove the redun-

dant air. Dice coefficients and average surface distance (ASD) were calculated for

regions of interest (ROI) of CT-MR image pairs, before and after the registration.

The performance of the proposed method (FCN with Cycle-Consistent) was com-

pared with that of Elastix software, MIM software, and FCN without cycle-consis-

tent.

Results: The results show that the proposed method achieved the best performance

among the four registration methods tested in terms of registration accuracy and

the method was more stable than others in general. In terms of average registration

time, Elastix took 64 s, MIM software took 28 s, and the proposed method was

found to be significantly faster, taking <0.1 s.

Conclusion: The proposed method not only ensures the accuracy of deformable

image registration but also greatly reduces the time required for image registration

and improves the efficiency of the registration process. In addition, compared with

other deep learning methods, the proposed method is completely unsupervised and

end-to-end.
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1 | INTRODUCTION

Deformation registration is a process in which one medical image

dataset undergoes a series of spatial transformations to match the

anatomical structure defined in another medical image dataset.1,2

Conventional deformable registration methods include surface-based

methods, point-based methods, and voxel-based methods.3 The goal

of voxel-based methods is to obtain geometric transformation

parameters by calculating metrics between two input image datasets

without pre-extracting features.4 However, it is very time-consuming
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in iterative calculation of metrics such as mutual information (MI).5

Other methods such as intensity-based feature selection algorithms

extract features that correspond well with respect to the intensity;

however, they do not necessarily correspond well in regards to the

anatomy.6–8

Recently, many studies have demonstrated the feasibility of deep

learning methods for image registration. Cao et al.9 proposed an

approach based on deep regression networks to predict the defor-

mation field between a pair of image datasets. In other papers,10,11

CNN was used to perform fast image registration of three-dimen-

sional (3D) pulmonary computed tomography (CT) images by com-

bining multiple random transformations to generate a large training

set. Rohé et al.12 proposed the SVF-Net architecture using seg-

mented shapes. All the above registration methods need pre-regis-

tration data, contour data, or synthetic data to train neural networks.

However, it is difficult to obtain well-registered clinical medical

images and synthetic images are quite different from the actual clini-

cal situation.

To overcome the shortcomings of supervised registration meth-

ods, some researchers proposed unsupervised registration methods.

Shan et al.13 built an end-to-end unsupervised learning system with

fully convolutional neural networks in which image-to-image medical

image registration is performed. Hering et al.14 presented an unsu-

pervised deep-learning-based method in 3D thoracic CT registration

using the edge-based normalized gradient fields distance measure

(NGF). Low-dimensional vectors instead of image pairs were used as

input to generate spatial transformation fields in Ref. [15]. Bob

et al.16 used the deformable image registration network (DIRNet) to

register images by directly optimizing a similarity metric between the

fixed and the moving image. Balakrishnan et al.17 developed a novel

registration method that learns a parametrized registration function

from a collection of volumes using CNN. Although unsupervised reg-

istration methods do not require pre-registered data and thus have

an advantage over supervised registration methods, most unsuper-

vised methods ignore the inherent inverse-consistent property of

transformations between a pair of images.18

Generative Adversarial Network (GAN) is a deep learning

method, which can make the generated data to have the same distri-

bution as the real data.19 To overcome the difficulty of acquiring

image pairs in some applications, Zhu and Isola20,21 proposed Cycle-

Consistent Adversarial Networks (CycleGAN) to learn a mapping

from input to output images without paired training examples.

Recently, some studies on GANs for medical image registration have

been reported. Mahapatra et al.5 used GANs for multimodal medical

image registration by adopting novel constraints in the cost function

and deformation field reversibility. Fan et al.22 proposed an adversar-

ial similarity network to automatically learn the similarity metric for

training a deformable registration network. However, these methods

still need pre-registered or predefined aligned images. Another work

by Tanner23 based on CycleGAN investigated the usefulness of a

fully unsupervised MR-CT image modality synthesis method for

deformable image registration of MR and CT images. But this study

only used CycleGAN for image synthesis, not for image registration

directly. Elmahdy et al24 used unsupervised GANs for joint registra-

tion in prostate CT radiotherapy; however, their method was not

suitable for multi-modal image registration because they synthesized

real samples through artificial deformations which are not useful for

multi-modal image registration. Kim et al25 proposed a cycle-consis-

tent CNN to register multiphase liver CT images, but their method

was also not suitable for CT-MR registration because the loss func-

tions they used could not evaluate the similarity between CT and

MR images.

In this paper, we propose a model of using the Cycle-Consistent

method from CycleGAN for 3D CT-MR deformable registration. This

model is end-to-end and does not require the ground truth deforma-

tions. Our contributions include the following: (a) Using Cycle-Con-

sistent method in MR-CT registration to make the deformed image

consistent with the reference image, (b) comparing the registration

results with and without Cycle-Consistent, and (c) complete end-to-

end unsupervised 3D MR-CT registration network.

2 | MATERIALS AND METHODS

2.A. | Deformable image registration framework

The proposed model in this study is Cycle-Consistent FCNs which is

divided into two deformation networks: the GCT-MR and GMR-CT.

GMR-CT takes MR image as reference image and deforms CT, GCT-MR

takes CT image as reference image and deforms MR. The flow chart

of the model framework is shown in Fig. 1, the deformation network

first receives multimodal image pairs (CT and MR) and outputs the

deformed transformation. Then the moving images are deformed to

get the deformed images. After that, the deformed image pairs are

input into the deformation network again to obtain the recon-

structed transformation and reconstructed image pairs.

2.B. | Patient data preprocessing

In all, 74 pelvic cases including CT images and MR images are used

as datasets. We standardize all image data to make the distribution

range of pixel values of all images consistent, and resample them to

a resolution of 1 1 5 mm3. To reduce the size of input data and

highlight the regions to be registered, each image is cropped to

400 400 voxels so that the redundant air areas are removed. Due to

the limitation of compute video memory size, it is necessary to

resample the training data to 200 × 200 24 voxels before the train-

ing process. Rigid registration is carried out for all the cases using

3Dslicer software26 because it can reduce the difficulty of the neural

network training. Finally, we normalize the image data and map all

the image pixel values to the range of (−1, 1).

2.C. | Deformation network and Loss function

The objective of the deformation network is to obtain the spatial

deformed transformation according to the input image pairs. We use

spatial deformation field to describe the process of deformation
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registration. The structure of the deformation network is shown in

Fig. 2, the network expects a pair of multimodal images with size

200 × 200 24 voxels. Three 3 3 3 convolution layers (with two-

stride and one-padding) then down-sample the input images and the

activation function is ReLU. To increase the depth of the network

and make it easier to optimize, nine ResNet Blocks are used.27 After

the down-sampling layers and ResNet Blocks, the images need to be

up-sampled to get the spatial transformation grid finally. Three 3 3 3

convolution layers up-sample the data and each convolution layer

has different parameters including stride and padding.

The loss function of deformation network consists of three parts.

① Content loss Lcont, which can ensure that the deformed image has

the desired characteristics. ② Regularization loss Lreg, the objective

of which is to smooth the deformation field. ③ Cycle loss Lcyc,

which can ensure the inherent inverse-consistent property of trans-

formations between a pair of images.

F I G . 1 . Flow chart of the proposed model. GMR-CT is a fully convolutional network (FCN) to get the transformation from magnetic resonance
(MR) to computed tomography (CT), while GCT-MR is the opposite. MR and CT are input data and the transform fields are output by two FCNs.
The deformed images are used as the input of GMR-CT and GCT-MR again and the reconstructed MR and CT are obtained for loss calculation.

F I G . 2 . The structure of the fully convolutional network (FCN). Moving image [magnetic resonance (MR)/computed tomography (CT)] and
fixed image (CT/MR) are combined into a two channel image as the input of the network. After three down-sampling convolution layers, one
ResNet block and three up-sampling layers, the input data finally become a deformation field with the same size as the input image.
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2.C.1. | Content loss

The most common metric for multimodal image registration is MI.

However, MI metric ignores the spatial neighborhood of a particular

voxel within one image and consequently, which causes the decrease

in registration accuracy in deformable registration.28 To solve this

problem, we use a metric called modality- independent neighbor-

hood descriptor (MIND) to perform deformation registration on CT-

MR images.28

The MIND feature extracts distinctive image structure by com-

paring each patch with all its neighbors in a non-local region.29 For-

mula (1) shows the MIND feature extraction function, where n is a

constant to normalize the function R indicate the spatial search

region.

MIND I,x,rð Þ¼1
n
exp �D I,x,xþ rð Þ

V I,xð Þ
� �

, r∈R (1)

D represents the L2 distance between two image blocks in image I

centered on voxel x and voxel x + r, respectively. The detailed func-

tion of D is shown in Formula (2), where P denotes image Patch and

we set the patch size to 5 × 5 during model training.

D I,x, rð Þ¼ ∑
p∈P

I xþpð Þ� I xþ rþpð Þð Þ2 (2)

V is a variance estimate on voxel x and its function is shown in For-

mula (3), where N is the 3 neighborhood of the voxel x.

V I,xð Þ¼1
3
∑
n∈N

D I,x,xþnð Þ (3)

We can calculate the content loss between CT image and MR

image based on MIND feature extraction function. As shown in For-

mula (4), where N represents the number of image voxels, R is the

spatial search region and we set the region size to 7 × 7 during

model training.

Lcont ¼ 1
N Rj j ∑x∈N

∑
r∈R

MIND CT,x, rð Þ�MIND MR,x, rð Þj j (4)

2.C.2. | Regularization loss

To prevent unreasonable deformation, we add regularization loss to

make the deformation grid smoother. L2 regularization is used to

evaluate the deformation field and its function is shown in For-

mula (5).

Lreg ¼kD f jj2 (5)

where Df denotes the deformation grid.

2.C.3. | Cycle loss

Cycle loss enables the deformed image to be deformed back to the

original image. In addition, cycle loss can prevent some excessive

deformation and make the model easier to converge. Formula (6)

shows the function of Cycle loss, where G means the network gen-

erating deformation field, Im is the moving image, and If is the fixed

image. G(Im, If) denotes that Im is deformed to be similar to If and G

(If, Im) was the opposite.

Lcyc ¼ jjG G Im, I fð Þ,G I f , Imð Þð Þ� Imjj1 (6)

2.C.4. | Total loss for model

The total loss LG of the model we proposed is composed of all the

above loss and we set coefficients for different loss as shown in For-

mulas (7), (8), and (9). LMR-CT represents that MR image is the mov-

ing image and LCT-MR means CT image is the moving image. λ1, λ2,

and λ3 are constants to adjust the proportion of different loss in the

total loss. We set λ1 to 5, λ2 to 1, λ3 to 1 during model training.

LMR�CT ¼ λ1Lcont MR,CTð Þþλ2Lreg MR,CTð Þþλ3Lcyc MR,CTð Þ (7)

LCT�MR ¼ λ1Lcont CT,MRð Þþλ2Lreg CT,MRð Þþλ3Lcyc CT,MRð Þ (8)

LG ¼ LMR�CT þLCT�MR (9)

3 | RESULTS AND DISCUSSION

Python and Pytorch was used to implement our model, and Adam

was used as the optimizer. We compared the results of the proposed

method with those of the registration software Elastix, MIM soft-

ware, and FCN without Cycle-Consistent in terms of registration

accuracy and registration speed.21,22,30 The registration parameters

in Elastix: interpolator is “BSplineInterpolator,” Optimizer is "Adap-

tiveStochasticGradientDescent," Transform is "BSplineTransform,"

Metric is "AdvancedMattesMutualInformation," and MaximumNum-

berOfIterations is 5000. Training and testing were performed on a

computer with Intel i7-8700 K CPU, 16GB Memory, NVIDIA

GeForce GTX 1070 Ti GPU, and 8 GB Video Memory.

For evaluation purposes, the region of interest (ROI) of all cases

had been outlined in advance, including rectum and bladder. We cal-

culated the Dice coefficient and ASD of ROIs before registration and

after registration. Tables 1 and 2 show the Dice values and ASD of

rectum and bladder in ten test cases before registration and after

registration, and the * indicates the best Dice value or best ASD in

the corresponding test case. We can see that, FCN with Cycle-Con-

sistent performed best among the four registration methods tested

and it was more stable in general. Although the other three methods

sometimes showed good registration results, they are not stable

enough and easy to get unreasonable deformation. In terms of regis-

tration time, the Elastix method took the longest time and the FCN

with or without Cycle-Consistent methods took <0.1 s per case. For

the MIM method, the user needs to adjust the registration image

manually, which will take a lot of time and require the user to have

experience.

196 | GUO ET AL.



By comparing the registration results of bladder and rectum, we

can find that the average Dice coefficients of bladder are higher than

that of rectum in all four registration methods. This may be because

the contour of bladder is larger than that of rectum, and the three-di-

mensional deformation registration often brings complex deformation

field, so in order to meet the overall alignment between the image

pairs, the local deformation will not be accurate enough. Therefore,

when the ROI is not obvious enough in the image pairs, the smaller

the contour of the ROI, the lower the accuracy of registration. In addi-

tion, it can be observed that in 6 of the 10 test cases, our method

achieves the best Dice coefficient of bladder. However, only in 4 of

the 10 test cases, the method proposed get the best Dice coefficient

of rectum. It can be inferred that our method pays more attention to

the whole alignment of image pairs in the training process, but is less

sensitive to the small organs. On the other hand, our method performs

the best ASD for both rectum and bladder in ten test cases. Although

the results show that the cases with high Dice coefficient also have

high ASD, our method still get high ASD score in some cases with low

Dice coefficient. It can be inferred that the shapes of deformed ROI

contours obtained by our method are closer to the shapes of target

contours. Taken together, our method shows satisfactory registration

results compared with the existing methods.

TAB L E 1 Dice values, average surface distance (ASD), and registration time of Rectum in pelvic cases before registration, after registration.

Rectum

Before registration Elastix MIM
FCN with cycle-con-
sistent (our method)

FCN without cycle-
consistent

Dice ASD (mm) Dice ASD (mm) Dice ASD (mm) Dice ASD (mm) Dice ASD (mm)

Case1 0.26 13.26 0.71 4.58 0.68 5.72 0.71 4.30 0.76* 3.86*

Case2 0.42 10.56 0.82* 2.59* 0.62 5.17 0.70 3.18 0.75 3.88

Case3 0.48 15.04 0.81* 3.82 0.76 4.07 0.75 3.51* 0.75 4.35

Case4 0.59 10.43 0.66 6.58 0.72 3.64 0.87* 1.54* 0.86 1.70

Case5 0.54 14.57 0.82 3.21 0.84* 2.63* 0.77 3.55 0.79 3.67

Case6 0.10 18.95 0.69 2.22 0.53 3.07 0.75* 1.58* 0.44 3.68

Case7 0.46 10.11 0.88 2.77 0.67 5.94 0.85 1.98* 0.89* 2.18

Case8 0.53 14.72 0.60 5.99 0.69 4.44 0.91* 1.15* 0.74 3.84

Case9 0.60 21.18 0.82 4.58 0.89* 2.96 0.89* 2.82* 0.88 3.06

Case10 0.35 13.03 0.80 3.63 0.88* 2.26* 0.83 2.94 0.75 4.08

Average result 0.43 14.19 0.76 4.00 0.73 3.99 0.80 2.66 0.76 3.43

Standard deviation 0.16 3.63 0.09 1.44 0.12 1.30 0.08 1.04 0.13 0.86

Average time / 64 s 28 s <0.1 s <0.1 s

The * indicates the best Dice value or best ASD in the corresponding test case.

TAB L E 2 Dice values, average surface distance (ASD), and registration time of Bladder in pelvic cases before registration, after registration.

Bladder

Before registration Elastix MIM
FCN with cycle-con-
sistent (our method)

FCN without cycle-
consistent

Dice ASD (mm) Dice ASD (mm) Dice ASD (mm) Dice ASD (mm) Dice ASD (mm)

Case1 0.54 13.74 0.77 6.78 0.77 6.88 0.87* 3.91* 0.86 3.94

Case2 0.66 14.45 0.82 5.97 0.69 10.25 0.86* 5.15* 0.81 6.60

Case3 0.75 14.35 0.91 1.95 0.86 3.23 0.92* 1.75* 0.91 2.23

Case4 0.33 21.84 0.80 4.37 0.86* 2.50* 0.83 3.39 0.80 4.53

Case5 0.76 15.21 0.84 4.65 0.89* 2.95 0.89* 2.61* 0.89* 2.88

Case6 0.50 17.63 0.89* 3.73* 0.82 6.23 0.86 3.73* 0.83 5.84

Case7 0.63 9.96 0.79 6.28 0.87* 3.59 0.87* 3.02* 0.87* 3.31

Case8 0.63 16.05 0.89* 2.53* 0.79 5.14 0.84 3.07 0.83 3.68

Case9 0.40 15.29 0.74 6.57 0.82 4.64 0.82 4.51 0.85* 3.50*

Case10 0.53 14.84 0.83* 5.66 0.80 5.98 0.83* 5.06* 0.73 8.33

Average result 0.57 15.34 0.83 4.85 0.82 5.14 0.86 3.62 0.84 4.48

Standard deviation 0.14 3.01 0.06 1.70 0.06 2.34 0.03 1.08 0.05 1.89

Average time / 64 s 28 s <0.1 s <0.1 s

The * indicates the best Dice value or best ASD in the corresponding test case.
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(a)

(b)

(c)

(d)

F I G . 3 . Checkboard fusion images of computed tomography (CT)
and magnetic resonance (MR) after registration with different
methods. (a) the fusion image using Elastix; (b) the fusion image
using MIM; (c) the fusion image using fully convolutional network
(FCN) with Cycle-Consistent; (d) the fusion image using FCN without
Cycle-Consistent. The red, blue, yellow, and green contours
represent the rectum of fixed image, the bladder of fixed image, the
rectum of deformed moving image, and the bladder of deformed
moving image. The purple and orange points represent the
corresponding points of CT and deformed MR.

(a)

(b)

(c)

(d)

F I G . 4 . Color-coded fusion images of computed tomography and
magnetic resonance after registration with different methods. (a) the
fusion image using Elastix; (b) the fusion image using MIM; (c) the
fusion image using fully convolutional network (FCN) with cycle-
consistent; and (d) the fusion image using FCN without cycle-
consistent. The yellow, green contours represent the rectum of fixed
image, the bladder of fixed image.
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Figures 3 and 4 show the checkboard fusion images the color-

coded fusion images of CT and MR and the contours of the ROIs. It

can be seen that the result of Elastix method was not satisfactory

for the caput femoris and ROIs although it successfully aligned the

contour of skin and muscles. The result of MIM method did better

in ROIs registration than Elastix, but it was not good enough in the

alignment of skin contour. This is because in the process of registra-

tion using MIM software, users need to manually set the reference

point and registration box to improve the local registration accuracy,

which makes the registration results of MIM software can achieve

high accuracy in the local area, but slightly lacking in the whole. The

result of FCN with or without Cycle-Consistent performed well in

aligning ROIs. However, the deformation fields of FCN without

Cycle-Consistent were not smooth enough and prone to unreason-

able deformation. To further evaluate the registration accuracy sur-

round ROIs, several corresponding points (such as the points on the

edges of bones, etc.) were added in CT and MR to calculate the TRE

(Target registration Error). The purple and orange points in Fig. 3

represent the corresponding points in CT and deformed MR using

different methods. The average TRE values of Elastix, MIM software,

the proposed method, and FCN without Cycle-Consistent were 7.60,

8.15, 7.04, and 7.53 mm, respectively. Although the number of cor-

responding points is small, the result still reflects the proposed

method can improve the registration accuracy to a certain extent.

To explore the influence of the parameters of the metric MIND

on MR-CT registration, we changed the patch size, the region size,

and the neighborhood size of a voxel in Formulas (2), (3), and (4),

but did not get better or worse registration result.

4 | CONCLUSIONS

Iterative calculation is the most common method in medical image

registration, but it is relatively time-consuming. In this paper, a 3D

MR-CT image deformation registration method based on Cycle-Con-

sistent FCN is proposed. Compared with other existing image regis-

tration networks, this model was end-to-end and completely

unsupervised. ResNet Block was used to increase the depth of the

network. The results show that the proposed model in this study

can accurately register multi-modal medical images and greatly

improve the registration speed. In future research, we plan to apply

this model to other medical image registration progress (different

modalities or different body parts). At the same time, further clinical

validation and application are also under way.
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