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Abstract

Background: Telmatochromis temporalis is a cichlid fish endemic to Lake Tanganyika. The normal and dwarf
morphs of this fish are a clear example of ongoing ecological speciation, and body size plays an important role in
this speciation event as a magic trait. However, the genetic basis underlying this trait has not been studied.

Results: Based on double-digested restriction-site associated DNA (ddRAD) sequencing of a hybrid cross between
the morphs that includes FO male, FO female, and 206 F2 individuals, we obtained a linkage map consisting of 708
ddRAD markers in 22 linkage groups, which corresponded to the previously reported Oreochromis niloticus
chromosomes, and identified one significant and five suggestive quantitative trait loci (QTL) for body size. From the
body-size distribution pattern, the significant and three of the five suggestive QTL are possibly associated with
genes responsible for the difference in body size between the morphs.

Conclusions: The QTL analysis presented here suggests that multiple genes, rather than a single gene, control
morph-specific body size. The present results provide further insights about the genes underlying the morph
specific body size and evolution of the magic trait during ecological speciation.
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Background

Ecological speciation is the process by which barriers to
gene flow evolve between populations as a result of eco-
logical based divergent selection between environments
[1, 2]. The most direct way to link divergent natural
selection to reproductive isolation is via ‘magic traits’,
i.e., traits under selection that also contribute to non-
random mating or genes under selection that pleiotropi-
cally affect non-random mating [2, 3]. In many species,
body size is a life-history trait that has a serious impact
on individuals’ fitness through natural or sexual selection
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[4—6]. This suggests that body size could be a candidate
magic trait. In some species, body size is thought to be a
‘classic’ magic trait, in that body size evolved under
divergent selection and also acted on mating cues, al-
though there are few conclusive examples [3]. Body size
may also act as an ‘automatic’ magic trait, where under
selection it automatically leads to assortative mating via,
e.g., geographical segregation [3]. A clear example of
such size-mediated automatic magic traits is reported
for Telmatochromis temporalis from Lake Tanganyika.
Lake Tanganyika is the oldest lake in the African Great
Rift Valley. Over thousands of years, lakes generally
become filled with lacustrine deposits. However, Lake
Tanganyika deepens faster than sedimentation occurs
due to underlying plate tectonics and has been filled
with water for the past 9-12 million years [7]; thus, this
lake is classified as an ancient lake [8]. Lake Tanganyika
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harbours approximately 250 cichlid species, most of
which are endemic to the lake and are morphologically,
ecologically, and genetically diverse [9, 10]. These fish
are derived from a single ancestral species and are
thought to have evolved through explosive adaptive radi-
ation in the lake or pre-existed water systems [11, 12].

Telmatochromis temporalis is an algae-feeding cichlid
fish endemic to Lake Tanganyika. This fish consists of
two main morphs (Fig. 1a) [13]. The normal morph has
a large body size [the body size differs somewhat among
populations, and in Wonzye, Zambia (Fig. 1d), ranges
between 56.4 and 75.7 mm in standard length (SL) in
adult males and 33.4-53.1 mm SL in adult females] [14].
This morph inhabits rocky bottoms (Fig. 1c) and usually
uses spaces under the rocks to hide from predators and
spawn. The dwarf morph is smaller (in Wonzye, the
body size ranges between 25.1 and 40.3 mm SL in adult
males and 17.2-26.8 mm SL in adult females) [14]. This
morph uses empty snail shells of Neothauma tanganyi-
cense to hide and spawn in shell beds, where a lot of
empty snail shells exist on sandy bottoms (Fig. 1b). Al-
though the normal morph and rocky bottoms are widely
distributed in the shallow waters along the lake shores,
the dwarf morph and shell-beds are restricted to the
Wonzye—Nkumbula area and around Chibwensolo in
Zambian waters; these areas are approximately 80 km
apart in a straight line (Fig. 1d). The normal and dwarf
morphs are genetically close within the same area but
distant between areas [15, 16]. A population genetics
study suggested that the dwarf morph had evolved inde-
pendently from the normal morph in these areas [17].
Another morph, called as ‘slender’, was recently reported
from Kasenga, Zambia [18]. This morph is genetically
close to the normal morph from the same locality, and
no evidence suggests that this morph has affected the
evolution of the dwarf morph.

The difference in body size between the normal and
dwarf morphs might have evolved through divergent
natural selection because the body sizes correlate closely
with the sizes of available hiding spaces in their habitats
[15]. Details of evolution of the derived small body size
have been studied in the dwarf morph from Wonzye
[14, 19]. Larger males control more females in their ter-
ritories, suggesting a strong sexual selection for body
size. However, having an extremely large body size is
disadvantageous for the fish. They enter the shells head-
first to hide from predators. Large males (>~ 35 mm
SL) cannot turn within the shells and must exit tail-first,
making it difficult for them to visually confirm that it is
safe to venture outside (i.e. the presence of predators).
The males’ body size appears to have evolved to balance
between these sexual and natural selection pressures. In
dwarf females, the evolution of body size may be due to
fecundity and natural selection; larger females can spawn
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more eggs, but smaller females can deposit their eggs in
narrower, safer spaces within shells.

Gene flow is restricted between normal and dwarf
morphs from the same locality, even if no obvious geo-
graphical barriers exist between the habitats [15, 16]. This
reproductive isolation may be due to the body-size differ-
ence. A habitat-choice experiment in tanks showed that
large individuals (> ~40 mm SL) tended to prefer rocky
habitats, whereas small individuals (<~40 mm SL)
tended to prefer shell-bed habitats [16]. This habitat pref-
erence may have resulted in the discrete distribution ob-
served in the wild, with the normal morph adults in rocky
habitats and dwarf morph adults in shell-bed habitats.

Overall, the body size of T. temporalis has most likely
evolved under divergent natural selection [15] and led to
reproductive isolation between normal and dwarf morphs
via geographic segregation [16]. Therefore, body size can
be regarded as an automatic magic trait during ecological
speciation. A common garden experiment indicated that
the difference in body size between the morphs was not ex-
clusively a consequence of phenotypic plasticity [16]. How-
ever, the genetic basis of the difference in body size has not
been investigated. In this study, we conducted a double-
digested restriction-site associated DNA (ddRAD) sequen-
cing of a hybrid cross between the normal and dwarf
morphs to construct a linkage map and identify quantita-
tive trait loci (QTL) underlying body size variation.

Results

Processing of ddRAD sequences

One lane of paired-end sequencing on an Illumina
HiSeq X produced a total of 401 million ddRAD tag se-
quence pairs from the normal FO male, dwarf FO female,
and 206 F2 individuals. The number of ddRAD sequence
pairs per sample ranged from 2.7 x10° to 7.0 x 10°
(1.9 x 10° on average) [DNA Data Bank of Japan (DDBJ)
accession no. DRA011699]. The mean merged coverage
depth in the de novo assembly was 74.2 for the FO male
and 82.4 for the FO female and ranged from 18.5 to 95.2
(56.0 on average) for the F2 individuals. A total of
55,209 orthologous loci were obtained from an ortholo-
gous search between the FO male and FO female, of
which 14,528 were polymorphic. The F2 individuals
were genotyped for the polymorphic loci, and 7,275 loci
were recovered from >60% of the samples. We identi-
fied 1,409 single nucleotide polymorphisms (SNPs) that
did not share alleles between the parents. After discard-
ing SNPs with genotypes that extremely departed from
the expected segregation pattern, the remaining 709
SNPs were included in the following analyses.

Linkage map construction
Twenty-two linkage groups (LGs) were obtained from
708 SNPs (one SNP was not assigned to any LGs), which
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Fig. 1 Telmatochromis temporalis and their habitats. a Mature males of the dwarf (left) and normal (right) morphs collected at Wonzye, Zambia.
The dwarf male used the snail shell as shelters. b Shell bed at Wonzye. ¢ Rocky habitat at Wonzye. d A map of the southern end of
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spanned over 1,252 centimorgan (cM) (Supplementary
Fig. S1). This number of LGs matches the available data
for most African cichlids, although four species of the
tribe Lamprologini, to which T. temporalis belongs, had
2n =42 chromosomes [20]. Each LG consisted of 19-66

SNPs (32.2 SNPs on average). The blast search of
ddRAD loci containing these SNPs showed that the 22
LGs corresponded to the previously reported LG1-LG23
(no LG21) of Nile tilapia Oreochromis niloticus [21]
(Supplementary Table S1), which belongs to the



Takahashi et al. BMC Genomics (2021) 22:615

subfamily Pseudocrenilabrinae along with T. temporalis
[22]. The present LGs were therefore numbered in ac-
cordance with the O. niloticus LGs.

QTL mapping

A QTL analysis for body size identified one peak that
exceeded the significant logarithm of odds (LOD) thresh-
old of 3.89 and five peaks that exceeded the suggestive
threshold of 2.39 (Fig. 2; Table 1). The QTL peak on LG6
was a pseudomarker. The corresponding position of the
pseudomarker on the O. niloticus LG6 could not be iden-
tified because closely related ddRAD markers were not
mapped onto the genome (Fig. 3b). The ddRAD markers
at the QTL peaks on LG12 and LG20 were not mapped
onto the O. niloticus genome (Fig. 3e, f). In LG2 and
LG20, the O. niloticus genome region that corresponds to
the 95 % Bayes credible interval of the QTL was separated
into two parts, due to a complex relationship of markers
between these species (Fig. 3a, f). The plot of body size in-
dicated the dominance of the QTL on LG2, LG6, and
LG20, in which F2 fish with at least one dwarf allele were
small (Fig. 4a, b, f), the incomplete dominance of the QTL
on LG7, in which F2 individuals homozygous for the nor-
mal alleles were large and individuals homozygous for the
dwarf alleles were small (Fig. 4c), and intermediate pattern
between overdominance and dominance of the QTL on
LG8 and LG12, in which F2 individuals homozygous for
the dwarf alleles were large and heterozygotes were small
(Fig. 4d, e).

Discussion

The normal and dwarf morphs of T. temporalis are a
clear example of ongoing ecological speciation [15, 16].
Body size plays an important role during the speciation
between the morphs as a magic trait. The present study
identified one significant and five suggestive QTL for
this trait, using ddRAD markers generated from a cross
between the morphs (Fig. 2; Table 1). Regarding the sig-
nificant and three of the five suggestive QTL on LG2,
LG6, LG7, and LG20, alleles from the dwarf FO female
expressed a smaller body size than did alleles from the
normal FO male (Fig. 4a—c, f). This tendency supports
the hypothesis that these QTL are linked to genes re-
sponsible for the body-size difference between the
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morphs. The other suggestive QTL on LG8 and LG12
were associated with an unexpected body-size pattern
(Fig. 4d, e); F2 individuals homozygous for the dwarf al-
leles were larger than the others. As suggestive linkage
results can often be wrong [23], these QTL might have
been erroneously detected by chance or may be indica-
tive of other type of body-size variance, e.g., variance
within a morph. It is worth noting that the QTL for
growth traits partly differ between sexes in Oreochromis
species [24, 25]. This may also be true in 7. temporalis.
However, the present study pooled male and female
samples in the analysis to increase the QTL detection
power. Actually, when males and females were analysed
separately, the results were not clear, probably due to
the decreased sample sizes (not shown). Therefore, the
present study might have overlooked some QTL skew
between the sexes.

An annotated genome assembly for O. niloticus is use-
ful for suggesting candidate genes for the body-size dif-
ference between the T. temporalis morphs. Although
their functions in cichlid fishes are not known, some
genes responsible for body size in vertebrates were
found in (or very close to) the O. miloticus genomic re-
gions that correspond to the 95% credible intervals of
the T. temporalis QTL, such as early growth response 1
(egrl) on LG2 at 26.3 Mb [26, 27], insulin-like growth
factor binding protein 4 (igfbp4) on LG6 at 39.0 Mb [28,
29], SMAD family member 7 (smad7) on LG7 at
18.3 Mb [30], and nuclear receptor subfamily 2 group C
member 2 (nr2c¢2) on LG20 at 14.6 Mb [31]. Further
studies are needed to confirm the functions of theses
genes in T. temporalis. Insulin-like growth factor 1 (igfI)
is a well-known gene responsible for body size in mam-
mals and fish [28, 32—35]. The growth hormone receptor
(ghr) is reported to influence the expression level of igfI
and eventually, body size in Oreochromis fishes [24].
However, these genes are not located in the O. niloticus
genome regions corresponding to the credible intervals
of the T. temporalis QTL, i.e., igfl on LG17 at 16.8 Mb
and ghr on LG7 at 31.9 Mb. Previous QTL mapping and
genome-wide association study of Oreochromis species
reported several genome loci associated with growth
traits [24, 25, 36], and some of these loci are within the
O. niloticus genome regions corresponding to the T.

LOD score

Lendnii s,

Linkage groups

Fig. 2 Quantitative trait locus (QTL) plots for body size in Telmatochromis temporalis. Broken and dotted lines in the graph indicate significant
(3.89) and suggestive (2.39) thresholds, respectively, of the logarithm of odds (LOD) score
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Table 1 Properties of QTL for Telmatochromis temporalis body size and corresponding positions on Oreochromis niloticus genome

T. temporalis

O. niloticus

LG Pos (cM) Marker type LOD score PVE Cl (cM) Pos (Mb) Cl (Mb)

2 389 ddRAD marker 3.22°% 0.074 34.4-509 264 264-285,358

6 61.0 Pseudomarker 261°49 0.057 41.5-63.1 ? 31.5-39.2

7 16.7 ddRAD marker 3.99 %9 0.084 8.5-24.5 175 9.1-255

8 56.5 ddRAD marker 2579 0.035 0.0-60.0 279 34-296

12 50 ddRAD marker 269 *49 0.026 0.0-62.5 ? 0.7-37.1

20 29.5 ddRAD marker 298 *19 0.061 17.5-404 ? 104-15.7, 23.6-36.8

Cl 95 % Bayes credible interval, cM Centimorgan, ddRAD Double-digested restriction-site associated DNA, LG Linkage group, LOD Logarithm of odds,
Mb Megabase, Pos Position of the QTL, PVE Proportion of phenotypic variance explained by the QTL, QTL Quantitative trait loci, sig Significant LOD score > 3.89,

sug Suggestive LOD score > 2.39

temporalis QTL credible intervals, i.e., LG2 at 26.5 Mb
for male body thickness [25], LG7 at 16.8 Mb for fillet
yield [36], and LG20 at 11.8 Mb for body weight and
total length [25]. Some common genes may control body
size in these phylogenetically distant species.

We identified four QTL that are supposedly linked to
genes responsible for the body-size difference between
the normal and dwarf morphs. This suggests that mul-
tiple genes, rather than a single gene, control the
morph-specific body size. Interestingly, such a polygenic
model can explain the mechanism of evolution of the
dwarf morph. The dwarf morph, which inhabits patchily
distributed shell beds, presumably evolved repeatedly
from the normal morph, which is common in shallow

waters along the lake coast [17]. As suggested in the
present study, individuals with dwarf alleles of a body-
size regulating gene are not necessarily small (Fig. 4).
Therefore, dwarf alleles can be maintained in the normal
morph populations at low frequencies as standing gen-
etic variations. When shell beds emerged next to a
population due to water-level changes [37], small body
size would be evolved by fixation of the dwarf alleles in
these body-size regulating genes under natural selection
[16], whereby small individuals would have an advantage
of using empty snail shells for sheltering and spawning
[14, 19]. This mechanism might have caused the parallel
evolution of the dwarf morph at distant shell beds [16,
17]. To confirm this hypothesis, the dwarf alleles of
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genes responsible for body-size regulation must be iden-
tified, and the distributions of dwarf alleles in wild popu-
lations of the normal and dwarf morphs should be
examined.

Conclusions

Lake Tanganyika harbours ~ 250 cichlid species, and
the diversity of these fishes has been studied in terms
of, e.g., morphology, behaviour, ecology, and genetics
[10, 38-40]. However, the genetic basis of body size
has somewhat been overlooked, despite there being
significant body size diversity among and within spe-
cies [41], e.g, from ~4 cm SL in Neolamprologus
multifasciatus to ~50 cm SL in Boulengerochromis
microlepis. The only existing study found that a
single-locus two-allele polymorphism in a sex-linked
chromosome in heterogametic males controlled body-
size difference between giant bourgeois males and
miniature males in Lamprologus callipterus, which
display different reproductive tactics [42]. The present
study identified four genomic loci that are possibly
associated with the body-size difference between the
normal and dwarf morphs of T. temporalis. 1dentifica-
tion of genes regulating body size in this fish species
will enable further understanding of the mechanisms
underlying size-mediated ecological speciation and
provide insight into the recent explosive adaptive ra-
diation that had occurred in this lake.

Materials and methods

Fish cross for QTL analysis

A normal FO male and a dwarf FO female of T. tempor-
alis from Wonzye, Zambia were crossed in a tank to
produce the F1 generation. Two F1 tanks, each contain-
ing one F1 male and two F1 females, were set up to pro-
duce the F2 generation. When free-swimming F2 fry
emerged in an F1 tank, they were transferred to stock
tanks; these fry were regarded as 1 month old. The fry
were bred in the stock tanks until they reached an age of
6+ 1 month and were then transferred to F2 tanks at
densities of 20-35 fish per tank. The F2 tanks measured
64 x 37 cm with water depth of 13.5 cm. The water
temperature was maintained at 26 °C. As males usually
compete for substrates (rocks and shells) to form terri-
tories and females also compete for substrates to spawn,
no substrates other than heaters and aerators were pro-
vided in the F2 tanks to reduce this competition. This
also reduced any effects of hiding-space size on body
size, if any. The F2 fish were fed three times a day, for 5
days per week. Dead fish and short-body individuals
were removed immediately on discovery. The sexes of
the F2 fish were determined from the shapes of the geni-
tal papillae at the age of 13 months. At this time, the F2
females were euthanized using FA100 anaesthetic (DS
Pharma Animal Health, Osaka, Japan) and fixed in >
99 % ethanol. The males were continuously bred in the
F2 tanks until they were 16 months old, at which time
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they were also euthanized and fixed in the same ways.
These F2 individuals were sexually mature, i.e., males
had white testes and females had non-transparent eggs
in the ovaries. We collected 6-16 males and 7-17 fe-
males from each of the ten F2 tanks. A total of 206 F2
individuals were obtained, consisting of 100 males and
106 females.

Body size estimation

The SLs of the fixed F2 fish were measured using CD67-
S20PS digital callipers (Mitutoyo, Kanagawa, Japan)
under an SMZ 1000 binocular microscope (Nikon,
Tokyo, Japan). The SLs of the F2 males ranged from
32.3 to 55.9 mm. The smallest size was within the previ-
ously reported size range for adult dwarf males from
Wonzye [14]. The largest size almost matched the smal-
lest reported size of adult normal males from Wonzye
(56.4 mm SL). The SLs ranged from 24.2 to 40.2 mm in
the F2 females. The smallest and largest sizes were
within the body size ranges of the adult dwarf and nor-
mal females, respectively, from Wonzye [14].

ddRAD sequencing

The ddRAD libraries were prepared according to a pre-
viously described method [43] with some minor modifi-
cations. RNA-free total genomic DNA was extracted
from the right pectoral fins and body muscles of the FO
male, FO female, and 206 F2 individuals using a Wizard
Genomic DNA Purification Kit (Promega, Madison, WI,
USA). The DNA concentration was determined using a
Qubit 3.0 Fluorometer (Invitrogen, Carlsbad, CA, USA)
and adjusted to 20 ng/pl. Each sample (10 pl) was
digested with high-fidelity EcoRI (New England Biolabs,
Ipswich, MA, USA; 10 U for each sample) and Bglll
(Takara Bio, Shiga, Japan; 5 U for each sample) and sim-
ultaneously ligated with sequencing adaptors using T4
DNA Ligase (Enzymatics, Beverly, MA, USA) in NEB
buffer 2.1. After purification with AMPure XP (Beckman
Coulter, CA, USA), each ligated sample was amplified
using KAPA HiFi HS ReadyMix (Kapa Biosystems,
Wilmington, MA, USA) with primers barcoded with a
unique eight-nucleotide sequence. Thermal cycling was
initiated at 95 °C for 3 min, followed by 20 cycles of 98
°C for 20 s, 65 °C for 10 s, and 72 °C for 30 s. The 208
PCR products obtained were pooled in the same volume
after purification with AMPure XP. DNA fragments of
320-450 base pairs were retrieved on 2.0 % agarose gel
using E-Gel SizeSelect (Life Technologies, Carlsbad, CA,
USA). The pooled sample was run in one lane of paired-
end 150 + 150-bp sequencing on a HiSeq X sequencer
(Ilumina, San Diego, CA, USA) at Macrogen (Seoul,
South Korea). The sequenced reads were demultiplexed
using CASAVA 1.8.2 (Illumina, San Diego, CA, USA).
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Processing of ddRAD sequences

A de novo orthology search was conducted using the
Stacks ver. 2.54 software package [44, 45]. For each indi-
vidual, only ‘stacks’ with three or more identical ddRAD
sequences were used, and stacks with one or two differ-
ent sites were identified as orthologous loci. The ortho-
logous loci of the FO male and FO female were used to
identify SNPs, allowing for the detection of orthologs
with one or two different sites between the FO individ-
uals. The identified SNPs were genotyped in the F2 indi-
viduals. Loci were only accepted when allelic stacks were
recovered in >60% of the samples. In cases of two or
more SNPs at a single locus, only the first SNP was used.
To avoid ambiguous identification of the origin of the
F2 alleles (i.e., from the FO male or FO female), SNPs
with alleles shared by the FO male and FO female were
removed using a custom Perl script.

Linkage map construction

A linkage map was created using Lep-MAP3 [46]. SNPs in
which the genotypes extremely departed from the ex-
pected segregation pattern (aa:ab:bb =1:2:1, p <0.0001)
were discarded. The remaining SNPs were separated into
LGs with a limitation of LOD score = 10 and a recombin-
ation rate = 0.05. In each LG, the most likely map with the
largest likelihood score was selected from 100 estimations
initiated with different random seeds. The linkage map
created was visualized using MapChart 2.32 [47].

QTL mapping

QTL for body size were detected using R/qtl2 [48]. First,
pseudomarkers at intervals of 1 ¢cM were created based
on the LGs. A genome scan was then conducted for
both the original ddRAD SNP markers and the pseudo-
markers, taking into consideration the random polygenic
effect. This genome scan requires kinship matrices. The
kinship matrix of each LG was calculated using pseudo-
markers from all the other LGs to eliminate any effect of
varying marker density. As the log;(SL) significantly dif-
fered among tanks as well as between sexes due to a
confounding tank effect [two-way analysis of variance
(ANOVA): Fy186 = 591, p<0.0001 among tanks, Fj gs
= 533, p<0.0001 between sexes, Fgi1g6 = 1.08, p>0.05
for the interaction between tank and sex], tank and sex
effects were included in the genome scan as additive co-
variates. Ten thousand permutations were conducted to
estimate the significant and suggestive levels of the LOD
scores, in which statistical evidence was expected to
occur 0.05 and one time, respectively, in a genome scan
[23]. A 95% Bayes credible interval for each QTL was
estimated. The body-size difference among genotypes of
QTL was visualized using residuals from two-way
ANOVA on log;o(SL) without considering interaction to
remove tank and sex effects. The proportion of
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phenotypic variance explained (PVE) by each QTL was
calculated based on the residuals: PVE = (sum of squares
between genotypes) / (sum of squares total).

The ddRAD loci were subjected to blast [49] searches
using the megablast option against the genome of O.
niloticus (F11D_XX) in the National Center for Biotech-
nology Information (NCBI) database. When blast search
found more than one significant similar locus to a query
ddRAD locus, only the most similar locus that has E-
value smaller than 1/10'° times that of the second likely
locus was regarded as the corresponding locus of the
query. Otherwise, it was regarded as ‘unidentified’, as
well as the cases that no significant similar loci were
found and that the most similar locus was on an un-
placed genomic scaffold of O. niloticus.
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