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Summary
Aims: DNA	methylation	has	been	found	to	regulate	microRNAs	(miRNAs)	expression,	
but	 the	prognostic	value	of	miRNA‐related	DNA	methylation	aberration	 remained	
largely	elusive	in	cancers	including	glioblastomas	(GBMs).	This	study	aimed	to	inves‐
tigate	the	clinical	and	biological	feature	of	miRNA	methylation	in	GBMs	of	non‐gli‐
oma‐CpG	island	methylator	phenotype	(non‐G‐CIMP).
Methods: Prognostic	miRNA	methylation	loci	were	analyzed,	with	TCGA	and	Rennes	
cohort	as	training	sets,	and	independent	datasets	of	GBMs	and	low‐grade	gliomas	
(LGGs)	were	obtained	as	validation	sets.	Different	statistical	and	bioinformatic	analy‐
sis	and	experimental	validations	were	performed	to	clinically	and	biologically	charac‐
terize	the	signature.
Results: We	identified	and	validated	a	risk	score	based	on	methylation	status	of	five	
miRNA‐associated	CpGs	which	could	predict	survival	of	GBM	patients	in	a	series	of	
training	and	validation	sets.	This	signature	was	independent	of	age	and	O‐6‐methyl‐
guanine‐DNA	methyltransferase	(MGMT)	promoter	methylation	status.	The	risk	sub‐
group	was	 associated	with	 angiogenesis	 and	 accordingly	 differential	 responses	 to	
bevacizumab‐contained	therapy.	MiRNA	target	analysis	and	in	vitro	experiments	fur‐
ther	confirmed	the	accuracy	of	this	signature.
Conclusion: The	five‐CpG	signature	of	miRNA	methylation	was	biologically	relevant	
and	was	of	potential	prognostic	and	predictive	value	for	GBMs.	It	might	be	of	help	for	
improving	individualized	treatment.
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1  | INTRODUC TION

Glioblastomas	 (GBMs)	are	the	most	common	and	devastating	sub‐
types	of	primary	central	nervous	system	tumors.1	Unfortunately,	de‐
spite	the	multimodal	treatment	of	surgical	resection,	radiotherapy,	
and	chemotherapy,	the	reported	median	survivals	of	GBM	patients	
were	only	16‐19	months.1‐3

Cancer‐specific	DNA	methylation	changes	play	important	roles	
in	 cancer	development	and	progression.	The	best‐known	epigen‐
etic	 abnormality	 in	 cancers	 is	 promoter‐specific	CpG	 island	 (CGI)	
hypermethylation	of	tumor	suppressor	genes	which	consequently	
cause	transcriptional	silencing.4	Altered	DNA	methylation	affected	
the	expressions	of	not	only	protein‐coding	genes	but	also	noncod‐
ing	RNAs	(ncRNAs).5	Among	those	ncRNAs,	microRNAs	(miRNAs),	
the	20‐22	nucleotides	small	ncRNAs,	have	been	demonstrated	to	
have	multiple	roles	in	the	pathogenesis	of	cancers.6	It	has	been	re‐
ported	that	miRNAs	could	be	regulated	by	DNA	methylation	and	
abnormal	methylation	in	miRNAs	was	closely	correlated	with	can‐
cer	progression.6,7	However,	the	biological	and	clinical	implications	
of	miRNA	methylation	abnormality	were	largely	unstudied	in	can‐
cers	including	GBMs.	Glioma‐CpG	island	methylator	phenotype	(G‐
CIMP)	represents	a	distinct	subgroup	of	glioma	which	 is	featured	
by	genome‐wide	hypermethylated	CGIs	and	favorable	prognosis.8 
The	G‐CIMP+	tumors	have	already	been	broadly	studied,	while	the	
relevance	features	of	non‐G‐CIMP	GBMs	remain	largely	unclear.

In	 this	 study,	 we	 analyzed	miRNA	methylation	 data	 of	 non‐G‐
CIMP	GBMs	from	The	Cancer	Genome	Atlas	(TCGA),	Gene	Expression	
Omnibus	 (GEO),	 and	Rennes	 cohort9	 to	 reveal	 the	 relationship	be‐
tween	miRNA	methylation	and	GBM	survival.	Bioinformatic	methods	
and	in	vitro	experiments	were	used	to	validate	our	results.

2  | MATERIAL S AND METHODS

2.1 | GBM datasets

Rennes	cohort	of	77	newly	diagnosed	non‐G‐CIMP	GBMs	with	clini‐
cal	and	genome‐wide	DNA	methylation	microarray	data	by	Infinium	
HumanMethylation450k	BeadChip	(Illumina	Inc,	San	Diego,	CA,	USA)	
was	 obtained	 from	 the	 ArrayExpress	 under	 the	 accession	 number	
“E‐MTAB‐4969.”9	All	patients	received	standard	adjuvant	treatment	
of	 radiotherapy	 (RT)	 and	 concurrent	 temozolomide	 (TMZ).	 Public	
DNA	methylation	datasets	of	non‐G‐CIMP	GBM	samples	were	also	
downloaded	 from	The	Cancer	Genome	Atlas	 (TCGA)	data	portal,10 
and	Gene	Expression	Omnibus	 (GEO)	under	 the	 accession	number	
“GSE60274.”11	(Detailed	clinical	data	of	and	relative	CpG	information	
are	listed	in	the	Supporting	Information	S1)	We	also	obtained	clinical	
and	DNA	methylation	data	of	LGGs	from	TCGA12	and	GSE48462.13 
Among	 the	 heterogeneous	 datasets,	 only	 those	 with	 age	 over	
18	years	old	and	a	molecular	diagnosis	of	non‐G‐CIMP	tumors	were	
included	in	this	study.	For	survival	analysis,	patients	with	a	follow‐up	
data	>1	month	were	included,	in	order	to	reduce	the	bias	caused	by	
noncancer	death.10	In	addition,	nontumor	brain	tissues	were	obtained	
from	apparently	healthy	individuals	or	chronic	epilepsy	patients	with	

pathological	evidence	of	other	neurological	or	psychiatric	diseases	in	
each	dataset.	The	G‐CIMP	status	was	determined	by	K‐means	(k	=	3)	
clustering	on	the	1503	probes	reported	by	Noushmehr	et	al14 MGMT 
(O‐6‐methylguanine‐DNA	methyltransferase)	promoter	methylation	
status	was	determined	by	a	logistic	regression	model	using	two	CpGs,	
that	is,	cg12434587	and	cg12981137.15	Batch	effects	from	different	
datasets	and	platforms	were	adjusted	by	a	nonparametric	empirical	
Bayes	approach	(ber	package).16	Methylation	level	of	each	integrated	
CpGs	was	summarized	as	M‐value.17

2.2 | Construction and validation of a miRNA 
methylation‐based risk score model

CpG	probes	were	 filtered	by	 removing	 those	 targeting	 the	X	 and	Y	
chromosomes,	 containing	 a	 single	 nucleotide	 polymorphism	 (SNP)	
within	five	base	pairs	of	the	targeted	CpG.	We	then	selected	probes	

F I G U R E  1  Schematic	diagram	of	the	probe	selection	workflow	
for	the	study
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annotated	 with	 miRNAs	 (n	=	2448)	 for	 this	 study.	 The	 discovery	
phase	was	performed	within	TCGA	and	Rennes	cohort	(training	sets).	
Univariate	 Cox	 regression	 analysis	 with	 permutation	 test	 was	 per‐
formed	within	each	training	set.	Potential	prognostic	CpGs	with	con‐
sistent	 survival	 correlation	 (permutation	P	<	0.2)	 in	each	 training	 set	
were	subjected	to	multivariate	Cox	regression	analysis	within	the	com‐
bined	 training	 set	 (TCGA	and	Rennes	collectively),	 and	 those	with	a	
P	value	<	0.05	were	finally	selected	for	risk	score	modeling.	The	risk	
score	formula	was	constructed	by	integrating	the	M‐values	of	all	se‐
lected	CpGs	which	were	weighted	by	their	multivariate	Cox	regression	
coefficients	after	adjusted	by	patient	age	and	MGMT	promoter	methyl‐
ation	status.18,19	Patients	were	then	classified	into	high‐risk	or	low‐risk	
groups	with	the	cutoff	point	as	the	median	risk	score	from	the	com‐
bined	training	set.	The	validation	phase	was	performed	in	GSE60274	
and	datasets	of	LGGs	and	in	particular	those	with	wide‐type	IDH.

2.3 | Gene Set Enrichment Analysis (GSEA)

GSEA	was	 performed	 to	 evaluate	 the	 functional	 gene	 expression	
profiles	 between	 the	 risk	 subgroups	 on	 reported	 gene	 sets	 from	

Molecular	Signature	Database	(MSigDB),	with	nominal	P	value	≤	0.05	
for	significance.20

2.4 | MiRNA target gene prediction and 
pathway analysis

The	 online	 databases	 TargetScan	 (http://www.targetscan.org/
vert_72/.	 Accessed	 November	 11,	 2018),	 miRanda	 (http://www.
microrna.org/microrna/home.do.	 Last	 update:	 2010‐11‐01),	 and	
miRDB	 (http://mirdb.org/.	 Accessed	 November	 11,	 2018)	 were	
used	 to	 identify	 the	 target	 genes	 of	 the	 relative	miRNAs.	 Genes	
appeared	 in	 all	 three	 databases	 were	 included	 for	 the	 following	
analysis.21	GO	 analysis	was	 then	 performed	with	 PANTHER	 (ver‐
sion	14.0	Released	2018‐12‐03)	based	on	the	GO	database	(http://
www.geneontology.org/	 Accessed	 January	 11,	 2019)	 for	 biologi‐
cal	process	(BP),	cellular	component	(CC),	molecular	function	(MF),	
and	pathway	enrichment	of	 the	predicted	target	genes.22	Fisher's	
two‐side	exact	test	was	used	to	classify	the	GO	categories,	and	the	
Bonferroni	 correction	 for	multiple	 test	 was	 calculated	 to	 correct	
the	P	values.	Bonferroni‐corrected	for	P	<	0.05	was	considered	to	

Variables

Training set Validation set

Rennes cohort TCGA GSE60274

Sample	size 77 102 59

Clinical	factors

Age

Median 60 63 52

Range 36‐75 23‐85 26‐70

Pre‐operative	KPSa 

Median 80 80 NA

Range 40‐100 40‐100 NA

Gender

Male/Female 55/22 58/44 45/14

Extent	of	surgery

Surgery	(total/partial)/
Biopsy

72	(55/17)/4 101	(NA/NA)/1 57	(NA/NA)/2

Adjuvant	Treatments

RT	+	TMZ/RT 77/0 71/31 32/27

BVZ/non‐BVZ/UN 29/32/16 NA NA

Molecular	factors

MGMT	methylation	status

Methylated/
Unmethylated

26/51 37/65 26/33

Gene	expression	subtype

P/N/C/M 18/6/24/27 20/13/37/30 8/4/17/20

TCGA	methylation	clusters

Clusters	2/3 29/48 35/67 23/36

KPS,	Karnofsky	performance	score;	NA,	not	available;	RT,	radiotherapy;	TMZ,	temozolomide;	UN,	
unknown.
aKPS	was	available	for	only	a	small	subset	of	patients	from	TCGA	cohort.	

TA B L E  1  Patient	characteristics	of	
included	patient	cohorts	of	non‐G‐CIMP	
GBMs

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://mirdb.org/
http://www.geneontology.org/
http://www.geneontology.org/
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be	significant.	Enrichment	analysis	based	on	Kyoto	Encyclopedia	of	
Genes	 and	Genomes	 (KEGG)	was	performed	and	visualized	using	
ClueGO	 (Version	2.5.3),23,24	a	Cytoscape	 (version	3.7.1,	http://cy‐
toscape.org/)	 plug‐in.	 The	 main	 parameters	 for	 constructing	 the	
network	were	as	follows:	ontologies/pathways:	KEGG	(321	terms/
pathways	with	7454	available	unique	genes,	December	7,	2018),	GO	
term/pathway	 selection:	Min	Gene	=	3	&	Min	Percentage	=	3.0%,	
Kappa	 Score	 Threshold	=	0.5,	 Statistical	 Test	Used	=	Enrichment/
Depletion	 (Two‐sided	 hypergeometric	 test),	 Correction	 Method	
Used	=	Bonferroni	 step	down.	Only	pathways	with	P value < 0.05 
were	considered	to	be	significant.

2.5 | Cell culture and transfection

The	human	GBM	cell	lines	U87MG,	U251,	T98G,	and	SHG44	were	
obtained	 from	 the	 cell	 bank	 of	 the	 Air	 Force	 Medical	 University	
(Xi'an,	China)	 and	 cultured	 in	Dulbecco's	modified	Eagle's	medium	
(DMEM;	Gibco,	USA)	 supplemented	with	 10%	 fetal	 bovine	 serum	
(FBS;	Shanghai	BioSun	Sci&Tech	Co.,	Ltd.,	Shanghai,	China)	and	in‐
cubated	 at	 37°C	 with	 5%	 CO2.	 MiR‐1284	mimic	 (UCU	 AUA	 CAG	
ACC	 CUG	 GCU	 UUU	 C)	 and	 mimic	 negative	 control	 (mimic	 NC;	
UUC	UCC	GAA	CGU	GUC	ACG	UTT)	were	synthesized	by	Sangon	
Biotech	 Co.,	 Ltd.	 (Shanghai,	 China).	 Cells	 for	 transfection	 were	
planted	 into	60‐mm	dishes	at	4	×	105	cells/well.	After	48	hours	 in‐
cubation,	miR‐1284	mimic,	mimic	NC,	or	control	(only	treated	with	
Polymer)	was	transfected	into	cells	at	50	pmol/mL	using	Xfect	RNA	
Transfection	Reagent	(Takara	Bio,	USA).	The	transfection	efficiency	
was	verified	by	real‐time	quantitative	PCR	(qPCR).

2.6 | RNA extraction and Real‐time 
quantitative PCR

Total	 RNA	was	 extracted	 by	 TRIzol	 reagent	 (Invitrogen,	USA)	 and	
reverse	transcribed	with	PrimeScript	RT	reagent	kit	(Takara,	Tokyo,	
Japan).	 PCR	 amplification	 was	 performed	 in	 triplicate	 with	 SYBR	
Premix	 Ex	 Taq	 II	 (Takara)	 using	 CFX96	 Real‐Time	 PCR	 Detection	
System	 (Bio‐Rad,	 Hercules,	 CA,	 USA).	 The	 expression	 values	 of	
miR‐1284	were	 normalized	 to	 the	 levels	 of	 small	 nuclear	U6.	 The	
primer	 sequences	 were	 listed	 as	 follows:	 (a)	 miR‐1284:	 Reverse	

transcription	 primer:	 5′‐CTC	 AAC	 TGG	 TGT	 CGT	GGA	GTC	GGC	
AAT	 TCA	 GTT	 GAG	 GAA	 AAG‐3′;	 (b)	 U6	 Reverse	 transcription	
primer:	5′‐CGC	TTC	ACG	AAT	TTG	CGT	GTC	AT‐3′;	miR‐1284‐F:	5′‐
CGT	CTA	TAC	AGA	CCC	TGG	CTT	TTC‐3′;	miR‐1284‐R:	5′‐CTC	AAC	
TGG	TGT	CGT	GGA‐3′;	U6‐F:	5′‐CTC	GCT	TCG	GCA	GCA	CAT	A‐3′;	
U6‐R:	5′‐CGC	TTC	ACG	AAT	TTG	CGT	G‐3′.

2.7 | Pyrosequencing

Pyrosequencing	was	performed	by	Pyromark	Q96	ID	platform	and	
analyzed	by	PyroMark	CpG	software	(Qiagen,	Germany).	The	follow‐
ing	primers	were	used:	miR‐1284‐F	5′‐ATT	TTT	ATT	GGT	TAA	ATT	
AAT	ATT	ATA	GG‐3′,	miR‐1284‐R	biotin‐5′‐AAC	TTA	TTA	CAT	TAA	
ATA	CAA	ACA	ACA	AC‐3′,	miR‐1284‐seq	5′‐TTT	TTA	GTT	TTT	AAG	
TAT	ATT‐3′.	The	DNA	methylation	value	for	each	sample	was	calcu‐
lated	as	the	average	methylation	value	of	the	interrogated	CpGs.25

2.8 | 5‐Aza‐2′‐deoxycytidine (5‐Aza‐dC) 
demethylation treatment

U251	and	U87MG	cells	were	grown	 for	4	days	 in	 the	presence	of	
10 μmol/L	5‐Aza‐dC	 (Sigma‐Aldrich,	St.	 Louis,	MO,	USA).	Fresh	5‐
Aza‐dC	was	added	every	24	hours.

2.9 | Cell proliferation assay

Cells	 with	 different	 treatments	 were	 implanted	 in	 96‐well	 plates	
at	 5	×	103	 per	 well.	 At	 indicated	 time	 points,	 CCK‐8	 kit	 (Yeasen,	
Shanghai,	China)	was	assayed	for	cell	viability	measurement.

2.10 | Cell cycle and apoptosis analysis

For	cell	cycle	analysis,	cells	were	harvested,	fixed	in	70%	ethanol	
on	 ice,	and	stained	with	propidium	 iodide	 in	phosphate‐buffered	
saline	 containing	 RNase.	 The	 DNA	 contents	 were	 analyzed	 by	
flow	 cytometry.	 For	 cell	 apoptosis	 analysis,	 Annexin	 V‐fluores‐
cein	 isothiocyanate	and	propidium	 iodide	double	 staining	 (Roche	
Diagnostics,	Germany)	was	used	to	sort	cells	in	early	or	late	apop‐
totic	phase.

TA B L E  2  The	five	prognostic	CpGs	associated	with	miRNA

Probes Chr. miRNA name miRNA region
Relation to 
CpG island

Methylation 
status in GBM

Average M‐value of 
high‐risk GBMsa 

Cox regression 
coefficients

cg05744073 17 miR‐132 Body Island Hypermethylated −4.073 −0.534

cg08244382 14 miR‐127;	miR‐433 TSS1500;TSS200 Island	Shore Hypermethylated 3.185 −0.446

cg20382675 3 miR‐1284 TSS200 Open	sea NS 0.287 −0.263

cg24082174 3 miR‐1248 TSS1500 Island	Shore NS 0.991 0.255

cg13767001 13 miR‐759 TSS1500 Open	sea Hypomethylated −2.223 0.368

NS,	no	significance;	TSS,	transcription	start	sites.
Methylation	level	assessed	with	M‐value:	low	(‐Inf,	−2),	middle	[−2,	2],	and	high	(2,	Inf).
aIncluded	all	high‐risk	samples	of	three	datasets.	

http://cytoscape.org/
http://cytoscape.org/
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2.11 | Wound‐healing assay

Cell	motility	was	assessed	by	wound‐healing	assay	as	described	pre‐
viously.26	A	 scratch	wound	was	generated	by	a	200	μL	pipette	 tip	
on	the	confluent	cell	monolayers	in	6‐well	plates.	The	spread	of	the	
wound	closure	was	observed	after	48	hours	of	the	scratch.

2.12 | Statistical analysis

The	distributions	of	known	molecular	and	clinical	features	with	re‐
spect	 to	 the	 risk	 subgroups	were	 tested	by	Fisher's	 exact	 or	 chi‐
square	 test.	 Survival	 data,	 for	 example,	 overall	 survival	 (OS)	 and	
progression‐free	 survival	 (PFS),	 were	 estimated	 by	 the	 Kaplan‐
Meier	method	and	compared	by	log‐rank	test.	Univariate	and	mul‐
tivariate	 Cox	 regression	 models	 were	 performed	 to	 evaluate	 the	
correlation	and	 independence	of	potential	prognostic	 factors.	For	
in	 vitro	 experiments,	 data	 were	 expressed	 as	 mean	±	SEM	 from	
three	 independent	 experiments	 and	 analyzed	by	Student's	 t	 test.	
All	the	calculations	were	done	within	SPSS19.0	(IBM	Corporation,	

New	York,	NY,	USA)	and	R	software	(version	3.2.5;	https://www.r‐
project.org/),	 and	 a	 difference	 was	 considered	 significant	 when	
P	≤	0.05.

3  | RESULTS

3.1 | Identification of prognostic miRNA 
methylation loci from the training sets

The	 included	 cohorts	 and	 the	 workflow	 of	 probe	 selection	 were	
schematically	presented	in	Figure	1,	and	patient	characteristics	were	
summarized	in	Table	1.	By	employing	a	multistep	selection	criterion,	
we	identified	a	five‐CpG	panel	of	miRNA	methylation	that	showed	
consistent	 prognostic	 significance	 in	 both	 training	 sets	 (Table	 2).	
Among	the	panel,	two	CpGs	(eg,	cg05744073	and	cg08244382)	were	
hypermethylated	and	one	CpG	(eg,	cg13767001)	was	hypomethyl‐
ated	 in	GBMs,	while	the	other	two	were	not	differentially	methyl‐
ated	in	GBMs	(Table	2).	Upon	the	correlation	with	prognosis,	three	
CpGs	 (eg,	 cg05744073,	 cg08244382,	 and	 cg20382675)	 showed	

F I G U R E  2  The	survival	correlation	of	the	five‐CpG	signature	in	each	dataset.	A,	The	five‐CpG	signature	predicted	overall	survival	(OS)	
in	training	sets.	B,	The	signature	was	validated	by	yielding	apparent	OS	difference	in	GSE60274.	C,	The	five‐CpG	signature	was	also	able	to	
predict	PFS	in	Rennes	cohort.	D,	The	signature	could	not	identify	patients	with	different	prognoses	in	IDH	wide‐type	LGG	(grade	III	or	II)

https://www.r-project.org/
https://www.r-project.org/
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F I G U R E  3  Molecular	and	clinical	characteristics	of	the	5‐CpGs	miRNA	methylation	signature.	A,	the	heat	maps	of	K‐means	(k	=	2)	
clustering	on	the	5‐CpGs	methylation	signature	according	to	the	M‐value	from	all	GBM	groups;	each	column	represented	a	sample;	for	each	
sample	(n	=	238),	subgroup	correlation	was	indicated;	P	values	for	Fisher'	exact	test	and	chi‐square	test	were	accordingly	shown;	B,	GSEA	
enrichment	plots	for	representative	functional	gene	sets	enriched	in	high‐risk	tumors	from	TCGA.	C,	High‐risk	but	not	low‐risk	tumors	
conferred	significant	OS	benefits	when	treated	with	bevacizumab	in	Rennes	cohort	with	available	second‐line	therapies

TA B L E  3  Results	of	the	miRNA	methylation	signature	in	Cox	regression	analysis

Variables

Univariate Cox model Multivariate Cox model 

HR 95% CI P value HR 95% CI P value

Rennes	(n	=	61)a 

Patient	age 1.046 1.015‐1.078 0.003 1.040 1.003‐1.078 0.033

miRNA	methylation	
signature

2.926 1.733‐4.942 <0.001 3.129 1.782‐5.493 <0.001

MGMT	methylation	status 0.438 0.236‐0.813 0.009 3.047 0.140‐0.569 <0.001

DNA methylation clusters 0.849 0.492‐1.465 0.557    

Proneural	subtype 0.905 0.483‐1.695 0.754    

BVZ	treatment 0.607 0.357‐1.031 0.065 0.536 0.273‐1.049 0.069

Gender 0.918 0.522‐1.614 0.767    

Extent	of	surgery 0.957 0.623‐1.469 0.840    

TCGA	+	GSE60274	+	Rennes	(n	=	238)b 

Patient	age 1.028 1.012‐1.044 0.001 1.034 1.018‐1.051 <0.001

Treatments	(RT/TMZ	vs	RT) 0.479 0.345‐0.666 <0.001 0.438 0.314‐0.609 <0.001

DNM methylation clusters 0.995 0.732‐1.351 0.973    

miRNA	methylation	
signature

2.207 1.704‐2.859 <0.001 2.368 1.838‐3.050 <0.001

MGMT	methylation	status 0.627 0.455‐0.863 0.004 0.589 0.427‐0.812 0.001

Gender 1.009 0.732‐1.392 0.956    

KPS,	Karnofsky	performance	score;	NA,	not	available;	RT,	radiotherapy;	TMZ,	temozolomide.
aRennes	cohort	excluded	16	patients	with	insufficient	treatment	information.	
bIncluding	all	patients	from	TCGA,	Rennes	cohort,	and	GSE60274.	
cThe	significance	of	bold	values	indicate	P value < 0.05. 
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negative	correlation	with	OS,	while	two	CpGs	(eg,	cg24082174	and	
cg13767001)	with	positive	correlation	(Table	2).

Accordingly,	 the	 risk	 score	model	 was	 constructed	 as	 follows:	
risk	score	=	(−0.534	×	M‐value	of	cg05744073)	+	(−0.446	×	M‐value	
of	cg08244382)	+	(−0.263	×	M‐value	of	cg20382675)	+	(0.254	×	M‐
value	 of	 cg24082174)	+	(0.368	×	M‐value	 of	 cg13767001).	 With	
the	cutoff	as	the	median	risk	score	from	the	combined	training	sets	
(−0.382),	patients	were	divided	into	low‐risk	groups	(with	lower	risk	
scores)	 and	 high‐risk	 groups	 (with	 higher	 risk	 scores).	 In	 the	 com‐
bined	 training	 sets,	 the	 assigned	 low‐risk	 patients	 (n	=	89)	 were	
significantly	associated	with	longer	overall	survival	(OS)	than	those	
high‐risk	ones	(n	=	90;	 log‐rank	P	<	0.0001;	Figure	2A).	The	5‐CpG	
signature	also	showed	consistent	prognostic	value	 in	each	training	
set	(Figure	2A).

3.2 | Validation of the five‐GpG miRNA methylation 
signature for prognostication

To	validate	the	prognostic	performance	of	the	5‐CpG	miRNA	meth‐
ylation	 signature,	 we	 applied	 it	 to	 the	 independent	 validation	 set	
of	 GSE60274.	 With	 the	 prespecified	 cutoff,	 patients	 were	 clas‐
sified	 into	 a	 low‐risk	 group	 (n	=	28)	 and	 a	 high‐risk	 group	 (n	=	31).	
Consistent	with	the	training	sets,	low‐risk	patients	were	associated	
with	longer	OS	than	high‐risk	ones	(log‐rank	P	=	0.013;	Figure	2B).	
We	 also	 observed	 a	 significant	 correlation	 between	 progression‐
free	survival	(PFS)	and	the	miRNA	methylation‐based	risk	groups	in	
Rennes	cohort	(Figure	2C).

In	addition,	we	applied	the	GBM‐derived	signature	to	indepen‐
dent	validation	cohorts	of	IDH	wild‐type	LGGs.	The	miRNA	methyl‐
ation	signature	failed	to	yield	significant	OS	differences	between	the	
risk	subgroups	within	both	grade	III	and	II	gliomas	using	their	median	
risk	scores	as	cutoffs,	respectively,	which	supported	the	signature	as	
a	GBM‐specific	prognostic	model	(Figure	2D).

3.3 | Molecular and clinical correlation of the 5‐CpG 
miRNA methylation signature

Correlation	 with	 current	 established	 molecular	 features	 showed	
that	 the	 5‐CpG	 signature	 appeared	 not	 to	 be	 significantly	 cor‐
related	 with	 TCGA	 gene	 expression	 subtypes,	 DNA	 methylation	
clusters,	and	MGMT	promoter	methylation	status	(Figure	3A).	Also,	
the	 signature	 seemed	 not	 to	 be	 correlated	with	 treatments,	 gen‐
der,	and	age	 (Figure	3A).	GSEA	on	gene	expression	data	of	TCGA	
samples	showed	that	the	high‐risk	tumors	were	enriched	with	pro‐
oncogenic	gene	sets	such	as	ErbB	signaling	pathway	 (P	<	0.0001),	
MAPK	signaling	pathway	(P	=	0.029),	pro‐angiogenic	gene	sets	such	
as	hypoxia	(P	=	0.035),	and	VEGF	pathway	(P	=	0.029),	which	might	
biologically	explain	 the	 inferior	 survival	of	 those	high‐risk	 tumors	
(Figure	3B).

3.4 | High‐risk patients appeared to be beneficial 
for bevacizumab therapy

As	 reported	 by	 GSEA,	 high‐risk	 tumors	 seemed	 to	 be	 featured	
by	 upregulation	 of	 various	 pro‐angiogenic	 gene	 sets	 (Figure	 3B).	
Accordingly,	we	tested	the	potential	survival	benefits	conferred	by	
the	anti‐angiogenic	agent	bevacizumab	as	combined	therapy	within	
each	 risk	 subgroup.	 In	 Rennes	 cohort	 with	 available	 second‐line	
therapies,	 we	 found	 that	 the	 addition	 of	 bevacizumab	 did	 confer	
significant	OS	benefits	in	high‐risk	tumors,	but	was	associated	with	
similar	OS	to	bevacizumab‐free	therapy	(Figure	3C).

3.5 | The 5‐CpG signature was an independent 
prognostic factor in non‐G‐CIMP GBMs

Within	 Rennes	 cohort	 with	 RT/TMZ,	 univariate	 Cox	 regression	
analysis	 showed	 that	 patient	 age,	MGMT	 promoter	 methylation	

F I G U R E  4  The	survival	correlation	of	the	five‐CpG	signature	within	current	GBM	classification.	A,	The	five‐CpG	signature	predicted	
overall	survival	(OS)	in	both	MGMT	promoter	methylated	and	unmethylated	patients	treated	with	both	radiotherapy	(RT)	and	temozolomide	
(TMZ).	B,	It	was	also	correlated	with	different	OS	in	subgroups	of	≤60	or	>60	y.	C,	The	correlation	between	five‐CpG	signature	and	different	
prognoses	was	significant	in	proneural	and	neural	subtypes	and	marginally	significant	in	the	classical	and	mesenchymal	subtypes



944  |     KANG et Al.

status,	 and	 our	 miRNA	 methylation	 signature	 were	 significantly	
associated	with	OS	(Table	3).	Multivariate	Cox	regression	analysis	
further	demonstrated	the	prognostic	independence	of	the	above‐
mentioned	 factors	 (Table	 3).	 Multivariate	 Cox	 regression	 model	
within	 the	 combined	 cohorts	 of	 TCGA,	 GSE60274,	 and	 Rennes	
cohort	 not	 only	 confirmed	 the	 prognostic	 independence	 of	 our	
miRNA	methylation	signature	but	also	supported	its	treatment	in‐
dependence	(Table	3).

3.6 | The prognostic value of the miRNA 
methylation signature with respect to current GBM 
classification

We	also	tested	the	prognostic	interrelationship	of	the	5‐CpG	sig‐
nature	 with	 known	 prognostic	 factors	 within	 available	 patients	
from	the	combined	training	and	validation	sets.	We	found	that	it	
could	consistently	predict	OS	within	the	subtypes	of	unmethylated	

F I G U R E  5  Target	prediction	results	of	signature	associated	miRNAs
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TA B L E  4  PANTHER	analysis	for	predicted	target	genes

Terms Target gene Expected gene Nr Fold enrichment P value

PANTHER	GO‐slim	molecular	function

MAP	kinase	activity 17 5.04 3.38 0.028

→Protein	serine/threonine	kinase	activity 44 20.45 2.15 0.005

→Protein	kinase	activity 80 38.61 2.07 <0.001

→Catalytic	activity,	acting	on	a	protein 170 99.8 1.7 <0.001

→Catalytic	activity 396 324.05 1.22 0.012

Ubiquitin‐like	protein	transferase	activity 45 22.2 2.03 0.017

RNA	polymerase	II	transcription	factor	activity,	sequence‐specific	DNA	binding 56 27.85 2.01 0.002

→DNA‐binding	transcription	factor	activity 125 75 1.67 <0.001

→Transcription	regulator	activity 140 83.93 1.67 <0.001

DNA	binding 92 56.39 1.63 0.008

→Nucleic	acid	binding 193 125.21 1.54 <0.001

→Binding 509 404.85 1.26 <0.001

→Organic	cyclic	compound	binding 196 129.71 1.51 <0.001

Unclassified 738 859.06 0.86 0

PANTHER	GO‐slim	biological	process

Regulation	of	transcription	by	RNA	polymerase	II 52 26.71 1.95 0.044

→Regulation	of	transcription,	DNA‐templated 55 28.84 1.91 0.038

→regulation	of	biological	process 390 287.8 1.36 <0.001

→Biological	regulation 420 312.6 1.34 <0.001

→Regulation	of	metabolic	process 182 106.9 1.7 <0.001

→Regulation	of	macromolecule	metabolic	process 157 91.18 1.72 <0.001

→Regulation	of	gene	expression 114 64.47 1.77 <0.001

Transcription	by	RNA	polymerase	II 128 68.59 1.87 <0.001

→Transcription,	DNA‐templated 162 93.7 1.73 <0.001

→Cellular	macromolecule	biosynthetic	process 186 118.42 1.57 <0.001

→Metabolic	process 460 364.94 1.26 <0.001

→Biosynthetic	process 192 123.53 1.55 <0.001

→Macromolecule	biosynthetic	process 188 120.02 1.57 <0.001

→Organic	substance	biosynthetic	process 192 123.07 1.56 <0.001

Cellular	protein	modification	process 84 50.21 1.67 0.032

→Protein	modification	process 84 50.36 1.67 0.033

Unclassified 670 820.69 0.82 0

PANTHER	GO‐slim	cellular	component

Nuclear	chromatin 66 36.62 1.8 0.008

→intracellular	part 398 311.92 1.28 <0.001

→cell	part 540 448.19 1.2 0.001

→cell 544 450.25 1.21 <0.001

Unclassified 809 909.65 0.89 0

Extracellular	space 22 56.31 0.39 <0.001

→Extracellular	region	part 28 62.41 0.45 0.001

→Extracellular	region 35 70.2 0.5 0.002

PANTHER	pathways

EGF	receptor	signaling	pathway 29 10.15 2.86 0.001

Cadherin	signaling	pathway 33 11.98 2.75 <0.001

FGF	signaling	pathway 24 9.16 2.62 0.015

CCKR	signaling	map 31 13.2 2.35 0.008

PDGF	signaling	pathway 26 11.37 2.29 0.046

Wnt	signaling	pathway 52 23.73 2.19 <0.001

Unclassified 1304 1404.08 0.93 0
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or	methylated	MGMT	 tumors	 (Figure	 4A),	 and	 the	 subgroups	 of	
≤60	or>60	years	(Figure	4B).	Regarding	the	TCGA	expression	sub‐
types,	 the	 signature	was	 significantly	 associated	with	OS	 in	 the	
proneural	 and	 neural	 subtypes,	 and	 also	 yielded	 marginally	 sig‐
nificant	OS	difference	in	the	classical	and	mesenchymal	subtypes	
(Figure	4C).

3.7 | Target gene prediction of the 5‐CpG signature‐
related miRNAs

Targetscan,	 miRanda,	 and	 miRDB	 databases	 were	 used	 to	 pre‐
dict	 the	 target	 genes	 of	 miR‐132,	 miR‐127,	 miR‐433,	 miR‐1284,	
miR‐1248,	and	miR‐759.	To	ensure	the	specificity	and	sensitivity	of	
our	prediction,	we	kept	the	identical	targets	predicted	in	all	three	
databases	without	setting	additional	criterion.	Totally	1578	target	
genes	left	for	further	functional	analysis	(Figure	5).	Among	them,	

139	genes	were	candidate	 targets	 for	 two	miRNAs,	seven	genes	
were	common	targets	of	three	miRNAs,	and	one	was	target	of	four	
miRNAs.

3.8 | Biological characteristics of predicted 
target genes

Predicted	 target	 genes	 were	 further	 analyzed	 using	 PANTHER	
GO‐slim	tools	on	MF,	BP,	and	CC	(Table	4).	The	most	enriched	MF	
terms	were	MAP	kinase	 activity,	 ubiquitin‐like	 protein	 transferase	
activity,	DNA	binding,	 and	RNA	polymerase	 II	 transcription	 factor	
activity	 (Figure	 6A).	 The	most	 enriched	BP	 terms	were	 regulation	
of	 transcription	by	RNA	polymerase	 II,	 transcription	by	RNA	poly‐
merase	II,	and	cellular	protein	modification	process	(Figure	6B).	The	
most	enriched	CC	 terms	were	nuclear	chromatin	and	extracellular	
space	(Figure	6C).	PANTHER	pathway	analysis	showed	EGF	receptor	

F I G U R E  6  Bioinformatic	analysis	of	predicted	target	genes.	A,	PANTHER	GO‐Slim	biological	process.	B,	PANTHER	GO‐Slim	molecular	
function.	C,	PANTHER	GO‐Slim	cellular	component.	D,	PANTHER	pathway	enrichment.	E,	KEGG	pathway	enrichment	analysis,	relative	
genes	were	shown	as	well
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signaling	pathway,	cadherin	signaling	pathway,	FGF	signaling	path‐
way,	 CCKR	 signaling	 pathway,	 PDGF	 signaling	 pathway,	 and	Wnt	
signaling	 pathway	 were	 the	 most	 enriched	 pathways	 (Figure	 6D).	
Then,	 we	 utilized	 ClueGO	 to	 make	 a	 KEGG	 pathway	 enrichment	
analysis	(Figure	6E,	Table	5).	The	most	enrichment	terms	were	adhe‐
rens	junction,	cell	cycle,	TGF‐beta	signaling	pathway,	ErbB	signaling	
pathway,	axon	guidance,	 renal	cell	 carcinoma,	oocyte	meiosis,	and	
cellular senescence.

3.9 | MiR‐1284 suppressed glioma cell 
proliferation and migration

To	 further	 validate	 the	 functional	 relevance	 of	 this	 miRNA	 meth‐
ylation	 signature,	 we	 selected	 miR‐1284	 for	 in	 vitro	 experiments.	
Pyrosequencing	 of	 cg20382675	 showed	 that	 the	miR‐1284‐associ‐
ated	 CpG	 was	 consistently	 associated	 with	 high	 DNA	methylation	
status	 in	 glioma	 cells,	 that	 is,	 U87MG,	 U251,	 T98MG,	 and	 SHG44	
(Figure	 7A).	 Accordingly,	 the	 expression	 levels	 of	 miR‐1284	 were	

comparable	in	those	glioma	cells	(Figure	7B).	However,	after	treated	
with	5‐Aza‐dC,	we	found	that	the	expressions	of	miR‐1284	were	sig‐
nificantly	decreased	in	U251	and	U87MG,	indicating	a	positive	impact	
of	DNA	methylation	on	miRNA	expression	 (Figure	7C).	By	transfer‐
ring	miR‐1284	mimics	into	U251,	we	established	a	miR‐1284‐overex‐
pressed	U251	model,	which	was	validated	by	qPCR	(Figure	7D).	CCK‐8	
analysis	showed	that	over‐expression	of	miR‐1284	reduced	cell	viabil‐
ity	of	U251	(Figure	7E).	Flow	cytometry	analysis	showed	that	over‐
expression	of	miR‐1284	was	also	associated	with	lower	frequency	of	
tumor	cells	 in	S	and	G2	phase	 (Figure	7F),	and	higher	 frequency	of	
apoptotic	cells	(Figure	7G).	Finally,	wound‐healing	assay	showed	that	
migration	was	inhibited	by	over‐expression	of	miR‐1284	(Figure	7H).

4  | DISCUSSIONS

This	 study	 investigated	 genome‐wide	 DNA	 methylation	 microar‐
ray	data	of	miRNA‐associated	CpGs	to	explore	the	clinical	value	of	

TA B L E  5  KEGG	pathway	enrichment	analysis	of	predicted	target	genes

GOID GOTerm
Term 
P valuea 

Group 
P valuea  Nr genes Associated genes found

KEGG:04520 Adherens	junction <0.001 <0.001 21 ACP1,	ACTN4,	BAIAP2,	CREBBP,	CTNND1,	EP300,	INSR,	
MAPK1,	MAPK3,	MET,	NLK,	SMAD4,	SNAI1,	SNAI2,	
SORBS1,	SRC,	SSX2IP,	TGFBR1,	VCL,	WASL,	YES1

KEGG:04110 Cell	cycle <0.001 <0.001 29 CCND2,	CDC14A,	CDC16,	CDC27,	CDC6,	CDK2,	
CDKN2B,	CDKN2D,	CHEK2,	CREBBP,	CUL1,	E2F3,	
E2F5,	EP300,	GADD45A,	MAD2L1,	MCM5,	RAD21,	
RB1,	SKP1,	SMAD4,	SMC1B,	SMC3,	STAG1,	TTK,	WEE1,	
YWHAB,	YWHAG,	YWHAQ

KEGG:04350 TGF‐beta	signaling	
pathway

0.001 <0.001 21 ACVR1,	ACVR1C,	BMPR1B,	CDKN2B,	CREBBP,	CUL1,	
E2F5,	EP300,	GDF5,	ID2,	ID4,	MAPK1,	MAPK3,	NODAL,	
PPP2R1B,	RPS6KB1,	SKP1,	SMAD4,	SMAD5,	SMAD7,	
TGFBR1

KEGG:04012 ErbB	signaling	
pathway

0.004 <0.001 20 CAMK2G,	ERBB4,	EREG,	GRB2,	HBEGF,	KRAS,	MAP2K1,	
MAP2K4,	MAPK1,	MAPK10,	MAPK3,	NCK2,	PAK2,	
PAK4,	PAK6,	PIK3R1,	PRKCB,	RPS6KB1,	SHC3,	SRC

KEGG:04360 Axon	guidance 0.005 <0.001 32 ABLIM1,	ABLIM3,	ARHGEF12,	BMPR1B,	CAMK2G,	
EPHA5,	EPHA7,	GNAI1,	KRAS,	MAPK1,	MAPK3,	MET,	
NCK2,	NFATC2,	NRP1,	NTNG1,	PAK2,	PAK4,	PAK6,	
PIK3R1,	PTCH1,	ROCK2,	RYK,	SEMA3C,	SEMA4A,	
SEMA4G,	SLIT3,	SRC,	SRGAP1,	SRGAP2,	SSH2,	UNC5B

KEGG:05211 Renal cell carcinoma 0.009 <0.001 17 CREBBP,	EP300,	EPAS1,	ETS1,	GRB2,	HIF1A,	KRAS,	
MAP2K1,	MAPK1,	MAPK3,	MET,	PAK2,	PAK4,	PAK6,	
PIK3R1,	RAP1A,	SLC2A1

KEGG:04114 Oocyte	meiosis 0.011 <0.001 25 ADCY7,	AURKA,	CAMK2G,	CDC16,	CDC27,	CDK2,	
CPEB2,	CPEB4,	CUL1,	FBXW11,	MAD2L1,	MAP2K1,	
MAPK1,	MAPK3,	PPP1CB,	PPP2R1B,	PPP2R5C,	
RPS6KA3,	SKP1,	SMC1B,	SMC3,	SPDYE1,	YWHAB,	
YWHAG,	YWHAQ

KEGG:04218 Cellular	senescence 0.048 <0.001 28 CCND2,	CDK2,	CDKN2B,	CHEK2,	E2F3,	E2F5,	ETS1,	
FBXW11,	FOXO3,	GADD45A,	HIPK1,	HIPK3,	KRAS,	
LIN52,	LIN9,	MAP2K1,	MAP2K6,	MAPK1,	MAPK3,	NBN,	
NFATC2,	PIK3R1,	PPP1CB,	RASSF5,	RB1,	RRAS2,	
TGFBR1,	TSC1

aCorrected	with	Bonferroni	step	down.	
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miRNA	methylation	 in	non‐G‐CIMP	GBMs.	We	 identified	a	5‐CpG	
signature	 of	 miRNA	 methylation	 which	 could	 predict	 survival	 of	
non‐G‐CIMP	GBM	patients.	 This	 signature	 showed	 consistent	 and	
robust	prognostic	values	within	each	subgroup	of	different	ages,	mo‐
lecular	subtypes,	and	treatments	and	was	validated	in	independent	
patient	 cohort.	Notably,	different	 risk	groups	distinguished	by	 this	
signature	 showed	different	bevacizumab	 therapy	outcomes.	These	
findings	suggest	that	methylation	status	of	this	5‐CpG	relative	miR‐
NAs	 is	 closely	 correlated	 with	 GBM	malignancies,	 especially	 with	
tumor	angiogenesis,	and	this	5‐CpG	methylation	signature	has	good	
potential	to	be	an	indiction	for	bevacizumab	therapy	in	non‐G‐CIMP	
GBMs.

As	GBMs	are	characterized	by	high	heterogeneity	and	massive	
vessels,	anti‐VEGF	therapy	was	expected	 to	 improve	 the	outcome	
of	GBM	patients.27	Bevacizumab,	a	humanized	monoclonal	antibody	
against	VEGF,	has	been	the	most	promising	anti‐angiogenic	agents	
for	treating	GBMs	and	was	approved	for	recurrent	GBM	treatment.28 
However,	in	newly	diagnosed	GBM	patients,	recent	randomized	tri‐
als	failed	to	yield	clear	survival	benefits	when	applied	bevacizumab	
plus	Stupp	regimen,29	implying	that	proper	indicators	are	needed	for	
bevacizumab	treatment.	In	this	study,	the	miRNA	methylation‐based	
risk	subgroups	were	associated	with	differential	enrichments	of	pro‐
angiogenic	gene	sets	(eg,	hypoxia	or	VEGF	pathways),	suggesting	the	
possibility	of	differential	responses	to	bevacizumab	within	the	risk	

F I G U R E  7  Characteristics	of	miR‐1284	in	GBM	cell	lines.	A,	Methylation	level	of	miR‐1284	in	glioma	cell	lines	(U251,	U87MG,	T98G,	
and	SHG44).	B,	Relative	expression	of	miR‐1284	compared	with	U6	in	glioma	cell	lines.	No	difference	was	found	between	each	cell	line.	
C,	Expression	of	miR‐1284	by	qRT‐PCR	in	U251	and	U87MG	cells	treated	with	5‐Aza‐2‐deoxycytidine	(AZA).	D,	Expression	of	miR‐1284	
transfected	with	mimic	and	mimic	NC	for	48	h	(P	<	0.001).	E,	CCK‐8	assay	testing	cell	viability	from	1	to	5	d.	F,	Flow	cytometry	detecting	
cell	cycle	of	U251	and	PI	values	in	different	groups	(G)	Flow	cytometry	testing	cell	apoptosis	after	transfection.	H,	Representative	results	of	
wound‐healing	assay	and	the	percentage	of	healing	area	determined	using	the	ImageJ.	*P	<	0.05,	**P	<	0.01,	***P < 0.001
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subgroups.	Accordingly,	distinct	survival	benefits	were	observed	in	
Rennes	cohort	with	the	use	of	bevacizumab	at	progression:	High‐risk	
patients	seemed	to	benefit	more	from	the	bevacizumab‐contained	
therapy.	These	results	suggest	that	the	5‐CpG	signature	is	of	poten‐
tial	use	to	optimize	bevacizumab	therapy	by	identifying	appropriate	
patient	candidates.

For	biological	 features	of	 this	5‐CpG	signature,	 target	genes	of	
relative	miRNAs	were	analyzed	with	bioinformatic	methods.	Results	
showed	these	miRNAs	regulated	a	great	many	genes	and	might	coop‐
erate	with	each	other	to	regulate	specific	genes.	The	profound	char‐
acteristics	of	the	target	genes	were	analyzed	based	on	GO	database	
and	KEGG	database.	From	the	results	of	GO	analysis	of	BF	of	these	
target	genes,	we	can	infer	that	these	miRNAs	might	greatly	partici‐
pate	in	biological	regulation,	especially	regulation	of	transcription	by	
RNA	polymerase	II,	also	in	metabolic	processes	such	as	macromole‐
cule	biosynthetic	process	and	cellular	protein	modification	process.	
For	MF,	these	miRNAs	might	affect	ubiquitin‐like	protein	transferase	
activity,	 RNA	 polymerase	 II	 transferase	 activity,	DNA‐binding	 pro‐
cess,	and	catalytic	activity	especially	in	MAP	kinase	activity.	For	CC	
results,	these	miRNAs	might	regulate	synthesization	of	nuclear	chro‐
matin	and	extracellular	space	components.	Pathway	enrichment	anal‐
ysis	implied	these	miRNAs	were	correlated	with	differentiation,	cell	
motility,	 immunology,	cell	proliferation,	and	migration.	Of	note,	 the	
pathway	enrichment	analysis	showed	target	genes	were	enriched	in	
pathways	of	renal	cell	carcinoma	(KEGG:05211),	TGF‐beta	signaling	
pathway	(KEGG:04350),	and	ErbB	signaling	pathway	(KEGG:04012).	
The	 renal	 cell	 carcinoma	 pathway	 includes	 HIF‐α	 pathway	 and	
strongly	correlates	with	VEGF	and	PDGF	production.	This	is	consis‐
tent	with	the	above	GSEA	results	on	gene	expression	data	of	TCGA	
and	reminds	the	effects	of	these	signature	relative	miRNAs.

To	 further	 explore	 the	 biological	 relevance	 of	 the	 5‐CpG	 sig‐
nature,	 we	 selected	 one	 miRNA	 (miR‐1284)	 for	 functional	 experi‐
ments.	MiR‐1284	has	been	 reported	 to	have	 tumor‐inhibiting	 roles	
in	lung,	gastric	and	ovarian	cancers,30‐32	but	its	roles	in	GBMs	were	
still	 unknown.	 The	 in	 vitro	 experiments	 confirmed	 the	 anti‐tumor	
role	 of	 miR‐1284	 as	 inhibiting	 glioma	 cell	 proliferation	 and	 migra‐
tion	and	 inducing	glioma	cell	apoptosis.	 Interestingly,	when	treated	
with	demethylation	 agent,	 the	 expression	of	miR‐1284	was	 signifi‐
cantly	decreased,	which	indicated	a	positive	correlation	between	its	
DNA	methylation	and	expression.	These	results	supported	the	bio‐
logical	 implications	of	 the	5‐CpG	signature	 that	higher	methylation	
status	 of	miR‐1284	was	 positively	 correlated	with	 patient	 survival.	
In	general,	hypermethylation	of	promoter	inhibits	transcription	pro‐
cesses	and	decreases	miRNA	expression.	However,	there	have	been	
emerging	evidences	reporting	that	DNA	methylation	could	facilitate	
the	 expression	 in	 some	 situations	 despite	 not	 knowing	 the	 exact	
mechanisms.33,34

Among	 the	 other	 panel‐associated	 miRNAs,	 some	 have	 been	
reported	 to	be	 implicated	 in	glioma	biology.	MiR‐132	was	upregu‐
lated	in	GBMs	and	was	a	potential	indicator	of	poor	prognosis.35,36 
MiR‐127	and	miR‐433	are	both	derived	 from	an	overlapping	gene	
locus	and	colocalized	within	a	cancer‐associated	genomic	region.37 
MiR‐127	was	reported	to	promote	GBM	cell	migration	and	invasion	

by	targeting	tumor‐suppresser	gene	SEPT7.38	MiR‐433	was	reported	
to	be	commonly	dysregulated	in	GBMs	and	suppressed	glioma	cell	
proliferation,	migration,	 invasion,	and	enhanced	sensitivity	to	TMZ	
therapy.39,40	Regarding	miR‐759	and	miR‐1248,	no	biological	or	clini‐
cal	evidences	have	been	reported	in	cancers	so	far.

Our	 study	 has	 several	 limitations.	 First,	 as	 a	 retrospective	
study,	 the	 identification	 and	 validation	 of	 the	 signature	 were	
based	on	open	source	databases	which	had	already	been	uploaded	
before.	The	follow‐up	 information	of	 these	researches	could	not	
be	 considered	 in	 our	 study.	 Also,	 clinical	 information	 such	 as	
drug	data	and	recurrent	 therapy	of	some	cases	was	not	detailed	
enough,	which	made	it	hard	to	make	more	subtle	analysis.	Second,	
bias	 caused	 by	 the	 differences	 among	 these	 selected	 trial	 plat‐
forms	 should	 be	 considered	 even	 with	 compensatory	 statistical	
measure.	More	proof	should	be	collected	before	conducting	fur‐
ther	trials.	Third,	we	only	performed	in	vitro	study	on	one	miRNA,	
more	in	vitro	and	in	vivo	studies	are	needed,	especially	those	on	
GBM	angiogenesis.

In	conclusion,	by	analyzing	genome‐wide	DNA	methylation	mi‐
croarray	data	of	miRNAs‐associated	CpGs,	we	presented	the	initial	
report	on	the	prognostic	relevance	of	aberrant	DNA	methylation	in	
miRNA	regions	 in	GBMs.	The	 identification	of	 the	biologically	and	
clinically	 relevant	 miRNA	 methylation	 signature	 may	 represent	 a	
promising	approach	for	optimizing	prognostication	of	GBMs,	and	be	
of	potential	value	 for	 improving	 individualized	 treatment	and	anti‐
angiogenic	therapy	in	particular.
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