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An age stratified analysis 
of the biomarkers in patients 
with colorectal cancer
Hui Yao1, Chengjie Li2 & Xiaodong Tan1*

Colorectal cancer (CRC), a common malignant tumor of the digestive tract, has a high incidence 
and mortality rate. Several recent studies have found that aging is associated with the increasing 
risk of cancer. Nevertheless, the expression status and function of age-related genes in CRC is still 
not well understood. In the study, we comprehensively analyzed the gene expression data of CRC 
patients from The Cancer Genome Atlas (TCGA) database. Age-related differential expression genes 
(age-related DEGs) in tumor tissues compared with normal tissues of CRC were further identified. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 
age-related DEGs were performed by clusterProfiler of R. Afterwards, we used the STRING database 
to map the protein–protein interaction network of DEGs. We constructed prognostic model through 
univariate and multivariate COX regression analyses, and further evaluated their predictive power. The 
prognostic gene signature-related functional pathways were explored by gene set enrichment analysis 
(GSEA). The weighted gene co-expression network analysis (WGCNA) was used to identify key module 
associated with two prognostic gene signatures. Finally, we used the Metascape to perform functional 
enrichment analysis of genes in the key module. A total of 279 age-related DEGs were identified 
from the TCGA database. GO and KEGG enrichment analysis showed that the age-related DEGs 
were enriched in the Modulation of chemical synaptic transmission and Neuroactive ligand–receptor 
interaction. Moreover, we established a novel age-related gene signature (DLX2 and PCOLCE2) for 
overall survival in CRC, which was further predicted in both the training and validation sets. The results 
of GSEA demonstrated that numerous disease-related pathways were enriched in the high-risk group. 
We identified 43 genes related to the DLX2 and PCOLCE2 by the WGCNA co-expression network. 
We also found that these 43 genes were enriched in the cancer-related pathways. To sum up, the 
study identified an age-related gene signature for predicting the prognosis of CRC patients, which is 
conducive to the identification of novel prognostic molecular markers.

CRC, which covers colon and rectal cancers, is the third most prevalent cancer worldwide and the fourth leading 
cause of death from cancer1–3. Although the overall incidence of CRC is declining, especially in high-income 
countries, the morbidity of young populations has shown an upward trend. The incidence of CRC was reported 
to have declined by about 3% per year between 2003 and 2012, but increased by 2% in those under 50 years of 
age4,5. The prediction results from the Surveillance, Epidemiology, and End Results (SEER) database indicate that 
by 2030 the incidence of colon cancer will increase by 90.0% and 27.7% for patients 20–34 years and 35–49 years, 
and rectal cancer will increase by 124.2% and 46.0%, respectively6. The concept of early-onset colorectal cancer 
has emerged in the context of the younger age of onset of CRC. Some researchers define early-onset colorectal 
cancer as CRC in people under the age of 50 and applied it in specific studies, although the widely recognized 
definition of this concept needs further efforts7,8. Finally, a recent large population study showed that a higher 
polygenic risk score was actually more strongly associated with early-onset CRC development at a cut-off age of 
50 years of diagnosis, especially if there was no family history of colorectal cancer8. Therefore, we speculate that 
50 years old is a meaningful cut-off value for the occurrence, metastasis and prognosis of colorectal cancer, and 
try to take 50 years old as the basis for grouping.

Age is a widespread adverse factor in the occurrence of cancer9. Previous studies have shown differences in 
histological features and prognosis between elderly and young patients with cancer10,11. These findings empha-
size the importance of diagnostic age on prognosis, but the impact of age on different tumors and the role of 
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age-related genes in clinical decision-making need to be further explored. Currently, we are concerned about the 
dramatic and unexplained upsurge in the incidence of CRC among the younger people12. The available evidence 
suggests that young CRC patients exhibit different disease staging, histological characteristics, and molecular 
characteristics variation variants than older ones, and that patients with early-onset CRC present with unique 
genetic characteristics13,14. A previous large population study showed that patients with colorectal cancer under 
the age of 50 had fewer BRAF V600 mutations than those over the age of 50, which means special consideration 
and further investigations should be performed15. The identification of prognostic biomarkers is known to be 
important in guiding patients to systemic therapy for optimal therapeutic benefit16,17. However, the development 
of prognostic biomarkers for CRC and the evaluation of their predictive role are currently limited18,19. Mean-
while, it is not yet clear whether age-related biomarkers can be applied as prognostic markers in patients with 
CRC. Therefore, it is crucial to analyze the prognostic value and mechanisms of age-related genes in the CRC.

In this study, we obtained the transcriptome data and corresponding clinical information of CRC patients 
from TCGA database, and analyzed the differential expression of age-related genes between normal and CRC 
patients to explore their potential functions. We further constructed and validated a prognostic model based on 
differentially expressed age-related genes, and analyzed the biological functions associated with the prognostic 
signature by GSEA. Finally, genes associated with prognostic signatures were screened by WGCNA, and the key 
genes. The results of this study provide biomarkers for prognosis in patients with colorectal cancer.

Material and methods
Data processing.  We searched the transcriptome data and corresponding clinical data of 41 normal sam-
ples and 460 CRC samples from the public database TCGA (https://​portal.​gdc.​cancer.​gov/). The database plat-
form have obtained ethical approval of participants and all methods were performed in accordance with the rel-
evant guidelines and regulations. The 460 patients with CRC were divided into old (equal or older than 50 years) 
and young (younger than 50 years) groups according to the age at initial pathologic diagnosis. There were 407 
CRC patients in the old group and 53 CRC patients in the young group (Supplementary Table S1). A total of 444 
cases of CRC were selected for subsequent analysis by excluding that the patients who had no survival time or 
survival status.

Identification of differentially expressed genes (DEGs).  The DEGs between normal and CRC sam-
ples or young group and old group were analyzed using R software packages ‘edgeR’, respectively. The cutoff 
criteria were |log2 fold change (FC)|> 1 and P value < 0.05. The visualized volcano maps of genes were done using 
the ‘ggplot2’ of the R package.

GO and KEGG pathway analysis of DEGs.  The biological functions of these 279 DEGs were compre-
hensively detected by GO enrichment and KEGG pathway analysis. The GO analysis terms included cellular 
component (CC), molecular function (MF), and biological process (BP). All enrichment analyses were carried 
out by utilizing the ‘Cluster Profiler’ package of R software. A P value less than 0.05 was considered as statisti-
cally significant.

Protein–protein interaction (PPI) network construction.  The STRING database (https://​string-​db.​
org/) was used to construct a PPI network of 279 DEGs. Then, the data were imported into the software of 
Cytoscape for visual presentation.

Construction and verification of the prognostic signature.  The 444 cases of CRC were randomly 
grouped into a training set (n = 310) and a validation set (n = 134) according to a ratio of 7:3. Univariate Cox 
regression analysis was performed to filtrate the selected overall survival (OS)-related DEGs in the training set. 
Then, the multivariable Cox regression analysis was carried out to establish the prognosis model based on the 
DEGs associated with OS. The risk score calculating formula was:

where Coef means the regression coefficients of genes, Exp is the normalized expression values of each gene 
signature. The formula was used to calculate the risk score for each CRC patient in the TCGA database. The 
median risk score was used as the threshold, based on which the CRC patient in the training set was divided into 
a high-risk group and a low-risk group. The survival differences between the two groups were calculated using the 
Kaplan–Meier (K–M) and log-rank test. In addition, a ROC curve was plotted to assess the 3- and 5-year survival 
probability of CRC patients using the ‘survivalROC’ R package. In the validation set, the same procedure was 
performed to validate the risk model. Further, the independent prognostic value of the risk model was evaluated 
using univariate and multivariate Cox regression analyses. These analyses were performed with the ‘survival’ and 
‘survminer’ R packages. The R package ‘rms’ was used to establish a nomogram to predict the probability of 1-, 3-, 
and 5-year survival of BUC patients. The performance of the nomogram was evaluated using calibration curves.

Gene set enrichment analysis (GSEA).  To inspect the different signaling pathways between the low- 
and high-risk groups, GSEA (version 4.1.0) was conducted by the ‘clusterProfiler’ package in R. The significantly 
enriched pathways in the two risk groups were selected by P value < 0.05.

Construction of WGCNA.  The R package ‘WGCNA’ was used to construct the co-expression network and 
to identify the co-expressed modules with prognostic genes signature. After excluding genes with an average 

Risk score = ExpGene1∗Coef1 + ExpGene2∗Coef2 + ExpGene3∗Coef3 . . .

https://portal.gdc.cancer.gov/
https://string-db.org/
https://string-db.org/
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expression amount less than 1, and the remaining genes were used to construct a co-expression network. The 
expression of DLX2, PCOLCE2, risk, and risk score was considered as clinical traits in the co-expression net-
work. The power of β = 7 (scale-free R2 = 0.9) were selected as the soft-thresholding parameter to ensure a scale-
free network, and the dynamic hybrid cut method was used to identify co-expressed gene modules.

Statistical analysis.  All analyses were performed using the R programming language. The Metascape was 
used to perform functional enrichment analysis of 43 key modular genes. In all analyses, P values less than 0.05 
were considered as statistically significant.

Ethics approval and consent to participate.  Data was collected from public data repositories.

Results
Identification of age‑related DEGs in CRC patients.  To screen out the hub age-related genes that con-
tribute to CRC malignant progression, we assessed the DEGs between CRC and normal samples. A total of 4916 
DEGs were obtained from the TCGA database, including 2344 upregulated genes and 2572 downregulated genes 
(Fig. 1A and Supplementary Table S2). Next, we identified 399 DEGs between young and old groups, of which 65 
DEGs were downregulated and 334 were upregulated (Fig. 1B and Supplementary Table S3). To reveal the DEGs 
associated with age, a Venn diagram was constructed (Fig. 1C), displaying 279 age-related DEGs that were over-
lapped between the 4916 DEGs and 399 age-related genes (Supplementary Table S4). These include genes such 
as SYT4, HPSE2 and KCNB1. To analyze the interrelationship among age-related DEGs, we constructed a PPI 
network. The top fifty genes with the strongest interactions were labeled red and yellow as shown in Fig. 1D and 
Supplementary Table S5. SNAP25 and SYT4 were hub DEGs with high degree of interactions in the PPI network.
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Figure 1.   Differentially expressed genes in the TCGA database. (A) The DEGs between CRC and normal 
samples. (B) The DEGs between young and old groups. (C) The Venn diagram describes 279 common 
differentially expressed genes. (D) PPI network of 279 common genes. (software: The STRING database, version 
number: 11.0, URL link: https://​versi​on-​11-0.​string-​db.​org/).

https://version-11-0.string-db.org/
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Functional enrichment analysis of DEGs.  To investigate the potential regulatory mechanism of 279 
age-related DEGs in CRC, we performed GO and KEGG enrichment analysis. Using the criteria of P value < 0.05, 
86 BP terms, 26 CC terms, 11 MF terms and 6 KEGG terms were enriched in our study. The top 10 GO terms and 
KEGG pathways were shown in Fig. 2A,B. GO enrichment mainly included the modulation of chemical synaptic 
transmission, regulation of trans-synaptic signaling, presynapse, and syntaxin binding. KEGG pathways mainly 
included Neuroactive ligand-receptor interaction, cell adhesion molecules, and mineral absorption. Detailed 
results of GO and KEGG analysis were shown in Supplementary Table S6–S7.

Establishment of the prognostic age‑related gene signature.  Univariate analysis was per-
formed to evaluate associations between 279 DEGs and OS in the training set. In the light of the selection 
criteria (P < 0.05), 2 DEGs were demonstrated to be associated with the OS of CRC patients (Table 1). Subse-
quently, DLX2 and PCOLCE2 were selected to establish a prognostic model by multivariate Cox regression 
analysis (Table 2). The risk score was calculated with the following formula: risk score = [Expression level of 
DLX2 * (0.989191835)] + [Expression level of PCOLCE2 * (0.417405617)].

The CRC patients were divided into high- and low-risk groups according to the median risk score. K–M 
analysis showed that the survival probability in the high-risk group was significantly lower than that in the 
low-risk group (P = 0.012; Fig. 3A). As shown in Fig. 3B, the AUC values of 3- and 5-year ROC were 0.610 and 
0.613, respectively. The survival state of each patient was shown in Fig. 3C,D. When the risk score increased, 
the number of deaths were also increased. The heatmap displayed expression profiles of 2 prognostic genes in 
high- and low-risk patients (Fig. 3E). The expression of two prognostic genes were all significantly up-regulated 
in the high-risk patients compared with the low-risk patients. We further verified the performance of the age-
related prognostic gene in the validation set and achieved similar results. The median value of the risk score in 
the training set was used to divide the validation set into a high-risk group and a low-risk group. The survival 
probability of high-risk patients was significantly lower than that of low-risk patients (P = 0.014; Fig. 4A). The 
AUC of ROC at 3, and 5 years was 0.718 and 0.776 in the validation set, respectively (Fig. 4B). The risk score and 
survival state distribution were also visualized (Fig. 4C,D). The heatmap displayed the expression of five signature 

Figure 2.   Functional enrichment analysis of DEGs. (A) The top 10 GO terms. (B) The top 10 KEGG pathways.

Table 1.   Univariate Cox proportional hazard regression analysis of different genes.

Gene HR HR.95L HR.H P value

DLX2 2.666280196 1.413137639 5.03068483 0.002465452

PCOLCE2 1.524810809 1.067433191 2.178167237 0.020415715

Table 2.   Multivariate Cox proportional hazard regression analysis.

Gene Coef HR HR.95L HR.95H P value

DLX2 0.989191835 2.68906039 1.408967681 5.132158727 0.002702859

PCOLCE2 0.417405617 1.518018122 1.06348033 2.166828058 0.02150802
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genes (Fig. 4E). On the whole, these results indicated the prognosis signature showed satisfactory performance 
in predicting the OS for CRC.

Independent prognostic role of 2 gene signature.  We performed univariate and multivariate Cox 
regression analyses to further investigate whether the risk was an independent prognostic factor for CRC 
patients. Univariate COX regression analysis indicated that the 5 clinicopathological characteristics (Age, Stage, 
T, N, M) and risk had statistical significance with OS of CRC patients (Fig. 5A). Multivariate COX regression 
analysis illustrated that risk was an independent prognostic factor of CRC patients (Fig. 5B). We further devel-
oped a nomogram to predict 1-, 3- and 5-year survival probability in CRC, according to the results from multi-
variate COX regression analysis (Fig. 5C). Moreover, calibration plots demonstrated that in comparison with the 
prognostic model, the nomogram had a similar performance (Fig. 5D).

Gene set enrichment analysis with the 2 gene signature.  We performed GSEA of all genes between 
high- and low-risk groups in the whole TCGA database to explore the underlying biological mechanism of 
the gene signature. As is presented in Fig.  6 and Supplementary Table  S8, KEGG pathways, such as ‘TGF 
BETA SIGNALING PATHWAY’, ‘GLYCOSAMINOGLYCAN BIOSYNTHESIS CHONDROITIN SULFATE’, 
‘HEDGEHOG SIGNALING PATHWAY’, ‘BASAL CELL CARCINOMA’, and ‘PATHWAYS IN CANCER’ were 
significantly enriched in the high-risk group.

Determination of the prognostic signature‑related module by WGCNA.  Moreover, we also focus 
on the genes related to prognostic signature through constructed WGCNA co-expression network. By setting 
a soft-thresholding power of 7 (scale-free R2 = 0.9), we eventually identified 20 modules (Fig. 7A,B). Then, we 

p = 0.012
Hazard Ratio = 0.54

0.00

0.25

0.50

1.00

0 1000 2000 3000 4000
Time (Days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High Risk
Low Risk

155 44 9 2 0

155 15 4 2Low Risk

High Risk

Number at risk

0.0 0.2 0.4 0.6 1.0

0.
0

0.
2

0.
4

0.
6

1.
0

ROC curve, Method = KM

se
ns

iti
vi

ty

3 year AUC =  0.610
5 year AUC =  0.613

A B

0 50 100 150 200 250 300

0
10

00
30

00

Su
rv

iv
al

 ti
m

e 
(D

ay
s)

Dead
Alive

0 50 100 150 200 250 300

1
2

3
4

5
6

High risk
low Risk

C

D

DLX2

PCOLCE2

SampleType SampleType
high risk
low risk

0

0.2

0.4

0.6

E
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performed a correlation analysis between 20 modules and clinical traits (DLX2 and PCOLCE2). As shown in 
Fig. 7C, the MElightcyan1 module had the highest Pearson coefficient with DLX2 (MElightcyan1, Cor = 0.77, 
P < 0.00001). The MElightcyan1 module contained a total of 43 genes, as shown in Supplementary Table S9. 
To further understand the biological functions of the 43 genes from the MElightcyan1 module, the Metascape 
website was adopted to carry out functional annotations of the genes. The results indicated that the 43 genes 
were associated with the cancer-related pathways, such as neuroendocrine tumor, carcinoid tumor, and islet cell 
tumor et al. (Fig. 7D).

Discussion
Generally, the prevalence of cancer and the likelihood of a poor prognosis will increase with the advancing age20, 
but the exact mechanism of which is not clarified21. Although the increase in screening has contributed to the 
incidence decline in colorectal cancer, the incidence increased in younger patients and showed more aggressive 
tissue types22,23. In addition, early-onset colorectal cancer is associated with strong inherited predisposition and 
high incidence, and are more likely to develop metastatic disease during the course of the disease24,25. These 
observations indicate that age-related changes in colorectal cancer patients are complex and stimulate our inter-
est in exploring age-related genes in colorectal cancer. This study analyzed the differentially expressed genes in 

p = 0.014
Hazard Ratio = 0.4
95% CI: 0.19 − 0.84

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time (Days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High Risk
Low Risk

67 18 1 1 1

67 26 5 3 1Low Risk

High Risk

Number at risk

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve, Method = KM

1−specificity

se
ns

iti
vi

ty

3 year AUC =  0.718
5 year AUC =  0.776

0 20 40 60 80 100 120

2
4

6
8

10

Patients (increasing risk socre)

R
is

k 
sc

or
e

High risk
low Risk

0 20 40 60 80 100 120

0
10

00
30

00

Patients (increasing risk socre)

Su
rv

iv
al

 ti
m

e 
(D

ay
s) Dead

Alive

DLX2

PCOLCE2

SampleType SampleType
high risk
low risk

−0.4

−0.2

0

0.2

0.4

0.6

B

C

A

D

E

Figure 4.   Validation of age related genes in CRC patients derived from TCGA dataset. (A) Kaplan–Meier 
survival curve of CRC patients between the low-risk group and the high-risk group. (B) 3- and 5-year ROC 
curve. (C, D) Risk score and survival status of the high-risk and low-risk groups. (E) The heat map of expression 
profile of the 2 prognostic genes. (software: pheatmap package in R, version number: 0.7.7, RUL link: https://​
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elderly and young patients with colorectal cancer, and constructed a survival risk score model to explore the 
effects of age-related biomarkers on the prognosis of patients with colorectal cancer.

In this study, 279 differentially expressed age-related genes were screened. These include genes such as SYT4, 
HPSE2 and KCNB1, which have been reported to be associated with the development and potential treat-
ment of colorectal cancer26–28. GO and KEGG enrichment analyses revealed the main pathways are neuroactive 
ligand–receptor interaction and cell adhesion molecules. SYT4 with strong protein–protein interactions in our 
study was reported to be involved in retrograde signaling along with cell adhesion complexes, which may be 
closely related to SYT4 regulating retrograde signaling and synaptic growth through shared and parallel signaling 
pathways29. Various cell adhesion molecules such as CEACAM-1 and CD44v6 are closely related to the invasion 
and metastasis of colorectal cancer30–34. Neuroactive ligand-receptor interactions have been shown to be associ-
ated with other gastrointestinal cancer35. Extensive research shows that chronic stress promotes the occurrence 
and progression of cancer. A recent study reported that the enrichment pathway of neuroactive ligand-receptor 
showed significant differences under different chronic stress conditions36,37. Stress has a negative impact on the 
neuroendocrine system and sympathetic nervous system. The threat of stress not only activates the sympathetic 
nervous system and increases catecholamine levels locally or systemically, but also increases inflammation and 
promotes tumor angiogenesis38,39. More and more studies have shown that oxidative stress is an important factor 
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in the pathogenesis of colorectal cancer, these findings indicate that the exact functions and roles of neuroactive 
ligand-receptor in colorectal cancer are worthy of further exploration40,41.

After verification, we found that PCOLCE2 and DLX2 were an independent prognostic factors for CRC. 
PCOLCE2 encodes a functional procollagen c-protease enhancer, which is combined with five other genes to 
predict the risk of death in head and neck squamous cell carcinoma42. Our results are similar to previous find-
ings, Chen et al. constructed a prognostic gene signature consisting of 9 genes including PCOLCE2 with a good 
prediction of overall survival in CRC patients43. Previous study reported mutations in PCOLCE2 in patients with 
rectal cancer, but the specific mechanism of PCOLCE2 in CRC is less known44,45. Recent studies found PCOLCE2 
has been identified as the central gene of endometrial cancer progression, and low expression of PCOLCE2 is 
associated with longer overall survival duration which is consistent with our findings46. DLX2 is a member of 
distal-less homeobox gene family and has been confirmed to be involved in metabolic stresses occurring in 
solid tumors47. It has been reported to be associated with distant metastasis of colon adenocarcinoma and has 
been screened as a prognostic gene48. High DLX-2 expression is an adverse factor for cancer prognosis, degree 
of tumor differentiation, histological grade, and metastasis in a variety of cancers49. Regulating necrosis induced 

Figure 6.   Gene set enrichment analysis with the 2 gene signature.
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by metabolic stress and promoting the expression of markers of epithelial–mesenchymal transition are possible 
ways for DLX-2 to participate in tumor progression47,50. Previous studies examining the expression of DLX-2 
in human tumor tissues have shown that DLX-2 mRNA levels are higher in some tumors compared to normal 
tissues, and DLX-2 expression is higher in tumor tissues than in matched non-tumorigenic tissues and stromal 
cells around cancer cells in colon cancers47.

GSEA analysis showed that high-risk samples were mainly enriched in cancer related pathways, such as 
TGF-β signaling pathway and hedgehog signaling pathway. TGF-β signaling pathway is one of the most impor-
tant cellular pathways and has been reported to be involved in the initiation and maintenance of epithelial-to-
mesenchymal transition in several malignant tumors51. Consistent with previous studies, activation of TGF-β 
signaling pathway plays a key role in the occurrence and development of colorectal cancer, and most colorectal 
cancers show mutation inactivation of TGF-β pathway52. Promoting IL-22 production in Th17 cells through AhR 
induction and PI3K signal transduction by TGF-β and loss of SMAD4 are possible underlying mechanisms53,54. 
It is feasible to regulate CXCR4 and its related targets to inhibit the growth and metastasis of colorectal cancer 
by inhibiting TGF-β signal, which further suggests the clinical significance of the pathway enrichment results 
in this study55. Hedgehog signaling is important for somatic development, deregulation of hedgehog signaling 

Figure 7.   Weighted gene co-expression network analysis. (A) Soft-thresholding filtering. (B) Module screening, 
20 modules have been identified. (C) The relationship between the 20 modules and the clinical traits. The 
numbers in rectangles indicate the correlation coefficient and the numbers in brackets indicate the P value. (D) 
Bar graph of enriched pathway of 43 genes in MElightcyan1 module.
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is closely related to tumor growth and developmental defects56. The existing research on the exact involvement 
of hedgehog pathway in the growth and metastasis of colorectal cancer is still very limited, although it has been 
reported to be associated with several cancers, its role in colorectal cancer is somewhat controversial57. Research-
ers have found that hedgehog signaling downstream cascade Gli family transcription factors play an important 
role in promoting colorectal cancer cell proliferation and tumor growth, while the exact regulatory mechanism 
is poorly understood58,59.

This study screened 43 genes from the MElightcyan 1 module by WGCNA, and further construction of the 
PPI network revealed the two core genes of CHGA and SYP. The research of Zhang et al. also supports our con-
clusions and verifies the diagnostic value of CHGA in colorectal cancer60. The synaptophysin protein encoded 
by the SYP gene is highly related to a variety of cancers such as hepatoblastoma and central neurocytoma61.

We constructed a two-gene risk signature based on age using the clinical information of colorectal cancer 
patients in the TCGA database to predict the prognosis of colorectal cancer patients. Univariate, multivariate 
Cox regression, and survival curve analysis all show that DLX2 and PCOLCE2 are significantly related to patient 
survival. Combined with clinical information (such as age, TNM), we also constructed a nomogram to predict 
the survival rate of patients. Our research has certain limitations. This predictive feature requires further clinical 
and experimental verification. We are also aware that although the effectiveness of the model has been verified, 
further research is needed to explore more biomarkers to improve the accuracy of model differentiation and 
improve clinical practice reference.

Conclusion
DLX2 and PCOLCE2 are potential tumor markers of early-onset colorectal cancer. The high expression of DLX2 
and PCOLCE2 may influence and participate in the occurrence of colorectal cancer, and lead to the occurrence 
of early-onset colorectal cancer. The results of this study provide an important reference for the prognosis of 
early-onset colorectal cancer. The relevant findings and conclusions obtained in this study still need further 
mechanism exploration and molecular verification in the future.

Data availability
The data used for analysis may be obtained in the supplementary information or from the authors upon reason-
able request.
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