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Abstract

Motivation: A major goal of biomedical research is to identify molecular features associated with a

biological or clinical class of interest. Differential expression analysis has long been used for this

purpose; however, conventional methods perform poorly when applied to data with high within

class heterogeneity.

Results: To address this challenge, we developed EMDomics, a new method that uses the Earth

mover’s distance to measure the overall difference between the distributions of a gene’s expres-

sion in two classes of samples and uses permutations to obtain q-values for each gene. We applied

EMDomics to the challenging problem of identifying genes associated with drug resistance in ovar-

ian cancer. We also used simulated data to evaluate the performance of EMDomics, in terms of

sensitivity and specificity for identifying differentially expressed gene in classes with high within

class heterogeneity. In both the simulated and real biological data, EMDomics outperformed

competing approaches for the identification of differentially expressed genes, and EMDomics was

significantly more powerful than conventional methods for the identification of drug resistance-

associated gene sets. EMDomics represents a new approach for the identification of genes

differentially expressed between heterogeneous classes and has utility in a wide range of complex

biomedical conditions in which sample classes show within class heterogeneity.

Availability and implementation: The R package is available at http://www.bioconductor.org/

packages/release/bioc/html/EMDomics.html

Contact: abeck2@bidmc.harvard.edu

Supplementary information: supplementary data are available at Bioinformatics online.

1 Introduction

Genomic methods enable the measurement of tens-of-thousands to

millions of molecular analytes in parallel from a single sample.

A major goal of biomedical research is to use these technologies to

identify molecular features (e.g. gene-expression patterns) associated

with a biological or clinical class of interest, leading to improved

understanding of disease pathogenesis and the development of im-

proved diagnostics and therapeutics. Statistical methods have been
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developed for supervised analyses of gene expression profiling data

[e.g. significance analysis of microarrays (SAM) (Tusher et al.,

2001), Limma (Smyth, 2004), cuffdiff (Trapnell et al., 2012), DESeq

(Anders and Huber, 2010) and edgeR (Robinson et al., 2010)], and

these methods (and variants of them) are widely used in the gen-

omics community for the identification of genes differentially ex-

pressed between classes.

In general, these methods use a variant of the t-statistic (e.g.

SAM, Limma, cuffdiff) or approaches designed specifically for se-

quence read count data (such as that obtained by RNA-Seq) based

on an assumption of distribution of aligned short reads (such as

negative binomial distribution) to generate a test statistic to sum-

marize the gene’s differential expression. These approaches then use

a statistical test (e.g. Fisher exact test for edgeR and DESeq) or per-

mutation tests (e.g. SAM) to determine statistical significance of the

differential expression. For t-test-based methods, a gene’s test score

and significance will tend to be high when the difference in the mean

of the gene’s expression levels between the classes is large and the

gene’s variance is low. Thus, these methods perform well for the

identification of genes that show a high degree of between classes

(inter-class) heterogeneity in expression and a low degree of within

class (intra-class) heterogeneity. For the Fisher exact test based

methods, the null hypothesis is that there is no association between

a gene’s read counts and sample class labels. Similar to the t-test-

based methods, these methods do not effectively capture intra-class

heterogeneity since all expression values are summed within a group

to calculate the test statistic. In addition, because these methods are

based on parametric models, they do not perform well when the

data do not fit the method’s model, limiting their generalizability.

Although the term differentially expressed is now widely used in

the genomics community to refer to a gene that shows a significant

difference in mean expression between two classes, difference in

mean expression is not the only way a gene may be expressed differ-

entially between two classes, and conventional approaches fail to

capture alternative types of differential expression (e.g. two classes

with identical means and variances, but samples in one class show a

bimodal pattern of expression versus the other class which shows a

unimodal pattern of expression across samples). We expect this limi-

tation of conventional approaches to be especially important for the

identification of genes associated with phenotypic classes showing

significant intraclass heterogeneity. For example, a major goal of

genomics research in cancer is to identify genes associated with drug

resistance. Given the significant inter-patient molecular heterogen-

eity in cancer (Burrell et al., 2013) (in which subtypes of tumors are

driven by distinct sets of molecular alterations), it is likely that

among both sensitive and resistant tumors, there is heterogeneity in

the molecular factors driving the sensitive or resistant phenotype in

each class. In most cases, the structure of this intraclass heterogen-

eity will not be known ahead of time; thus, this unknown subtype

structure cannot be incorporated into standard supervised statistical

methods, which will limit the power of conventional methods for

identification of the relevant genes.

In a broader sense, the problems that sample heterogeneity im-

pose on analyzing gene expression data have been previously recog-

nized and several methods to address these problems have been

proposed. For example, the cMonkey algorithm (Reiss et al., 2006)

has been proposed to detect putative coregulated gene groupings by

clustering on both genes and conditions and integrating functional

associations and detection of sequence motifs to overcome hetero-

geneity across samples and conditions.

In particular, several prior methods have been proposed as alter-

natives to conventional differential expression analysis for

prioritizing genes, which may show heterogeneity both within and

across groups of samples. Lyons-Weiler et al. proposed a heuristic

method based on counting the number of samples in both groups

that are found beyond the nth percentile of the samples in the oppos-

ite group to identify genes that have different pattern of expression

in the two groups, beside difference in means. This method is called

permutation percentile separability test (PPST) (Lyons-Weiler et al.,

2004). MacDonald and Ghosh proposed a method, Cancer Outlier

Profile Analysis (COPA), based on robust centering and scaling of

the data to identify pairs of samples with mutually exclusive out-

liers, and they used this approach to identify genes involved in recur-

rent translocations (MacDonald and Ghosh, 2006). Both of these

methods may improve on conventional differential expression

analyses for special cases of intra-group heterogeneity [e.g. identifi-

cation of genes that show differential patterns of high- and low-

expression across groups according to a pre-specified percentile

threshold (Lyons-Weiler et al., 2004) and prioritization of pairs of

outlier genes (MacDonald and Ghosh, 2006)].

The primary goal of our study is to develop a powerful, robust,

and general approach for the identification of genes differentially ex-

pressed between classes that have significant intraclass heterogen-

eity. To achieve this goal, we compare distribution functions of

expression values between classes instead of considering just the first

few moments of the distributions (such as mean and variance) or

using parametric models. To do this, we use the Earth mover’s dis-

tance (EMD) (Rubner et al., 1998, 2000), which is an approach

commonly used in image processing to compute distances between

color histograms of two digital images. There are several other

methods for distribution comparisons. In this work, we chose EMD

because it is a nonparametric method, is not sensitive to histogram

binning, gives a measure of ground distance, allows for partial

matches, and can be computed efficiently (Rubner et al., 2000). To

our knowledge, EMD has not previously been developed or tested

for differential gene expression analysis. In the setting of two-class

problems, we use EMD to measure the overall difference between

the distributions of a gene’s expression in two classes of samples.

After computing EMD scores for each gene, we use permutations to

estimate false discovery rates and obtain q-values for each gene.

EMD can also be applied to other genomics data, such as copy num-

ber values or single cell RNA-Seq data, to identify genes with alter-

ation profiles that are different between two heterogeneous groups.

We refer to our method, which is an adaptation of the EMD method

to the analysis of Omics data, as EMDomics.

We use simulated data as well as real biological data to show the

power of EMDomics to identify differentially expressed genes com-

pared to alternative methods when there is both intra- and inter-

class heterogeneity. To evaluate the theoretical basis for EMDomics,

we used simulated data and compare the performance of

EMDomics to SAM and Limma (two of the most commonly used

differential expression analysis methods), as well as to Kolmogorov-

Smirnov (KS) and Cramer Von Mises (CVM) (two of the most com-

monly used distribution comparison methods), in terms of sensitivity

and specificity for identifying genes truly expressed differentially in

the simulation. To evaluate the performance of EMDomics on real

biological data, we apply it to the challenging problem of identifying

genes associated with drug response in ovarian cancer. Ovarian can-

cer is the deadliest and the second most common gynecologic cancer

(Siegel et al., 2013). Almost all women diagnosed with ovarian can-

cer receive a combination of cytoreductive surgery and platinum-

based chemotherapy (Heintz et al., 2006). Although a subset of

patients respond to chemotherapy, the majority do not respond and

ultimately succumb to the disease. There have been several
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published gene expression profiling studies on drug resistance for

ovarian cancer, but because of data heterogeneity it has been diffi-

cult to identify robust predictors of chemotherapy response using

conventional statistical approaches (Konstantinopoulos et al.,

2008). We use clinically annotated ovarian cancer gene expression

data from The Cancer Genome Atlas (TCGA). We compare

EMDomics performance on these data to Limma, SAM and edgeR,

as well as to KS and CVM, in terms of power to identify differen-

tially expressed genes, pathways and gene sets associated with drug

resistance in ovarian cancer.

2 Methods

EMD is a measure of distance between two distributions that re-

flects the minimum cost of transforming one distribution into the

other. If you imagine two piles of dirt (PileP and PileQ), the EMDPQ

is the minimum work required to move dirt from PileP to PileQ to

make the piles even (Fig. 1). EMD can be computed through solving

linear optimization of the classic transportation problem (Dantzig,

1951).

2.1 Differential expression analysis using EMD
We developed a new approach (EMDomics) for differential expres-

sion analysis of genomics data. Whereas test statistics generated by

standard differential expression approaches reflect the likelihood

that the difference of mean expression between two groups is non-

zero (e.g. SAM and Limma) or reflect the significance of the associ-

ation between abundance of short reads of the two groups (e.g.

edgeR and DEseq), the EMD test statistic reflects the overall differ-

ence between two normalized distributions (Fig. 1). The EMDomics

method computes the EMD for each gene in a genomewide analysis

and determines statistical significance through permutation testing

and estimation of false discovery rates (FDRs), indicated by q-values

(Storey, 2002).

2.2 Computing the EMD score
The EMD procedure is more fully described in (Rubner et al.,

1998). Briefly, the EMD computes the distance between two distri-

butions, which are represented by signatures. The signatures are sets

of weighted features that capture the distributions. For the differen-

tial gene expression analysis application, the signatures are data den-

sities computed from gene expression values’ histograms from each

class of samples. Two signatures P and Q can be represented as:

P¼ {(p1, wp1), . . . , (pm, wpm)}, where pi is the center of the ith histo-

gram cell and wpi is the weight of the cell; and

Q¼ {(q1,wq1), . . . , (qn,wqn)}, where qj is the center of the jth histo-

gram cell and wqj is the weight of the cell. Given P, Q, and dij (the

Euclidean distance between pi and qj), the optimization algorithm

looks for a flow, F¼ [fij] �where fij is the flow between pi and qj �
that minimizes the overall cost (supplementary information):

COSTðP;Q; FÞ ¼
Xm
i¼1

Xn

j¼1

fijdij;

After finding the optimal flow, fij, the EMD is defined as the nor-

malized total cost:

EMDðP;QÞ ¼

Xm

i¼1

Xn

j¼1
fijdijXm

i¼1

Xn

j¼1
fij

:

2.3 Calculating q-values for EMD scores
The q-value is the permutation-based estimate of the FDR when

calling significance at that gene’s test statistic level (Storey, 2002).

The FDR is the expected proportion of rejected null hypotheses that

are rejected incorrectly at a given significance threshold. To calcu-

late the q-value of the EMD test, we follow the approach proposed

in (Storey, 2002). To generate the null distribution, we permute the

sample labels and for each iteration, we compute the EMD between

the permuted classes. In our experiments, we performed 1000 iter-

ations, and we used the median of permuted EMDs for each gene as

a null distribution to compute FDRs and q-values.

To compute the q-value for each gene, we obtain FDRs for a

range of significance thresholds, from a strict threshold to a lenient

one. Given M¼ [m1, . . . , mN], a vector of median of permuted

EMDs, and EMD¼ [emd1, . . . , emdN], a vector of observed EMDs,

the mathematical representation of FDR for gene j and significance

threshold i, ti, is as follows:

FDRji ¼

XN

k¼1
Iðmk > tiÞXN

k¼1
Iðemdk > tiÞ

if emdj�ti

1 otherwise

:

8>>><
>>>:

Where I is the indicator function, N is the number of genes in the

dataset, and ti’s are in descending order from T to zero with step D:

fT; T � D; T � 2D; . . . ;D; 0g : In our experiments, we set D
¼ 0:001 and T to the rounded maximum EMD minus 1 (T¼3).

Then, the q-value for gene j is calculated as:

q-valuej ¼ minðFDRjÞ:

3 Results

3.1 Simulation experiment to evaluate the performance

of EMDomics
We designed and performed simulation experiments to evaluate the

performance of EMDomics across a variety of models of heterogen-

eity in a two class problem, ranging from no true intra-class hetero-

geneity (a single random process within each of the two classes) to

more extensive intraclass heterogeneity (a mixture of random proc-

esses within one class of samples). Using the simulated datasets, we

compared the sensitivity and specificity of EMDomics and SAM for

calling significant genes.

The simulated datasets each contain 16 000 genes measured

across a total of 240 samples. The samples come from two classes:

class 1 contains 90 samples; and class 2 contains 150 samples.

Simulated gene expression values for 15 000 genes were drawn from

the same Gaussian distribution for the two classes, with zero mean
Fig. 1. Overview of the EMD method and comparison with a standard t-test

for the assessment of differential expression
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and variance of 1 (N(0,1)), which simulate truly non-differentially

expressed genes. Gene expression values for the remaining 1000

genes are drawn from different distributions for the two classes and

simulate truly differentially expressed genes. For these 1000 truly

differentially expressed genes, we considered five cases for the Class

1, ranging from no intra-group heterogeneity to significant intra-

group heterogeneity as shown in Figure 2. For all five cases, gene ex-

pression values for the Class 1 samples are drawn from Gaussian

distributions with variance of 9, but with different means (mi)

(Class1�N(mi, 9)). Gene expression values for Class 2 are drawn

from Gaussian distributions with mean (m) centered on zero,

(m�N(0, 0.04)), and variance of 9 (Class2�N(m, 9)).

We applied EMDomics and SAM to the five simulated datasets.

We chose SAM, because it calculates q-values in the same manner as

EMDomics calculates q-values, facilitating a fair comparison be-

tween the methods. For each simulated case we evaluated a range of

q-value thresholds for calling significant genes from 0 to 1, and we

computed sensitivities (true positive rate) and precisions (1- false-

positive rate). The ROC curves for EMDomics and SAM are shown

in Figure 2(a). For case one, in which differentially expressed genes

are simulated using a single Gaussian distribution with fold change

of approximately 2 (no intraclass heterogeneity), EMDomics per-

forms similarly to SAM and both have area under curve (AUC) val-

ues close to 1. Adding more heterogeneity to the simulated data

resulted in EMDomics outperforming SAM, as indicated by higher

true positive rates and lower false positive rates and significantly

higher AUC for EMDomics (Fig. 2(a); Table 1). For cases 4 and 5,

which represent highly heterogeneous data, EMDomics is still able

to detect most differentially expressed genes with a low false positive

rate, while SAM performs poorly. Table 1 shows the performance of

EMDomics and SAM for a significance threshold of q-value¼0.05.

Figure 2(b) and (c) show true positive rates of EMDomics and SAM

for significance thresholds of q¼0.05 and 0.20, respectively. SAM’s

sensitivity for identifying significantly differentially expressed genes

from highly heterogeneous data (cases 4 and 5) is very low at both

significance thresholds, suggesting that EMDomics will increasingly

outperform SAM for the identification of differentially expressed

genes in the setting of increasing levels of intra-class heterogeneity.

To more fully evaluate this hypothesis, we compare the perform-

ance of EMDomics with SAM, Limma and edgeR on a real biomed-

ical data set in the following section.

Because the EMD method depends on the comparing the nor-

malized histograms of the two groups, it requires moderate to large

sample sizes. We investigated the effects of sample size on specificity

and sensitivity of the results using simulated datasets. We generated

six simulated datasets with different sample sizes, ranging from 300

to 3 (Supplementary Fig. S1). We generated these datasets for case

1, when there is no intra group heterogeneity, and for case 4, where

there is a very high level of intra group heterogeneity. EMDomics re-

sults show that there is a sharp decrease in the true positive rate for

sample size less than 30 samples in the smallest group for both cases

1 and 4, especially for case 1. Although true positive rates decrease

with smaller sample size, false positive rates stay at zero for a wide

range of FDR thresholds (FDR threshold<0.25). Supplementary

Figure S1 shows true positive rates and false positive rates for FDR

threshold of 0.05 and 0.20.

3.2 EMDomics for the identification of genes associated

with drug resistance in ovarian cancer
To identify genes associated with drug resistance in ovarian cancer,

we applied EMDomics to the processed and normalized ovarian

cancer gene expression data from The Cancer Genome Atlas

(TCGA). We used gene expression data from the Agilent 244K

Custom Gene Expression platform which includes 17 814 genes

(Supplementary File 1). As of January 2014, Agilent microarray

data of 570 cases with HG-SOC were available in TCGA. Clinical

data from these patients were carefully examined to identify eligible

samples for assessing cis-platinum chemotherapy response. We used

similar definition as used in (Integrated genomic analyses of ovarian

carcinoma, 2011) for resistant and sensitive tumors. Tumors were

defined as sensitive if after the last primary treatment the platinum

Fig. 2. Performance of EMDomics using simulated data. (a) ROC curves of

EMDomics (solid lines) and SAM (dashed lines) for five cases with different

level of heterogeneity in Class 1 samples, ranging from no intra-group hetero-

geneity (case 1) to significant intra-group heterogeneity (cases 4 and 5) as

described in the table (d). True positive rates of EMDomics and SAM for (b)

q-value threshold of 0.05 and (c) q-value threshold of 0.2

Table 1. Area under the curve (AUC), true positive rate (TPR) and

false positive rate (FPR) of SAM and EMDomics (TPR and FPR are

for q-value¼ 0.05)

Case AUC q value¼ 0.05

TPR FPR

EMD SAM EMD SAM EMD SAM

1 1 0.999 1 0.99 0 1.6� 10�3

2 0.994 0.992 0.96 0.88 0 1.2� 10�3

3 0.957 0.883 0.72 0.32 0 1.3� 10�4

4 0.936 0.611 0.58 0.004 0 0

5 0.962 0.659 0.73 0.005 0 0
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free interval was 6 months or greater, there was no evidence of pro-

gression or recurrence, and the follow-up interval was at least 6

months from the date of last primary platinum treatment. Tumors

were defined as resistant if the patient recurred within 6 months

after the last treatment (Integrated genomic analyses of ovarian car-

cinoma, 2011). Among the 570 cases, we identified 331 cases with

explicit cis-platinum status, with 97 platinum resistant and 234 plat-

inum sensitive primary tumors. The clinical information of the re-

sistant and sensitive samples is given in the Supplementary Table S1.

Figure 3(a) shows the scatter plot of observed EMD scores versus

median of permuted EMD scores. Since EMD is a measure of the

distance between two distributions it is a positive number. As ex-

pected, observed EMD scores tend to be larger than the median of

permuted EMD scores. Histograms of the permuted EMD values

and observed EMD values are shown in Supplementary Figure S2.

In differential expression analysis, the fold change (the ratio of

the mean (or median) expression level of a gene between two classes)

is commonly used as a metric to indicate the magnitude of expres-

sion change across two classes and is a natural complement to the t-

test, which is a measure of the statistical significance of differences

in mean expression between two classes. However, in the setting of

significant intraclass heterogeneity, fold change may not be a suit-

able indicator of the magnitude of differential expression between

groups, and EMD may be a more useful metric. Figure 3(b) is a scat-

ter plot of EMD versus fold change for all genes and shows that fold

change and EMD are only moderately correlated, and a significant

proportion of genes have low fold change (close to one) but large

EMD (two and more), which supports the hypothesis that genes can

show significant differences in overall expression distribution be-

tween classes, while at the same time showing little difference in

mean expression between classes.

We also applied EMDomics to the TCGA ovarian cancer RNA-

Seq data, which is available for a subset of ovarian cancer samples

in TCGA. This dataset contains 30 resistant and 67 sensitive sam-

ples. After filtering out genes that in more than 50% of samples had

a normalized read count less than 20, the data set includes 8106

genes. We applied EMDomics to the log 2 normalized read count

data (transcript per million (TPM)) for genes after quantile normal-

ization. We observed similar behavior in the EMDomics results

compared to those obtained when applying EMDomics to array-

based data. The scatter plot of observed EMD scores versus median

of permuted EMD scores and scatter plot of EMD versus fold

change for all genes are shown in Supplementary Figures S3 and S4.

We also compared the EMDomics results of the set of genes

measured across the two platforms. These data show that although

there are differences across microarray and RNAseq, overall, we see

significant correlation of the EMDomics measures across the two

platforms (Supplementary Fig. S5).

3.3 Comparison of EMDomics with conventional

differential expression analysis methods.
We compared the performance of EMDomics with that of SAM,

Limma and edgeR for the identification of genes associated with

drug response in ovarian cancer. We applied SAM and Limma to the

processed and normalized TCGA array-based gene expression data-

set using the samr (Tibshirani et al., 2011) and Limma (Smyth,

2005) R packages from Bioconductor (Gentleman et al., 2004). We

also applied edgeR to the RNA-Seq data of the subset of samples

with RNA-Seq data and genes that passed filtering (as described

above) using the edgeR (Robinson et al., 2010) package from

Bioconductor.

Using the array-based gene-expression data, while the q-values

and adjusted p-values of SAM and Limma are highly correlated

(R¼0.98, Supplementary Fig. S6) with each other, the q-values and

adjusted p-values of SAM and Limma are only moderately corre-

lated with the q-values of EMD (R¼0.59 and 0.53, respectively,

Supplementary Fig. S7). Overall, EMDomics identifies far more stat-

istically significant genes associated with drug resistance (475 genes

with q<0.05), as compared with SAM (23 genes) or Limma (2

genes) (lists of all genes with their EMD, SAM and Limma signifi-

cant values are in Supplementary File 2). While EMD identifies sig-

nificant genes across a wide range of fold-change values, significant

genes identified by SAM and Limma are limited to genes showing

at least moderate fold change in mean expression between classes

(Fig. 3(b); Supplementary Fig. S8).

EMDomics shows similar performance when using RNA-Seq

based expression values (normalized read counts). However because

of higher level of variability among read count data, less number of

samples and shorter gene list, EMDomics identifies fewer significant

genes (30 genes with q<0.05) than were identified using the array-

based data. However, edgeR identified only one gene as significant

with q<0.05 (CCND2) on the RNA-Seq data. CCND2 was also

identified as significant by EMDomics. The table including

EMDomics and edgeR results on the RNA-Seq data for the 8106

genes is provided in Supplementary File 3. The density plots of

CCND2 (which is called significant by EMDomics and edgeR),

IGF2 and PTN (which are called significant by EMDomics but not

by edgeR) and MKL2 (with edgeR q-value¼0.09, as compared with

EMDomics q value¼0.58) is shown in Figure 4. While edgeR is

more sensitive to the genes that have a narrow read count distribu-

tion with a long tail (one or two samples have significantly more

read count compare to the rest of samples (Fig. 4(d)), EMDomics

identifies genes with read count distributions that are wide (high

intra-group heterogeneity) and significantly variable between groups

(Fig. 4(b) and (c)).

Since more samples and genes are available from the array-based

data as compared with the RNA-Seq data, the array-based data was

used for the functional gene set analyses. The 15 genes with the low-

est q-value in EMDomics (EMDomics q<0.001) and highest

q-values in SAM (SAM q>0.47) are listed in Supplementary Table

S2. All of these genes, but one, have been previously associated with

cancer (Alanen et al., 2000; Basu and Roy, 2013; Brouwer-Visser

et al., 2014; Fung et al., 2012; Huang et al., 2010; Kuhn et al.,

2012; Moon et al., 2003; Ohmachi et al., 2006; Pearce et al., 2011;

Teng et al., 2014; Wu et al., 2014; Yang et al., 2014) and several

Fig. 3. Performance of EMDomics for identifying genes associated with drug

resistance in ovarian cancer. (a) Scatter plot of the median of permuted EMD

values versus observed EMD values for the TCGA dataset. Black dots repre-

sent genes. The red line has a slope of 1 and passes through the origin. (b)

EMD score versus fold change for TCGA dataset; red dots are significant

genes with q-value<0.05 using EMDomics, green circles are significant

genes with q-value<0.05 using SAM, and blue crosses are significant genes

with adjusted p-value< 0.05 using Limma
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have been specifically implicated in ovarian cancer progression. For

example, GPC5 is associated with many cancers, including ovarian

cancer (Integrated genomic analyses of ovarian carcinoma., 2011),

suggesting its relevance to this biomedical problem; PITX2 has been

associated with ovarian cancer progression and malignant pheno-

types in both observational (Fung et al., 2012) and mechanistic

(Basu and Roy, 2013) studies; the IGF signaling pathway is associ-

ated with drug resistance in several cancers (Brouwer-Visser et al.,

2014; Huang et al., 2010; Pearce et al., 2011); and COL11A1 is

associated with poor outcome and resistance to cis-platinum in

ovarian cancer cell lines (Teng et al., 2014; Wu et al., 2014).

Figure 5 shows the density plots of GPC5, PITX2, IGF and

COL11A1 for resistant and sensitive samples�the distributions of

gene expression values are wide within both the sensitive and

resistant classes (high intraclass heterogeneity), and there are clear

differences in the shapes of distributions between the sensitive and

resistant groups.

23 genes are called significant by SAM with q-value<0.05 (T

S2). Each of these genes but four (TACSTD1, MSH6, SPCS2,

ZNF592) are called significant by EMDomics, as well.

Supplementary Figure S9 shows the density plots of these four genes

for resistant and sensitive samples. Among them, TACSTD1 and

MSH6 have been associated with cancer in the literature. For these

genes, the distributions of gene expression values in sensitive and re-

sistant samples are very narrow (low variance), which drives the

high test statistic and low q-value from the t-test in Limma and

SAM. MATN2 and LCTL were the only two genes called significant

by Limma at an adjusted p-value<0.05 (Supplementary Table S3).

These two genes were both called significant by EMDomics, as well.

The density plots of four top genes (SERTAD4, LIPG, MATN2,

GJB1) called significant by both SAM and EMDomics are shown in

Supplementary Figure S10. These genes show differences in both

mean expression levels and distribution shape between sensitive and

resistant samples.

In summary, EMDomics identifies far more differentially ex-

pressed genes than SAM or Limma, and the genes prioritized by

EMDomics appear to be highly relevant for ovarian cancer biology.

To compare the robustness of differential expression results be-

tween EMDomics and SAM, we performed bootstrapping analyses

using both approaches. Across 100 bootstrap iterations and a

significance threshold of FDR¼5% applied at each iteration, we

identify a median of 302 genes (95% confidence interval 171–583)

differentially expressed by EMDomics compared with a median of

only five genes (95% confidence interval 0–45) by SAM. These re-

sults support the robustness of the observation that EMDomics is a

more powerful method than SAM for the identification of drug re-

sistance associated genes in ovarian cancer. Next, we used boot-

strapping to compare the ability of EMDomics and SAM to identify

genes that repeatedly attain statistical significance across the boot-

strap iterations. Across the 100 bootstrap iterations, we identify 125

genes with a median q-value<5% with EMDomics, and we identify

no genes with a median q-value<5% using SAM. These results

show that EMDomics significantly outperforms SAM for the identi-

fication of genes with robust association with drug resistance in

ovarian cancer.

To compare the biological cohesiveness of genes prioritized by

EMDomics and SAM, we performed a comparative gene set enrich-

ment analyses on sets of top significant genes identified by the two

methods.

3.4 Enrichment analysis
3.4.1 Gene Set Enrichment Analysis (GSEA)

We used the “Investigate Gene Sets” function of the web-based

GSEA tool provided by the Broad Institute (http://www.broadinstitute.

org/gsea/msigdb/annotate.jsp) to assess overlap of genes called sig-

nificant by EMDomics and SAM (q-value<0.05) and gene sets in

the Canonical Pathways (CP), KEGG database (CP:KEGG), and

oncogenic signatures (C6) in the Broad Institute’s Molecular

Signatures Database (MSigDB) (Total number of considered gene

sets¼1 509; 1320 gene sets for CP and CP:KEGG, and 189 gene

sets for C6). Using EMDomics, we identify 99 C6 gene sets and 10

CP and CP:KEGG gene sets, with q-value for enrichment<0.01.

Using SAM significant gene lists, we identify no significantly en-

riched gene sets.

The top 10 most significantly enriched gene sets identified by

EMDomics are listed in Supplementary Table S4. This list of most

highly enriched gene sets includes pathways known to play critical

roles in ovarian cancer pathogenesis. For example, TP53 mutations

occur in almost all high grade serous ovarian cancers (Integrated

genomic analyses of ovarian carcinoma., 2011) and altered TP53

Fig. 5. Density plots of GPC5, PITX2, IGF2 and COL11A1 for resistant (red) and

sensitive (blue) samples, using array-based expression value data from

TCGA

Fig. 4. Density plots of IGF2, PTN, CCND2 and MKL2 for resistant (red) and

sensitive (blue) samples using normalized read count data (TPM) from TCGA

RNA-Seq data
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function is known to play a central role in drug resistance in ovarian

cancer (Shelling, 1997). The most enriched gene set identified by the

EMDomics analysis is a set of genes down-regulated in cancer cell

lines with mutated TP53 (q-value¼9.33e�14), suggesting the value

of EMDomics for prioritizing pathways highly relevant to drug re-

sponse in ovarian cancer. Other gene sets identified as highly en-

riched by the EMDomics analysis include gene sets related to: LEF1,

BMI1, KRAS, EZH2, and PTEN, and pathways related to cell-cell

junction organization, cell-cell communication, WNT signaling, and

extracellular matrix organization, each of which have been previ-

ously implicated in cancer progression.

Next, we repeated the comparative gene set enrichment analysis

using the exact same number of top-ranked input genes (n¼475

genes) for EMDomics and SAM. With q-value<0.05, the set of 475

significant genes identified by EMDomics is enriched for 31

Canonical and KEGG Pathways, while the set of 475 top-ranked

genes identified by SAM is only enriched for 21 Canonical and

KEGG Pathways. We also assessed the statistical strength of the

gene set enrichments for genes identified by EMDomics as compared

with those identified by SAM. Considering the top 20 ranked path-

ways, EMDomics identifies significantly stronger enrichments than

SAM (Wilcoxon test P¼2.5�10�6, Fig. 6(a)). We observed similar

behavior for the oncogenic signatures enrichment analysis. 99 onco-

genic signatures gene sets are enriched at (q-value<0.05) in the 475

top-ranked EMDomics genes, while only 39 oncogenic signatures

gene sets are enriched at this significance threshold in the 475 top-

ranked SAM genes. Considering the top 20 significant oncogenic

signatures, EMDomics again identifies significantly stronger enrich-

ments (Wilcoxon test P¼1.16�10�7, Fig. 6(b)). The Box plots of

FDRs of enrichment analyses on genes identified as top-ranked by

only SAM or by only EMDomics, but not by both are provided in

the Supplementary Figure S11. These data show that EMDomics

outperforms SAM for the prioritization of genes enriched for onco-

genic signatures and biological pathways. The top 10 oncogenic sig-

natures and pathways enriched in: the 475 top-ranked genes by

SAM; the unique genes among the top-ranked EMDomics genes;

and in the unique genes among the top-ranked SAM genes are

shown in Supplementary Tables S5–S8, respectively.

3.4.2 Gene ontology processes, diseases by biomarkers and pathway

maps enrichment analysis

We used the MetaCore (http://thomsonreuters.com/metacore/) soft-

ware tool to perform enrichment analyses of: Gene Ontology (GO)

Biological Processes, Diseases by Biomarkers, and Pathway Maps

using the list of EMDomics significant genes (475 genes) and the list

of 475 top-ranked SAM genes. Similar to gene set enrichment

analysis described above, more GO Processes and Diseases by

Biomarkers (1368 GO Processes and 551 Diseases) are enriched in

EMDomics significant genes (with q-value<0.05) compared to

those enriched in the 475 top-ranked genes by SAM (603 GO

Processes and 136 Diseases). Considering the top 100 enriched GO

Processes and Diseases, we observed that EMDomics identifies sig-

nificantly stronger enrichments (Wilcoxon P<2�10�20 for GO

Processes and Diseases by Biomarkers) compared to SAM (Fig. 7(a)

and (b)). The gene set enrichment analyses on genes identified as

top-ranked by only SAM or by only EMDomics, but not by both are

given in the Supplementary File 4 and Figures S12, S13, and S14.

Pathway Maps enrichment analysis of the EMDomics significant

genes yielded six enriched maps (with q-value<0.05), which in-

cludes: Angiotensin system maturation, WNT signaling pathway,

Extracellular matrix (ECM) remodeling, and PGE2 pathways in

cancer, which are all implicated in ovarian cancer progression

(Arend et al., 2013; Herr et al., 2013; Januchowski et al., 2014;

Polakis, 2000; Rask et al., 2006). The only map enriched by SAM’s

top-ranked genes (q-value<0.05) is Cadherin-mediated cell adhe-

sion. A list of the significant enriched Pathway Maps from the

EMDomics significant genes is given in Supplementary Table S9).

Enrichment analysis of the top-ranked differentially expressed

genes, identified by EMDomics and by SAM, shows that EMDomics

has more power to identify biological gene sets and pathways differ-

entially expressed between two heterogeneous groups.

3.5 Comparison of EMDomics with conventional

distribution comparison methods
The Kolmogorov–Smirnov (KS) and Cramer Von Mises (CVM)

tests, which quantify the distance between two distributions, are

common nonparametric tests to compare two groups of samples. In

KS the test metric is the maximum distance between the two cumu-

lative distribution functions (CDFs); and it is invariant to arbitrary

monotonic differences between the two distributions. The KS test

differs from EMDomics, since EMD considers all the differences

(incorporating both quantity and distance of differences) between

two distributions, while KS measures only the maximum difference

between two CDFs. As expected, EMDomics shows more power

compared to KS to capture intra-class heterogeneity on both simu-

lated and real biological data. In simulated data KS performs simi-

larly to EMDomics when there is no intra-class heterogeneity (case 1

in Fig. 2). The AUC for KS in case 1 is 0.98. By increasing the intra-

class heterogeneity, KS fails to identify truly differentially expressed

genes. Its true positive rates for case 4 and 5 are 0. Supplementary

Figure S15 shows ROC curves for KS compared to EMDomics for

the five cases in Figure 2. Table 2 shows the AUCs, false positive

Fig. 6. Box plots of FDRs of enrichment analysis of top-ranked genes identi-

fied by EMDomics and SAM, using the ‘Investigate Gene Sets’ function of the

web-based GSEA tool. (a) q-values for the top 20 enriched Canonical and

KEGG pathways in the 475 top-ranked genes. (b) q-values for the top 20 en-

riched oncogenic signatures in the 475 top-ranked genes

Fig. 7. Box plots of FDRs of enrichment analysis of top-ranked genes identi-

fied by EMDomics and SAM, using the MetaCore web-based enrichment ana-

lysis tool. (a) q values for the top 100 enriched GO Processes in the 475 top-

ranked genes. (b) q-value for the top 100 enriched Diseases by Biomarkers in

the 475 top-ranked genes
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rates (FPRs) and true positive rates (TPRs) for a significance thresh-

old of q-value¼0.05. We applied KS to the ovarian cancer expres-

sion data for resistant and sensitive groups. KS identifies no

significantly differentially expressed genes with adjusted

p-value<0.05. Supplementary Figure S16 shows KS adjusted p-

values versus EMDomics q-values.

In CVM, the test metric is the sum of the squared values of dif-

ference between two CDFs. CVM is a special case of EMD; it is one

of the solutions for making two distributions even, but it is not guar-

anteed to be the optimal solution. Because it adds all the squared

values of differences between two CDFs, CVM tends to overestimate

the mutual similarity and it is not able to effectively handle partial

matches. To explore the CVM performance, we applied it to the

simulated and the real biological data. To compute q-values for

CVM, we used the same approach that we employed for calculating

q-values for EMDomics. Using simulated data, CVM shows com-

parable performance to EMDomics. The TPRs of CVM are very

close to those of EMDomics, however CVM generates more false

positives. While the FPRs of EMDomics are almost zero, CVM has

FPRs of about 4% (Table 2). This difference in FPRs results in

slightly lower AUC for CVM compared to EMDomics, as shown in

Table 2 and Figure S14. We also applied CVM to the ovarian cancer

gene expression data. CVM identified far more significant genes

(2991 genes) compared to EMDomics (475 genes) with

q-value<0.05. All genes identified as significant by EMDomics are

called as significant by CVM as well. Thus, CVM and EMDomics

show similar overall performance on calling true positives on the

simulated data; however, given EMDomics’s lower rate of false

positives on the simulated data, EMDomics may represent a more

precise and conservative approach than CVM. The result of apply-

ing EMDomics, KS and CVM on the array-based TCGA ovarian

cancer is given in Supplementary File 5.

4 Discussion

In this work we proposed to use the distance between the distribu-

tions of expression values (for array-based data) or normalized read

counts (for sequence-based data) to identify differentially expressed

genes when there is a high level of heterogeneity between and within

the groups. We developed a new method (EMDomics), based on the

Earth Mover’s Distance (EMD), for computing the distance between

the distributions of expression values or normalized read counts and

for the identification of genes significantly differentially expressed

between heterogeneous groups.

Conventional methods, such as t-test-based or Fisher exact test-

based approaches, perform well for the identification of genes differ-

entially expressed between homogeneous classes of samples.

However, many problems in biology and biomedicine contain sam-

ples that show both significant intra- and inter-class heterogeneity.

If the sources and structure of the heterogeneity are known ahead of

time, then they may be incorporated into the analysis using conven-

tional approaches (e.g. stratification, inclusion of an interaction

term); however, frequently the sources and structure of intra-group

heterogeneity are unknown. In these cases, failure to account for the

presence of intra-group heterogeneity will result in high intra-group

variance driving high p-values, even for genes that may truly be

associated with a biological class.

Our analyses, on both simulated and real data, show that con-

sidering whole distributions with EMDomics has more power to

capture heterogeneity and identify genes and gene sets that are ex-

pressed differently between two heterogeneous groups.

The EMDomics method has several strengths and limitations. Its

primary strength is that it is a robust non-parametric method, which

does not make any assumptions about the distributions or differ-

ences between the two classes being compared, and thus has signifi-

cantly more power than conventional approaches for identifying

differential Omics features between heterogeneous classes. Thus, the

method can be applied in a wide variety of settings to compare dis-

tributions of Omics data between two classes. A further strength of

the method is that efficient algorithms are available to compute

EMD (Rubner et al., 2000).

However, ‘there is no free lunch in statistics’ (Simon and

Tibshirani, 2014; Wolpert and Macready, 1997), and EMDomics

has a few limitations. First, EMDomics can currently only be used

for two class problems and cannot be used with quantitative or mul-

ticlass labels. Second, because EMD is based on comparing the

histograms of the two groups it requires at least a moderate sample

size (�30 samples per class) and will tend to perform poorly when

there are few samples. Third, a significant EMD value does not

allow any inference to be made regarding the direction or structure of

an association; it provides evidence that a gene is expressed differently

(in some way) between two classes, which can then lead to further fol-

low-up analyses and experimental studies to more precisely character-

ize the association and its clinical and biological significance.

Despite the method’s limitations, our data suggest that

EMDomics is a powerful new approach for identifying differentially

expressed genes between heterogeneous classes of samples.

Although we demonstrate one application of EMDomics, it can

apply to identify other genomics data types (such as copy number

variation data), as well as to other types of populations (such as

populations of single cell measurements). Given ongoing major

efforts to generate massive Omics datasets (ranging in scale from

single cell genomics to population-based Omics studies in molecular

epidemiology) to investigate a wide array of questions in bio-

medicine, we expect EMDomics to be a useful new tool for the

identification of genes and gene sets differentially expressed between

heterogeneous classes of samples.
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