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Background. Neuroblastoma is a malignant neuroendocrine tumor from the sympathetic nervous system, the most common
extracranial tumor in children. Identifying potential prognostic markers of neuroblastoma can provide clues for early diagnosis,
recurrence, and treatment. Methods. RNA sequence data and clinical features of 147 neuroblastomas were obtained from the
TARGET (+erapeutically Applicable Research to Generate Effective Treatments project) database. Application weighted gene
coexpression network analysis (WGCNA) was used to construct a free-scale gene coexpression network, to study the inter-
relationship between its potential modules and clinical features, and to identify hub genes in the module. We performed Lasso
regression and Cox regression analyses to identify the threemost important genes and develop a new prognostic model. Data from
the GSE85047 cohort verified the predictive accuracy of the prognostic model. Results. 14 coexpression modules were constructed
using WGCNA. Brown coexpression modules were found to be significantly associated with disease survival status. Multivariate
Cox analysis was performed on genes from univariate Cox regression and Lasso regression analyses using the Cox proportional
hazards regression model. Finally, we constructed a three-gene prognostic model: risk
score� (0.003812659∗CKB) + (−0.152376975∗ expDST) + (0.032032815∗ expDUT). +e prognosis of samples in the high-risk
group was significantly poorer than that of samples in the low-risk group (P � 1.225e − 06).+e riskmodel was also regarded as an
independent predictor of prognosis (HR� 1.632; 95% CI� 1.391–1.934; P< 0.001). Conclusion. Our study constructed a neu-
roblastoma coexpressing gene module and identified a prognostic potential risk model for prognosis in neuroblastoma.

1. Introduction

Neuroblastoma is the most common extracranial tumor in
children and is the most common tumor in infants and
young children [1]. Nearly half of the neuroblastomas occur
in infants and young children under 2 years of age. Neu-
roblastoma is a neuroendocrine tumor that can originate
from any nerve ridge of the sympathetic nervous system.+e
most common site of development is the adrenal gland, but
it can also occur in the neck, chest, abdomen, and pelvic
nerve tissue. A small number of human tumors are known to
spontaneously degenerate from undifferentiated malignant
tumors to completely benign tumors. Neuroblastoma is one
of them [2].

+e current cause of neuroblastoma is unclear. +ere are
a variety of clinical and biological factors including staging
and age of diagnosis. MYCN amplification and over-
expression in NB is an important evaluation index for the
classification of malignant degree and rapid progress [3].
Some genetic susceptibility factors have been found to be
associated with the pathogenesis of neuroblastoma. Familial
neuroblastoma has been shown to be caused by somatic
mutations in anaplastic lymphoma kinase (ALK). In addi-
tion, many molecular mutations have been found in neu-
roblastoma. Amplification mutations in the N-myc gene are
also common in neuroblastoma. Its amplification type is
bidirectionally distributed: 3–10 fold amplification at one
extreme and 100–300 fold amplification at the other
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extreme. Amplification mutations in the MYCN gene are
often associated with tumor spread [4].

Weighted Gene Coexpression Network Analysis
(WGCNA) is an effective method to study the association
between gene coexpression modules and complex pheno-
types of cDNAmicroarrays or RNA sequencing data [5]. It is
also widely used in many genomic studies of cancer path-
ogenesis, such as the identification of gene expression
modules associated with oncogenic signaling pathways or
clinical variables, including molecular subtypes, grading/
staging, and survival outcomes [6].

In this study, we applied WGCNA to publicly available
microarray data, identified coexpression subnetworks, and
detected oncogenic modules related to patient survival. Our
comprehensive analysis provides new insights into the ge-
netic characteristics of neuroblastoma and provides a po-
tential genetic marker for tumor diagnosis and treatment.

2. Materials and Methods

2.1. Gene Expression Data. +e RNA sequence data and
corresponding clinical information of neuroblastoma were
obtained from the +erapeutically Applicable Research to
Generate Effective Treatments project database (TARGET,
https://ocg.cancer.gov/programs/target), containing 147
tumor patients’ tissues. Both mRNA profile data and clinical
characteristics of neuroblastoma are publicly available and
in open access platforms. +erefore, approval by the local
ethics committee was not needed.

2.2. Weighted Gene Coexpression Network Analysis. +e
WGCNA algorithm is used in R (https://www.r-project.org/
) to identify coexpression modules. We used weighted gene
coexpression network analysis (WGCNA) to analyze a
comprehensive network that can describe patterns and gene
expression profiles and to assess the importance of genes and
their module members. We use the Pearson correlation
between any two genes to evaluate the weighted coex-
pression relationship between the subjects of all datasets in
the adjacency matrix. In order tomeasure whether two genes
have similar expression patterns, thresholds are generally
required to be screened, and those above the threshold are
considered similar [7]. WGCNA analysis uses the correla-
tion coefficient weighting value (amn � |cor(xm, xn)|β)so
that the connections between the genes in the network obey
the scale-free networks. +is algorithm is more biologically
significant. +e parameter β of the standard scale-free
network is determined by the following criteria: (1) +e
resulting adjacency matrix approximates the scale-free to-
pological feature according to the previously proposed
model fitting index. (2) +e model fit index for a perfect
scale-free network is 1. Here, the beta value in both analyses
is determined to be 5, which is the minimum required to
make the model fit index above 0.9. When the degree of
independence is 0.9, the appropriate power value is deter-
mined (power values range from 1 to 20). Once the power
value is determined, the WGCNA algorithm continues the
module construction. In this study, the soft threshold was set

to β� 5 (no scale R2 � 0.9). Based on the weighted correlation
coefficient of genes, genes are classified according to ex-
pression patterns, and genes with similar patterns are
classified into one module. In this way, tens of thousands of
genes can be divided into dozens of modules through gene
expression patterns, which is a process of extracting and
inducting information [8]. +e adjacency between genes is
calculated, the similarity between genes is calculated
according to the adjacency, and then the coefficient of
dissimilarity between genes is derived, and a systematic
clustering tree between genes is obtained accordingly. A
similarity measure was defined: TOMmn � (􏽐uamuaun +

amn/(min(km, kn) + 1 − amn)), where km � 􏽐uamu was the
node connectivity. After the gene module is determined
according to the dynamic shearing method, the eigenvector
value of each module is calculated in turn, and then the
module is clustered and analyzed, and the modules with
close distance are merged into a new module. +e corre-
lation between the module eigengene and the phenotype
(clinical features) was used to estimate the module-trait
association, which allows for easy identification of expres-
sion groups (modules) that are highly correlated with the
phenotype. For each expression profile, gene significance
(GS) was calculated as the absolute value of the correlation
between the expression profile and each trait; module
membership (MM) was defined as the correlation of the
expression profile to each module eigengene [9].

2.3. Gene Functional Enrichment Analysis. Gene functional
enrichment analysis was applied to the differentially
expressed genes and gene modules identified by WGCNA.
Using the R software clusterProfiler package to perform GO
enrichment and KEGG pathway analysis on the genes in the
obtained pivot module, the false discovery rate (FDR) <0.05
was considered statistically significant [10].

2.4. Identification and Selection of Prognosis-Related Genes.
+e R package “survival” was applied to carry out univariate
Cox regression analysis on the key modules to identify the
prognostic genes, and Lasso regression was performed to
further screen important key genes. Finally, based on the
preliminary screening of the above key candidate genes, we
built a multivariate Cox proportional hazard regression
model and evaluated the survival of patients through risk
scores. +e sample risk score formula is as follows:

risk score � β1 ∗Exp1 + β2Exp2 +, . . . , βiExpi. (1)

Among them, β was the value of the risk coefficient, and
Exp represented the value of an expression in a certain gene.
In accordance with the median value of risk score, NB
patients were divided into two groups: low-risk group and
high-risk group, and the survival difference between the two
subgroups was compared through survival analysis. In ad-
dition, the prognostic ability of the above model is estimated
through receiver operating characteristic curve (ROC)
analysis. A sample of 276 NB patients with dependable
follow-up information from the GSE85047 dataset was used
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as a validation group to evaluate the predictive power of the
prognostic model. P< 0.05 was considered a statistically
significant difference.

2.5. Validation of Hub Genes. For the selected hub genes,
Kaplan–Meier estimated the survival differences between the
low-risk and high-risk groups and validated in the GEO
database (GSE85047), which is a publicly accessible online
microarray database to facilitate discovery and identification
of genome-wide expression analyses [11].

3. Results

3.1. Construction of Coexpression Modules. +e raw data of
neuroblastoma were downloaded from the TARGET data-
base and contained expression values of 20,098 genes from
147 patients. +e details of clinical/pathological features are
listed in Table 1. +e raw data are preprocessed by using R
for background correction and normalization. Gene anno-
tations are performed to match probes and gene symbols,
and probes that match several genes are removed, and for
genes matched by multiple probes, the median is considered
the final expression value. +e SD of each gene was calcu-
lated and ranged from large to small, and finally, 5,025 (top
25%) genes were selected for WGCNA analysis. First, the
power value is filtered. When the power value is equal to 6,
the degree of independence reaches 0.9, and the average
connectivity is higher. +us, the efficacy values and results
used to construct the coexpression module revealed the
identification of 14 different gene coexpression modules in
neuroblastoma. +ese coexpression modules were con-
structed and displayed in different colors. +ese modules
range from large to small, including their number of genes
(Figures 1 and 2).

3.2. Coexpression Modules. +e interaction relationship of
the modules is analyzed, and the network heat map is drawn.
+e results show that each module is independent of each
other, demonstrating the high degree of independence be-
tween the modules and the relative independence of gene
expression in each module. In addition, we calculated
eigengenes and clustered them according to their correlation
in order to explore the coexpression similarity of all mod-
ules, and similar results were represented by the heat maps
drawn from the adjacency graphs. It is clear that the ME of
the brown module showed a high correlation with the vital
status compared to the other modules, with correlation
coefficients of 0.3, P< 0.01. +e brown module was posi-
tively correlated with the vital status, suggesting that the
brown module may play an important role in neuroblas-
toma. We identified the brown module as the modules most
relevant to the neuroblastoma’s state (Figure 3).

3.3. Function Enrichment Analysis. We performed enrich-
ment analysis to explore the GO and pathway in which the
two key modules were involved. GO enrichment and the
detailed information are given in Table 2. +e result of

functional enrichment analysis showed in brown module
that in the biology processes that genes was mainly enriched
in GO: 0006397 mRNA processing, GO: 0008380 RNA
splicing, GO: 0034660 ncRNA metabolic process, GO:
0090501 RNA phosphodiester bond hydrolysis, GO:
0000377 RNA splicing, via transesterification reactions with
bulged adenosine as nucleophile, GO: 0000398 mRNA
splicing, via spliceosome, GO: 0000375 RNA splicing, via
transesterification reactions, GO: 0090305 nucleic acid
phosphodiester bond hydrolysis, GO: 0006401 RNA cata-
bolic process, GO: 0034470 ncRNA processing, in the
molecular function that in GO: 0140098 catalytic activity,
acting on RNA, GO: 0004540 ribonuclease activity, GO:
0004518 nuclease activity, GO: 0003730 mRNA 3’-UTR
binding, GO: 0004519 endonuclease activity, GO: 0045182
translation regulator activity, GO: 0140101 catalytic activity,
acting on a tRNA, GO: 0003729 mRNA binding, GO:
0003725 double-stranded RNA binding, GO: 0004521
endoribonuclease activity, and in the cellular component in
GO: 0035770 ribonucleoprotein granule, GO: 0036464

Table 1: Clinical characteristics of NB patients in TARGET.

Characteristics Number of cases (%)
Gender�male 87 (59.2)
Age (days) (mean (SD)) 1281.51 (1098.47)
Vital status

Alive 75 (51.0)
Dead 72 (49.0)

Overall survival time in days (mean (SD)) 1730.50 (1120.27)
INSS stage

Stage 1 0 (0.0)
Stage 2a 0 (0.0)
Stage 2b 1 (0.7)
Stage 3 6 (4.1)
Stage 4 119 (81.0)
Stage 4s 21 (14.3)

MYCN status
Amplified 30 (20.4)
Not amplified 117 (79.6)

Ploidy
Diploid (DI� 1) 63 (42.9)
Hyperdiploid (DI> 1) 84 (57.1)

Histology
Favorable 28 (19.0)
Unfavorable 110 (74.8)
Unknown 9 (6.1)

Grade
Differentiating 10 (6.8)
Undifferentiated or poorly differentiated 115 (78.2)
Unknown 22 (15.0)

MKI
High 32 (21.8)
Intermediate 40 (27.2)
Low 47 (32.0)
Unknown 28 (19.0)

COG risk group
High risk 120 (81.6)
Intermediate risk 13 (8.8)
Low risk 14 (9.5)
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Figure 1: Determination of soft threshold (β) of weighted gene coexpression network analysis (a, b) and network module construction (c).
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Figure 2: Continued.
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Figure 2: Identification of neuroblastoma and relatedmodules with different clinical features. (a)WGCNA correlation clustering analysis of
all genes. (b, c) Heat map correlation between different clinical features and module eigenvalues.
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Figure 3: Scatter plot of module gene module membership and gene significance.

Table 2: Functional enrichment of genes in brown coexpression modules.

Ontology ID Description P. adjusted Count
BP GO: 0006397 mRNA processing 4.74E− 44 72
BP GO: 0008380 RNA splicing 1.00E− 33 59
BP GO: 0034660 ncRNA metabolic process 2.81E− 31 58
BP GO: 0090501 RNA phosphodiester bond hydrolysis 2.81E− 31 36
BP GO: 0000377 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 5.58E− 24 44
BP GO: 0000398 mRNA splicing, via spliceosome 5.58E− 24 44
BP GO: 0000375 RNA splicing, via transesterification reactions 7.78E− 24 44
BP GO: 0090305 Nucleic acid phosphodiester bond hydrolysis 3.29E− 22 38
BP GO: 0006401 RNA catabolic process 5.85E− 22 43
BP GO: 0034470 ncRNA processing 6.99E− 21 38
CC GO: 0035770 Ribonucleoprotein granule 1.85E− 21 32
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cytoplasmic ribonucleoprotein granule, GO: 0005840 ribo-
some, GO: 0044391 ribosomal subunit, GO: 0000313
organellar ribosome, GO: 0005761 mitochondrial ribosome,
GO: 0000932 P-body, GO: 0005759 mitochondrial matrix,
GO: 0043186 P granule, GO: 0045495 pole plasm. According
to the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, our results demonstrated that these genes
were mainly involved in mRNA surveillance pathway, RNA
transport, Ribosome biogenesis in eukaryotes, RNA deg-
radation, Ribosome, Aminoacyl-tRNA biosynthesis, Spli-
ceosome, RNA polymerase. +ese results indicated that the
clinical significant module genes were mainly involved in
intracellular protein synthesis and were responsible for
completing the process from RNA to protein in the “genetic
central dogma” (Figure 4).

3.4. Identification of Hub Genes in the Module. +e intra-
module connectivity of each gene is calculated by adding the
intensity of the linkage to other modular genes and dividing
the number by the largest molar linkage. By calculating the
correlation matrix between traits and genes, genes that are
highly correlated with traits are also shown and are also key
genes in the model associated with traits. According to this
degree, genes with a high degree among the 14 clinically
significant modules were identified as central genes. +ese
genes with significant survival analysis results were selected
and classified by node degree. Univariate Cox regression
analysis was performed on these nodal genes and 37 can-
didate center genes related to prognosis. Subsequently,
through Lasso regression, the prognostic risk equation of
multifactor Cox regression was established (Figure 5). At
last, CKB, DST, and DUT were identified as the key prog-
nostic genes by the multivariate Cox regression analysis. We
used these three hub genes to construct the predictive model
(Figure 6).

+e risk score of every child was calculated in accordance
with the following formula:

risk score � (0.003812659∗CKB) +(−0.152376975

∗ expDST) +(0.032032815∗ expDUT).
(2)

+en, based on the median value of risk scores, NB
patients were divided into two groups: low-risk group and
high-risk group. +e results showed that compared with
patients in the low-risk group, patients in the high-risk
group had poorer survival, which was statistically significant
(P � 1.225e − 06). +e value of the area under the curve
(AUC) in the TARGET model is 0.831 (Figures 7(a) and
7(b)).

3.5.ValidationofHubGenes. With the purpose of evaluating
of the prognostic value of the prediction model, we used the
GSE85047 patient cohort to verify the relationship between
risk score and survival time. In the GSE85047 cohort, groups
were also grouped based on the median value of risk score in
the TARGETmodel. +e survival time of patients with high-
risk scores was poorer for patients with lower risk scores,
which was significant (P � 5.73e − 13), and the AUC was
0.707 (Figures 7(c) and 7(d)). +e distribution of risk scores
and survival status revealed that gene expression increased
relative to the rise of risk scores (Figure 8). In summary,
these findings imply that the model has a good performance
in predicting OS in NB patients.

3.6. Hub Genes’ Model as an Independent Prognostic Factor.
We assessed the prognostic value of the risk scores of the
model. For NB, the risk score in univariate analysis was
significantly correlated with overall survival (OS)
(HR� 1.515, 95% CI� 1.331–1.725, P< 0.001). ROC curve
shows the prognostic value of the risk scores was better than
Gender, Age, INSS Stage, MYCN status, Ploidy, Histology,
Grade, MKI, and COG (Figure 9). Multivariate analysis
showed that the risk score was an independent prognostic
indicator (HR� 1.632, 95% CI� 1.391–1.934, P< 0.001).

Table 2: Continued.

Ontology ID Description P. adjusted Count
CC GO: 0036464 Cytoplasmic ribonucleoprotein granule 3.32E− 19 29
CC GO: 0005840 Ribosome 4.00E− 13 27
CC GO: 0044391 Ribosomal subunit 3.19E− 12 22
CC GO: 0000313 Organellar ribosome 1.05E− 11 16
CC GO: 0005761 Mitochondrial ribosome 1.05E− 11 16
CC GO: 0000932 P-body 3.01E− 11 14
CC GO: 0005759 Mitochondrial matrix 1.94E− 10 31
CC GO: 0043186 P granule 1.58E− 08 7
CC GO: 0045495 Pole plasm 1.58E− 08 7
MF GO: 0140098 Catalytic activity, acting on RNA 2.44E− 27 45
MF GO: 0004540 Ribonuclease activity 2.04E− 17 23
MF GO: 0004518 Nuclease activity 1.40E− 16 28
MF GO: 0003730 mRNA 3’-UTR binding 3.19E− 13 17
MF GO: 0004519 Endonuclease activity 3.73E− 13 20
MF GO: 0045182 Translation regulator activity 6.87E− 12 14
MF GO: 0140101 Catalytic activity, acting on a tRNA 1.73E− 10 17
MF GO: 0003729 mRNA binding 2.02E− 10 33
MF GO: 0003725 Double-stranded RNA binding 2.18E−10 14
MF GO: 0004521 Endoribonuclease activity 2.76E− 10 13
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Nomogram integrates multiple risk factors to quantify in-
dividual risks in the clinical environment. We conducted a
nomogram to predict the probability of OS in 1, 2, and 3
years (Figure 10).

4. Discussion

Neuroblastoma has become the second leading cause of
death in children with malignant tumors. At present, the
treatment of high-risk neuroblastoma mainly includes
surgery, radiotherapy, and chemotherapy, as well as he-
matopoietic stem cell transplantation, but some patients
have recurrence and metastasis during the treatment,
leading to treatment failure. How to improve the cure rate
and survival rate of these children is an urgent problem to be
solved. [12].

+e development and progression of neuroblastoma
were complex and involved multiple molecules and path-
ways. Traditional research on only one or a few molecules
cannot fully explore it. In recent years, with the development
of high-throughput gene sequencing technology, researchers
have obtained a large amount of genomics data and pub-
lished it. However, this high-expressionmultiomics data also
places higher demands on comprehensive data ana-
lysis—development mechanism. As a complex gene coex-
pression network construction method, WGCNA has
unique advantages in dealing with multisample complex
data [13]. WGCNA compensates for the shortcomings of
traditional methods by identifying modules of functionally
related genes in high-throughput data and considering gene
function and its overall association with biological functions.
+rough this method of analysis, researchers can not only
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Figure 4: GO enrichment analysis and KEGG pathway analysis in the brown module.
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Figure 6: Effect of various hub genes of CKB, DST, and DUT on survival time of neuroblastoma.
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Figure 7: Continued.
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discover the relationship between genes within the module
but also the relationship between the module and the genes
in other modules. In addition, by correlating clinical in-
formation with modules, genes associated with clinical

features can be further obtained, helping to lay the
groundwork for studying the clinical features of the disease.

In this study, we applied the systematic biology method
WGCNA to study the neuroblastoma gene expression
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Figure 7: Relationship between model and survival in hub genes (a, b) and comparison of the GSE85047 database (c, d).
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Figure 8: Risk score analysis of the 3-gene prognostic model. (a) TARGET cohort. (b) GSE85047 cohort.
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Figure 9: Univariate Cox regression analysis and receiving operating characteristic curve (ROC) of the correlation between the 3-gene
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dataset, and we identified 14 key gene coexpression modules.
Among them, the brown gene module is closely related to
vital status (cor� 0.3, P< 0.01). Functional enrichment
analysis indicates that the module is highly correlated with
gene pathway including mRNA processing, RNA splicing,
ncRNA metabolic process, RNA phosphodiester bond hy-
drolysis, RNA splicing, via transesterification reactions with
bulged adenosine as nucleophile, mRNA splicing, via spli-
ceosome, RNA splicing, via transesterification reactions,
nucleic acid phosphodiester bond hydrolysis, RNA catabolic
process, ncRNA processing, suggesting an important role of
these pathways in the pathogenesis of neuroblastoma. Here,
our results indicate that these 3 genes may be new thera-
peutic gene targets for neuroblastoma.

Creatine kinase (creatine kinase, CK) is a very important
class of kinases, which can precisely regulate the energy
balance in the body andmaintain the stability of intracellular
ATP levels [14]. CKB is a subtype of creatine kinase, which is
widely present in skeletal muscle, myocardium, nerve tissue,
and mitochondria. It participates in the process of energy
signal transduction, reversibly catalyzing the high-energy
phosphate bond of phosphocreatine to combine with ADP
to generate ATP and creatine [15]. CKB is one of the
mechanisms of intrahepatic metastasis of colorectal cancer.
Gastrin-release Pepper (GRP) and its receptor (GRPR) are
abnormally highly expressed in colorectal cancer, while CKB
is significantly higher in cell lines expressing GRP/GRPR
[16]. CKB can shorten the survival period of tumor cells. In
the microenvironment of liver cell hypoxia, CKB is regulated
by miR-483 and miR-551a. It catalyzes the conversion of
phosphocreatine to ATP, thereby providing energy for tu-
mor cells that spread to the liver [17]. CKB is significantly
abnormally expressed in tumor tissues. It has been studied in
lung squamous cell carcinoma, prostate cancer, ovarian
cancer, kidney cancer, and glioma and can be used as a new
tumor marker for early diagnosis. [18].

DST was a member of the plakin protein family, which
encodes adhesion junction plaque proteins. Mice with a
defect in this gene show skin blistering and

neurodegeneration. Dystonin plays an important role in
tumor growth and angiogenesis of melanoma [19]. DST
mutation is closely related to carcinoma of the oral tongue
[20].

DUT encodes the basic enzyme of nucleotide meta-
bolism and hydrolyzes dUTP into dUMP and pyrophos-
phate. Elevated dUTP levels induce extensive excision repair
mediated by uracil glycosylase, which leads to DNA frag-
mentation and cell death. Deoxyuridine triphosphatase
(dUTPase) has emerged as a potential target for drug de-
velopment [21]. Deoxyuridine triphosphatase inhibitor has
achieved significant clinical effects in many clinics and is
currently a promising tumor-targeted therapy drug [22, 23].

+erefore, it can be inferred that these three genes are
indeed the central genes responsible for the key process of
NB, and they deserve more in-depth analysis and verifica-
tion. Finally, by using machine learning methods, it is
proved that the hub genes can effectively distinguish be-
tween NB samples and normal samples. In our study, the
predictive effect of this method was evaluated by the AUC
value. Here, the AUC value>0.8 indicates an excellent
prediction result and is better than the INRG classification
system such as INSS Stage, MYCN status, Ploidy, Histology,
Grade, MKI, and COG, although Histology, Grade, MKI,
and COG are independent prognostic factors. In addition,
these three-gene models may be specific predictors of NB.
All the results show that when distinguishing NB samples
from normal samples, the expression profiles of these three
central genes have an excellent predictive effect.

+e development of targeted therapies has brought the
dawn of treatment for children with high-risk NB. How-
ever, the safety and efficacy of targeted drugs still require
more clinical trials to confirm. In addition, targeted drugs
also have problems such as certain resistance and high
prices. +erefore, the path of neuroblastoma targeted
therapy is still full of challenges, but we believe that as the
research on the mechanism of tumor development con-
tinues to deepen, more new effective targets will be dis-
covered [24]. +ese findings may be translated into clinical
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Figure 10: +e nomogram can predict the prognosis probability in NB. (a) Univariate Cox regression analysis. Forest plot of associations
between risk factors and the survival of NB. (b) Multiple Cox regression analysis.+e RBP gene signature is an independent predictor of NB.
(c) A nomogram of the NB cohort used to predict the OS.
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practice in the near future, providing an effective means to
improve the survival and quality of life in high-risk NB
children.

In conclusion, this study proposes a functional orga-
nization of WGCNA on neuroblastoma transcriptomes.
System-level view of gene expression profiles reveals coex-
pression modules associated with and reveals that the
process of gene pathway systems involved in nervous system
development, protein synthesis and that may be the path-
ogenesis of neuroblastoma plays an important role. Our
findings provide new insights into the basis of genomics for
neuroblastoma and provide potential therapeutic targets for
precision medicine.
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