
Frontiers in Oncology | www.frontiersin.org

Edited by:
Xiao Zhu,

Guangdong Medical University, China

Reviewed by:
Yongjun Chen,

Huazhong University of Science and
Technology, China

Huliang Jia,
Fudan University, China

*Correspondence:
Changwei Lin

linchangwei1987@csu.edu.cn
Bing Han

hanbing@qduhospital.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 28 June 2021
Accepted: 29 September 2021

Published: 25 October 2021

Citation:
Luo D, Zhao D, Zhang M, Hu C, Li H,
Zhang S, Chen X, Huttad L, Li B, Jin C,

Lin C and Han B (2021) Alternative
Splicing-Based Differences Between

Hepatocellular Carcinoma and
Intrahepatic Cholangiocarcinoma:

Genes, Immune Microenvironment,
and Survival Prognosis.

Front. Oncol. 11:731993.
doi: 10.3389/fonc.2021.731993

ORIGINAL RESEARCH
published: 25 October 2021

doi: 10.3389/fonc.2021.731993
Alternative Splicing-Based
Differences Between Hepatocellular
Carcinoma and Intrahepatic
Cholangiocarcinoma: Genes,
Immune Microenvironment,
and Survival Prognosis
Dingan Luo1†, Deze Zhao2†, Mao Zhang1†, Chuan Hu3, Haoran Li1, Shun Zhang1,
Xiaowu Chen4, Lakshmi Huttad4, Bailiang Li5, Cheng Jin5, Changwei Lin6*
and Bing Han1*

1 Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China,
2 Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China, 3 Medical College, Qingdao
University, Qingdao, China, 4 Asian Liver Center, Department of Surgery, Medical School of Stanford University, Stanford,
CA, United States, 5 Department of Radiation Oncology, Medical School of Stanford University, Stanford, CA, United States,
6 Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China

Alternative splicing (AS) event is a novel biomarker of tumor tumorigenesis and
progression. However, the comprehensive analysis of hepatocellular carcinoma (HCC)
and intrahepatic cholangiocarcinoma (ICC) is lacking. Differentially expressed analysis was
used to identify the differentially expressed alternative splicing (DEAS) events between
HCC or ICC tissues and their normal tissues. The correlation between DEAS events and
functional analyses or immune features was evaluated. The cluster analysis based on
DEAS can accurately reflect the differences in the immune microenvironment between
HCC and ICC. Forty-five immune checkpoints and 23 immune features were considered
statistically significant in HCC, while only seven immune checkpoints and one immune
feature in ICC. Then, the prognostic value of DEAS events was studied, and two
transcripts with different basic cell functions (proliferation, cell cycle, invasion, and
migration) were produced by ADHFE1 through alternative splicing. Moreover, four
nomograms were established in conjunction with relevant clinicopathological factors.
Finally, we found two most significant splicing factors and further showed their protein
crystal structure. The joint analysis of the AS events in HCC and ICC revealed novel
insights into immune features and clinical prognosis, which might provide positive
implications in HCC and ICC treatment.
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INTRODUCTION

Primary carcinoma of the liver (PCL) is a common tumor of
digestive system (1). As the 5-year survival rate is not optimistic,
ranging from 5% to 30%, researchers have made great efforts to
explore the prevention, diagnosis, and treatment of PCL in recent
years (2). Generally, histological subtypes of PCL can be divided in
hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma
(ICC), combined hepatocellular cholangiocarcinoma (CHCC), and
others, of which the HCC and ICC are the two most common
subtypes in all histological types of PCL, accounting for 70–80% and
7–10% of PCL, respectively (3, 4). Since the liver and bile duct share
similar endodermal developmental origins (Figure 1), HCC and
ICC have many similar genomic and other molecular characteristics
changes during their development (5). However, studies have
shown there are also many tumor heterogeneities between them,
such as differences in epidemiology and prognosis (6). Therefore, it
is imperative to investigate the similarities and differences between
HCC and ICC to achieve accurate treatment for a wide range
of patients.

Alternative splicing (AS) is a critical step in the post-
transcriptional modification of mRNA. Mature mRNAs with
different structures and functions can be produced by acting on
pre-RNA by seven types of splicing. Therefore, despite the limited
number of human genes, the presence of AS events increases
protein diversity and cellular complexity (7). In recent years, it has
been confirmed that AS are closely related to a variety of tumor
signaling pathways, including sustaining proliferative signaling,
evading growth suppressors, angiogenesis, vascular invasion, and
metastasis (8). Recently, some studies have reported that AS events
can be used as factors to predict the prognosis and recurrence of
HCC or ICC, respectively (9–11). More importantly, many
evidence demonstrate that AS affects the formation of the
immune microenvironment through various pathways (12, 13).
However, there are no studies exploring the differences of immune
features or clinical prognosis between HCC and ICC based on
AS patterns.
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Here, we identified tumor-specific splicing events based on
the Cancer Genome Atlas (TCGA) data portal and explored the
potential biological functions of them. Subsequently, due to the
interest in the formation of the immune microenvironment,
the correlation between AS events and immune features was also
studied in HCC and ICC. In addition, we studied the impact of
AS events on the prognosis and established four nomograms
based on AS and clinicopathological factors. Further, we focused
on AA_ADHFE1, an AS event that affects both OS and DFS, and
verified its cell biological function in vitro, and predicted the
potential splicing factors that affect its production. This article
provides important guidance for the following research on AS in
HCC and ICC.
MATERIALS AND METHODS

Data Acquisition and Processing
The selection criteria for this study are as follows: (1) definite
histological diagnosis of HCC and ICC; (2) definitive clinical
data; (3) at least 30 days of overall survival after initial pathologic
diagnosis (14–16); (4) complete RNA-sequencing data. Gene
expression quantification data and related clinical data of the
HCC and ICC were downloaded from TCGA database, and
DESeq2 package was used to normalize the data portal (17, 18).
Besides, the Percent Spliced In (PSI) value, which is a widely
accepted indicator to quantify the AS events, was downloaded
from TCGA SpliceSeq (19). To obtain the most reliable AS
events set, we set a series of strict filter conditions (Percentage of
samples with PSI value more than 0.75, average of PSI value
more than 0.05) (20). UpSet plots were generated by the package
of UpSetR (version 1.4.0) to display interactive sets between each
types of AS events (21). In addition, Circos plots were generated
by the software of Circos (version 0.69-6) to depict the details of
splicing events and location of parent gene in whole
chromosome (22).
FIGURE 1 | The differentiation of liver diverticulum. The liver and intrahepatic bile duct arise from the liver diverticulum of the endoderm during early embryogenesis,
then gradually differentiate into mature organs during human growth and development.
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Identification of DEAS Events and
Potential Functional Analyses in
HCC and ICC
To identify the tumor-specific splicing events between tumor
tissue and normal tissue, the PSI value of patients was calculated
(including 343 HCC tissues and 48 normal tissues, 33 ICC tissues
and 8 normal tissues). Benjamini & Hochberg (BH) correction
was used to adjust p-values. The AS events with the adj.p < 0.05
and|log2FC|>1 were considered to be significantly upregulated or
downregulated. And the Venn diagram was developed to
represent the differences between differentially expressed
alternative splicing (DEAS) events and differentially expressed
genetic (DEG). The parent genes of DEAS event were submitted
to the String 11.0 online database for protein-protein interaction
(PPI) analysis (23). The relationship network was then illustrated
by Cytoscape (24). In addition, these parent genes were also used
as the Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses via Metascape.

Analyses of Immune Characteristics in
HCC and ICC
Additionally, the “ConsensusClusterPlus” package was
performed to classify patients based on the DEAS events (25).
Subsequently, immune features were analyzed using ESTIMATE
(26) and ssGSEA (27). The correlation analysis was conducted to
clarify the relationship between DEAS clusters (or two cancer
types) and immune characteristics (ESTIMATE Score, Stromal
Score, Tumor Purity, Immune Score, Cytolytic activity, NK
cells, etc.).

The Effect of Alternative Splicing on the
Prognosis of HCC and ICC
To standardize the PSI data, the median PSI value was used as a
threshold to divide patients into two groups for each AS event.
Univariate cox analysis and LASSO (alignment=lambda,
nfold=10, gamma = c(0, 0.25, 0.5, 0.75, 1) analysis were used
to identify potential prognostic factors (28). Later, the
multivariate cox analysis was used to identify the independent
risk factors for overall survival (OS) and disease-free survival
(DFS) (named OS-DEAS events and DFS-DEAS events). And
the risk scores of patients were calculated based on multivariate
cox model (named OS-model and DFS-model, respectively).

Then , to combine the OS- or DFS-model wi th
clinicopathological data, the nomograms were developed by
rms package (v6.2.0) (29, 30). In addition, the area under the
curve (AUC) of the receiver operating characteristic (ROC) and
the consistency index (C-index) was calculated to evaluate the
predictive ability of nomogram or other models (31).

Functional Verification of AA_ADHFE1 in
Cell Lines of HCC
The selection and cultivation of cell lines, the materials and
methods of functional experiments, the collection and processing
of tissue samples, and other methods can be found in the
supplementary materials.
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Correlation Analyses Between SFs and
OS-/DFS-DEAS Events in HCC and ICC
The data of splicing factors (SFs) which were validated in
previous studies were downloaded from the SpliceAid 2
database (32). In addition, the expressions of SFs were
downloaded from TCGA database, and the DESeq2 package
was used to normalize the data portal (18). Correlation analyses
were performed to determine the potential regulatory
relationship between both OS- or DFS-DEAS events and SFs.
In addition, crystal structures of SFs are obtained from
Protein Databank.

Statistical Analysis
All statistical analyses were conducted by R software (version
3.6.1) (24). Categorical data were performed using chi-square
(c2) test. Spearman’s rank correlation analysis was utilized for
non-normal distribution data. Student’s t-test and ANOVA test
were utilized to compare continuous variables. Survival curves
were compared using log-rank test and performed using the
Kaplan–Meier method. Pearson correlation was utilized for
continuous variables that meet normal distribution. The results
of Cox analysis were presented as the mean ± S.D., and P<0.05
(two-tailed) was considered statistically significant.
RESULTS

Overview of AS Events in HCC and ICC
The pipeline of our research is shown in Figure 2. A total of 343
HCC patients and 33 ICC patients were included in this study (the
baseline characteristic of patients is listed in Supplementary
Tables S1, S2). Subsequently, 24,763 AS events in 8,434 genes
were further detected in 343 HCC patients, and 28,147 AS events
and 8,094 genes were detected in 33 ICC patients. These data
indicated that one gene could have nearly three types of AS events.
AS events include seven subtypes (Supplementary Figure S1A),
which were all detected both in HCC and ICC (Supplementary
Figures S1B, C), and ES was the most common AS type andME is
the rare type of AS in tumors. As shown in Supplementary
Figures S1D, E, the UpSet plots of HCC and ICC showed the sets
of each AS type. Moreover, two Circos-plots were developed to
depict the details of AS events and location of parent gene in whole
chromosome (Supplementary Figures S1F, G). The above results
indicate that alternative splicing, which leads to the different
arrangements and combinations of exons and introns, is
responsible for the diversity of the transcriptome.

Identification of DEAS Events and
Potential Functional Analyses in
HCC and ICC
To identify the tumor-specific splicing events in tumor tissues
and normal tissues, the comparison of PSI value between these
tissues was performed. Finally, 384 DEAS events were identified
from 336 genes in HCC. Meanwhile, in ICC, 749 DEAS events
were found from 622 genes in ICC. The details of DEAS events
October 2021 | Volume 11 | Article 731993
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are shown in Supplementary Tables S3, S4. Intriguingly, we
found the AP type was the predominant DEAS mode in both
HCC and ICC, and the significant differences in the distribution
of seven splicing modes about DEAS events between HCC and
ICC (Supplementary Figure S2A).

After the DEAS events of HCC and ICC were identified and
the upregulation and downregulation DEAS events were
displayed in the volcano plots (Figures 3A, B), unsupervised
hierarchical consensus clustering was performed basing on
DEAS events. The results showed that samples of cancer and
normal tissues can be clearly separated into two groups, which
means that the DEAS events identified above were convincing
Frontiers in Oncology | www.frontiersin.org 4
(Figures 3C, D). Moreover, we developed two Venn diagrams to
depict the relationship of DEAS events and DEG in HCC
(Figure 3E) or ICC (Figure 3F), and the details are shown in
Supplementary Tables S5, S6. Intriguingly, whether in HCC or
ICC, many genes (such as ADRA1A and KIF4A) displayed some
opposite features of AS events in tumor and normal tissues
(Supplementary Figure S2B). Moreover, 139 AS events and 144
DEG were identified as common DEAS events and DEG between
HCC (Figure 3G) and ICC (Figure 3H).

Subsequently, the corresponding proteins of DEAS events
were used to construct PPI networks for HCC (Supplementary
Figure S3A) and ICC (Supplementary Figure S3B), and the PPI
FIGURE 2 | The flowchart of the present study.
October 2021 | Volume 11 | Article 731993

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Differentially Expressed Alternative Splicing
networks analyses demonstrated their interactive relationship in
normal condition. We further filtered 10 hub genes from the
protein-protein interaction network in HCC (Supplementary
Figure S3C) and ICC (Supplementary Figure S3D),
respectively. Two hub genes, Fibronectin 1 (FN1) and Serpin
peptidase inhibitor clade A member 1 (SERPINA1), were
identified as common genes between HCC and ICC, but other
eight hub genes are different. Moreover, we analyzed the
potential functions of DEAS events by GO and KEGG pathway
(Figures 3I, J). The results suggested that GO categories related
to the metabolic process, including “cofactor metabolic process”
in HCC and “small molecule catabolic process” in ICC. And
“cofactor metabolic process” and “lipid biosynthetic process” in
GO analysis were identified as common metabolic processes
between HCC and ICC. Moreover, KEGG pathways enriched
were associated with tumorigenesis, such as “PI3K-Akt signaling
pathway” in HCC and “Chemical carcinogenesis” in ICC. And
only the “Ferroptosis” was confirmed as common KEGG
pathway between HCC and ICC. Intriguingly, immune-related
pathways were also enriched in HCC (not in ICC), such as
“Complement and coagulation cascades” and “chemokine
signaling pathway,” which indicated that DEAS events may be
involved in immune microenvironment formation in HCC
Frontiers in Oncology | www.frontiersin.org 5
patients. These results prove that HCC and ICC are partly
common in DEAS events and potential functional, and they
may provide a reference for the study of CHCC. More
importantly, more DEAS events (86%) and pathways (90%) are
different between HCC and ICC.

DEAS Clusters and Immune Features in
HCC or ICC
Immune microenvironment is crucial to the development and
recrudescence of tumors. Therefore, we explored the differences
in immune checkpoints (33) (Supplementary Table S7) and
immune cell infiltration (Supplementary Figure S4A) between
HCC and ICC and found that the immune microenvironment
(65.9% of the immune checkpoints and 41.2% of the immune
cells) between HCC and ICC is very different. More importantly,
we are interested in the potential impact of alternative splicing on
the immune microenvironment; thus, we performed a
hierarchical consensus clustering analysis of HCC and ICC
patients based on the hierarchical consensus clustering of
DEAS events. Eventually, the HCC was divided into three
groups (Figure 4A and Supplementary Figures S4B–D), and
the ICC was divided into three groups (Figure 4E and
Supplementary Figures S4F–H). We found that 45 immune
A B D

E F G

I

H

J

C

FIGURE 3 | Identification of DEAS events and potential functional analyses in HCC and ICC. (A, B) The tumor-specific AS events between tumor tissues and normal
tissues. DEAS events identified in HCC (A) and ICC (B). (C, D) Heatmaps of the DEAS events in HCC (C) and ICC (D), respectively. (E, F) Two Venn diagrams
showed the common of DEAS events (yellow and orange) and DEG (red and blue) among HCC (E) and ICC (F). (G, H) Two Venn diagrams were generated to show
the common of DEAS events (G) and DEG (H) between HCC (yellow) and ICC (red). (I, J) GO, KEGG pathway etc. analyses of DEAS events in HCC (I) and ICC (J);
the x axis represents the annotations of GO or KEGG pathway etc.; the y axis reflects the number of corresponding genes.
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FIGURE 4 | DEAS clusters correlated with immune features in HCC and ICC. (A) Consensus matrix heatmap of HCC. (B, C) The compassion of two representative
immune checkpoints in three clusters. (D) Heatmap of the DEAS events in HCC ordered by clusters. (E) Consensus matrix heatmap of ICC. (F, G) The compassion
of two representative immune checkpoints in three clusters. (H) Heatmap of the DEAS events in ICC ordered by clusters, with annotations related with each cluster.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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checkpoints were significantly different between DEAS clusters
in HCC, while only seven immune checkpoints in ICC
(Supplementary Tables S8, S9). Interestingly, tryptophan 2,3-
dioxygenase (TDO2) serves as a common immune metabolism
checkpoint for HCC and ICC, which is consistent with the
“cofactor metabolic process” previously identified as a
common metabolic process between HCC and ICC. More
importantly, PD-1 was significantly lower in cluster 2 than in
cluster 1/3 (Figure 4B), while the expression of butyrophilin like
9 (BTNL9) in cluster 2 was significantly higher than that in
cluster 1/3 in HCC (Figure 4C). In ICC, Poliovirus receptor
(PVR), as another immunosuppression-related molecule, was
significantly lower in cluster 2 than in clusters 1 and 3
(Figure 4F), while the expression of TNF receptor superfamily
Frontiers in Oncology | www.frontiersin.org 7
member 14 (TNFRSF14) in cluster 2 was significantly higher
than that in cluster 3 (Figure 4G).

Next, we explored the differences in the infiltration of 34 types
of immune cells in the DEAS clusters and found that 23 immune
cells were considered significantly different between DEAS clusters
in HCC (Figure 4D), while only one immune cell was considered
significantly different between DEAS clusters in ICC (Figure 4H).
In addition, the tumor microenvironment score and tumor stroma
score based on DEAS clustering in HCC are meaningful, but not
meaningful in ICC. Intriguingly, the components of “Th1 cells”
show significant correlation with clusters both in HCC and ICC
(Supplementary Figures S4E, I). In general, these results show
that the immune microenvironment between HCC and ICC is
very different, and more importantly, the correlation between AS
A

B

D E

F G H

C

FIGURE 5 | The prognostic value of DEAS events in HCC and ICC. (A, B) The forest map results of cox analysis of OS- and DFS-DEAS events in HCC (A) and ICC
(B) were showed, and the common DEAS event in both OS and DFS was marked as red. (C) The difference PSI values of AA_ADHFE1_ID_084004 between normal
tissues and HCC tissues. (D, E) Prognostic signatures based on AA_ADHFE1_ID_084004 in HCC for both OS (D) and DFS (E). (F) The difference PSI values of
AD_PIR_ID_008558 between normal tissues and HCC tissues. (G, H) Prognostic signatures based on AD_PIR_ID_008558 in HCC for both OS (G) and DFS (H).
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and the immune microenvironment in HCC and ICC is extremely
valuable for research.

The Prognostic Value of DEAS Events in
HCC and ICC
To further evaluate the importance of AS for HCC and ICC, we
used univariate survival analysis (Supplementary Tables S10–
S11) and LASSO regression analysis (Supplementary Figure S5)
to analyze the impact of these DEAS on the survival and
prognosis of HCC and ICC patients. And these DEAS events
were selected in multivariate analysis. According to the results of
multivariate survival analysis, five OS-DEAS events and six DFS-
DEAS events were found as independent predictors of OS and
DFS in patients with HCC (Figure 5A). In addition, in patients
with ICC, three OS-DEAS events and three DFS-DEAS events
were found as independent predictors (Figure 5B). Then we
developed risk prediction formulas based on the above such
DEAS events in HCC and ICC, respectively; the formulas are
summarized in Supplementary Table S12.

Nomogram Model Construction
in HCC and ICC
The ideal predictive model should consider the importance of
clinical data. Univariate survival analysis (Tables 1, 2) and lasso
regression (Supplementary Figure S6) were performed to
identify suitable clinical predictors. Afterwards, four
nomograms based on risk scores of above OS or DFS models
and clinical variables were developed to predict the OS and DFS
in patients with HCC (Figures 6A, C) or ICC (Figures 6E, G). In
addition, the corresponding calibration curves of nomograms
showed good agreement between the probability of prediction
and observation in 1-, 2-, and 3-years OS and DFS in HCC
(Figures 6B, D) and in the 0.5-, 1-, and 2-year OS and DFS in
Frontiers in Oncology | www.frontiersin.org 8
ICC (Figures 6F, H). The c-index of nomogram was 0.732 (95%
CI: 0.671–0.793) in OS-HCC group, 0.683 (95% CI: 0.624–0.742)
in DFS-HCC group, 0.762 (95% CI: 0.649–0.875) in OS-ICC
group, and 0.771 (95% CI: 0.621–0.921) in DFS-ICC group
(Table 3), and the ROC of four nomograms was also
performed and is shown in Supplementary Figure S7,
respectively. We also validate nomograms internally by
randomly drawing 70% of the original cohort, and the results
show that the c-index of nomograms was 0.8 in OS-HCC group,
0.77 in DFS-HCC group, 0.86 in OS-ICC group, and 0.82 in
DFS-ICC group. These results show that four nomograms have
good stability and distinguishing ability. Meanwhile, the c-index
and AUC of all single variables included in the four nomograms
were also identified, and the results showed that the c-index and
AUC of almost all single predictors were lower than the
nomogram. Only when predicting the 1-year DFS of ICC
patients is the predictive power of the nomogram model
slightly lower than that of the DFS-model (Nomo AUC: 0.849
vs. DFS-model AUC: 0.853).

Verification of Vital DEAS Functions
As in the previous study, we found that AA_ADHFE1_ID_084004
was a common independent risk event for both OS and DFS in
HCC (Figure 5A; ADHFE1, Alcohol Dehydrogenase Iron
Containing 1). In addition, AD_PIR_ID_008558 was also a
common independent risk factor for both OS and DFS in ICC
(Figure 5B; PIR, Pirin). For intuitively showing the differences of
AA_ADHFE1_ID_084004 and AD_PIR_ID_008558 between
tumor and normal tissues, we performed graphs in scatter plot
(Figures 5C, F). Based on the median value of PSI, patients were
divided in high-risk group and low-risk group. The Kaplan-Meier
curves showed that there are significant differences in two groups
(Figures 5D, E, G, H). It is proved again that AA_ADHFE1_ID_
TABLE 1 | Univariate analyses of clinicopathological features for OS and DFS in HCC.

Characteristics OS DFS

HR 95% CI P Value HR 95% CI P Value

Age (>60/≤60 years) 1.17 0.82–1.67 0.387 1 0.74–1.35 0.998
Sex (Male/Female) 1.25 0.87–1.8 0.225 1 0.72–1.37 0.977
BMI (≥25/<25) 0.72 0.5–1.04 0.081 0.86 0.64–1.17 0.339
Albumin (≥4/<4 g/dl)) 0.84 0.55–1.28 0.415 0.87 0.62–1.22 0.417
Alpha_fetoprotein (>20/≤20 ng/ml) 1.75 1.1–2.77 0.017 1.35 0.95–1.91 0.094
Creatinine (≥1.1/<1.1 mg/dl) 0.76 0.48–1.2 0.235 0.7 0.48–1.01 0.055
Platelet (×109/L) 1.39 0.9–2.16 0.142 1.3 0.93–1.82 0.130
Local_invasion (T2+T3+T4/T1) 2.33 1.6–3.4 0.000 2.39 1.75–3.26 0.000
Lymph_node_metastasis (N1+NX/N0) 1.62 1.11–2.35 0.012 1.26 0.92–1.74 0.155
Distant_metastasis (M1+MX/M0) 1.79 1.23–2.6 0.002 1.2 0.86–1.66 0.279
TNM_stage (Stage II+III+IV/Stage I) 2.31 1.56–3.45 0.000 2.32 1.68–3.19 0.000
Child_pugh_classification (B+C/A) 1.85 0.91–3.78 0.091 1.28 0.69–2.4 0.438
Adjacent_tissue_inflammation (Yes/No) 1.2 0.73–1.97 0.482 1.24 0.86–1.8 0.247
Family_history (Yes/No) 1.17 0.8–1.7 0.423 0.91 0.65–1.28 0.593
Race (White/Not_white) 1.25 0.86–1.81 0.242 1.33 0.98–1.8 0.069
Residual_tumor (R1+R2+RX/R0) 2.08 1.22–3.53 0.007 1.66 1.01–2.71 0.044
Vascular_invasion (Yes/No) 1.48 0.96–2.26 0.075 1.72 1.22–2.44 0.002
OS_model (High/low) 4.03 2.38–6.81 0.000
DFS_model (High/low) 3 1.98–4.53 0.000
October 202
1 | Volume 11 | Article
Italicized and bold, statistically significant.
OS, overall survival; DFS, disease-free survival; HCC, hepatocellular carcinoma; HR, hazard ratio; 95%CI, 95% confidence interval; BMI, body mass index; TNM, tumour_node_metastasis.
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084004 and AD_PIR_ID_008558 may play an important role in
the development and recrudescence of HCC and ICC, respectively.

To further verify that AA_ADHFE1_ID_084004 is very
important to the development and recrudescence of HCC, we
verify the function of two transcripts related to DEAS by
experiments. The top left plot displays the splicing pattern of
ADHFE1_203 and ADHFE1_207 [ADHFE1, through Alternate
Frontiers in Oncology | www.frontiersin.org 9
acceptor site (AA), an alternative splicing type, produced two
transcripts] (Figure 7A), and the top right plot shows that the
expression of ADHFE1_203 and ADHFE1_207 in HCC is
significantly lower than that in adjacent non-tumor frozen
tissues (Figure 7B). More importantly, MTT assay suggested
that the overexpression of ADHFE1_203 and ADHFE1_207
inhibited the proliferation of HCC cells (Supplementary
TABLE 2 | Univariate analyses of clinicopathological features for OS and DFS in ICC.

Characteristics OS DFS

HR 95% CI P Value HR 95% CI P Value

Age (>60/≤60 years) 0.95 0.34–2.63 0.916 0.75 0.3–1.89 0.539
Sex (Male/Female) 0.72 0.26–1.93 0.508 1.26 0.47–3.37 0.647
BMI (≥25/<25) 0.63 0.21–1.86 0.402 0.8 0.28–2.25 0.673
Albumin (≥4/<4 g/dl)) 0.5 0.13–1.92 0.310 1.05 0.29–3.74 0.940
Creatinine (≥1.1/<1.1 mg/dl) 2.47 0.74–8.27 0.144 2.27 0.62–8.31 0.217
Platelet (×109/L) 1.85 0.4–8.46 0.431 0.9 0.26–3.17 0.872
Local_invasion (T2+T3+T4/T1) 1.61 0.58–4.47 0.359 1.1 0.43–2.81 0.835
Lymph_node_metastasis (N1+NX/N0) 3.41 1.17–9.93 0.025 2.93 1.02–8.37 0.045
Distant_metastasis (M1+MX/M0) 1.29 0.36–4.57 0.697 1.28 0.42–3.93 0.662
TNM_stage (Stage II+III+IV/Stage I) 1.61 0.58–4.47 0.359 1.1 0.43–2.81 0.835
Child_pugh_classification (B+C/A) 2.13 0.25–18.42 0.491 1.02 0.13–8.11 0.983
Family_history (Yes/No) 0.51 0.18–1.41 0.191 0.36 0.14–0.97 0.043
Perineural_invasion (Yes/No) 3.41 0.84–13.83 0.087 1.43 0.46–4.44 0.535
Race (White/Not_white) 0.36 0.09–1.37 0.135 0.72 0.21–2.51 0.611
Residual_tumor (R1+R2+RX/R0) 1.92 0.61–6.05 0.266 1.03 0.3–3.58 0.961
OS_model (High/low) 7.41 1.94–28.22 0.003
DFS_model (High/low) 16.28 3.46–76.57 0.000
October 20
21 | Volume 11 | Article
Italicized and bold, statistically significant.
OS, overall survival; DFS, disease-free survival; ICC, intrahepatic cholangiocarcinoma; HR, hazard ratio; 95% CI, 95% confidence interval; BMI, body mass index; TNM,
tumour_node_metastasis.
A B D

E F G H

C

FIGURE 6 | Nomogram model construction in HCC and ICC. (A, B) The development of nomogram to predict the 1-, 2-, and 3-year OS in HCC (A), and the
corresponding calibration (B). (C–D) The development of nomogram to predict the 1-, 2-, and 3-year DFS in HCC (C), and the corresponding calibration (D).
(E, F) The development of nomogram to predict the 0.5-, 1-, and 2-year OS in ICC (E), and the corresponding calibration (F). (G, H) The development of nomogram
to predict the 0.5-, 1-, and 2-year OS in ICC (G), and the corresponding calibration (H).
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Figure S8A and Figure 7C), and Cell Cycle analysis suggested
that the overexpression of ADHFE1_203 inhibited S phase, while
the overexpression of ADHFE1_207 inhibited G1 phase
(Figure 7D). In addition, we observed that the overexpression
of ADHFE1_203 significantly inhibited migration and invasion
in Huh7 cell line (Figure 7E). Intriguingly, MTT and transwell
assays showed that compared with the overexpression of
ADHFE1_207, the overexpression of ADHFE1_203 had a
stronger ability to inhibit proliferation, invasion, and
migration. These results directly indicated that DEAS events
were important biological processes and had a potential
clinical value.

Correlation Analyses Between SFs and
OS-/DFS-DEAS Events in HCC and ICC
So, what are the reasons for the emergence of important DEAS
such as AA_ADHFE1_ID_084004 and AD_PIR_ID_008558? As
we all know, SFs are important factors to regulate the DEAS events.
Hence, we further studied which SF can regulate the production of
OS- and DFS-DEAS events. Thus, correlation analyses between
expression levels of the PSI values of these DEAS events and 71 SFs
(Supplementary Table S13) were conducted to explore the
candidate regulation network in the HCC and ICC (34). As
shown in Figures 8A, B, we can find that most of the SFs
positively related with these DEAS events [67.11% (204/304) in
HCC and 61.54% (16/26) in ICC]. In addition, we can also find
that most single SF was correlated with more than one DEAS
events, and the number of AS events correlated with some SFs even
reach nine (DAZAP1 and HNRNPL in HCC). Further, we
identified the SFs that significantly correlated with common
DEAS events determined above (AA_ADHFE1_ID_084004 and
AD_PIR_ID_008558). And we found that a lot of SFs correlated
Frontiers in Oncology | www.frontiersin.org 10
with AA_ADHFE1_ID_084004, but the T-cell intracellular
antigen 1 (TIA1) is the most significantly correlated SFs
(r=0.532, p<0.001). However, only SF Proline and Glutamine Rich
(SFPQ) was identified correlated with AD_PIR_ID_008558 (r=
−0.424, p=0.027).

More importantly, to better understand the specific splicing
mechanism of SFs, we further explored the protein crystal
structure of TIA1 and SFPQ. Analysis of TIA1 sequence and
structures indicates it contains three RNA recognition motif
(RRM), and each RRM structure consists of four antiparallel
strands and two helices arranged in an alpha/beta sandwich, with
beta sheet interacting with RNA molecules. Supplementary
Figure S8B highlights interactions observed in the published
crystal structures. Analysis of SFPQ sequences reveal it also
contains two RRMs. Though available crystal structures of
SFPQ do not contain RNA, structure-based alignment of SFPQ
(PDB code 6NCQ) with TIA1 (PDB code 5O3J) indicates that
SFPQ is capable of recognizing RNA (Supplementary
Figure S8C).
DISCUSSION

Recently, some studies reported that AS event significantly
related with apoptosis, angiogenesis, and immunology (35, 36).
And the correlation between tumor and AS event was gradually
discovered, which was considered to play an important role in
tumorigenesis, invasion, and drug resistance of cancer (37–41).
In the present studies, 384 and 749 DEAS events were confirmed
in HCC and ICC, respectively. Moreover, the relationship
between DEAS events and biological process or immune
features has also been initially recognized. Most notably, we
found that the DEAS events and its molecular mechanism in two
subtypes of PCL have obvious differences. Subsequently, we
subdivided and verified the specific DEAS events and
developed four nomograms to predict the prognosis. And we
also found that the relationship of SFs and DEAS events provided
a potential regulatory mechanism for the abnormal changes in
HCC and ICC and further showed some protein crystal
structure. Our joint and integrated investigation focused on the
DEAS events of HCC and ICC, which has an important impetus
for understanding the pathogenesis, predicting the progression,
and further treatment such disease.

As is known to us, liver and bile duct originate from the same
hepatic diverticulum of endoderm. However, ICC is more
malignant than HCC and has a poor prognosis (42). For HCC
patients undergoing therapeutic surgery, the 5-year overall
survival rate is about 50–70% (43, 44), which is much higher
than that of ICC patients undergoing therapeutic surgery (20–
40%) (45, 46). Therefore, it is particularly important to explore
the mechanism to promote the occurrence and development of
HCC and ICC. Compared with the previous studies, the most
important highlight in our study is that we jointly analyzed the
differences in two common histological type of liver cancer in the
level of DEAS events. For example, although we found HCC and
ICC are partly common in DEAS events or DEG, more of them
TABLE 3 | C_index of the nomogram model variables in HCC and ICC.

Variables C_index 95% CI

HCC_OS
Nomogram 0.732 0.671–0.793
OS_model 0.679 0.636–0.722
Local_invasion 0.609 0.562–0.656
Alpha_fetoprotein 0.600 0.541–0.659
Residual_tumor 0.535 0.500–0.570
Distant_metastasis 0.534 0.489–0.579
HCC_DFS
Nomogram 0.683 0.624–0.742
DFS_model 0.629 0.579–0.679
Local_invasion 0.626 0.588–0.664
Vascular_invasion 0.581 0.536–0.626
Residual_tumor 0.516 0.493–0.539
ICC_OS
Nomogram 0.762 0.649–0.875
OS_model 0.754 0.652–0.856
Lymph_node_metastasis 0.629 0.507–0.751
ICC_DFS
Nomogram 0.771 0.621–0.921
DFS_model 0.755 0.641–0.869
Family_history 0.606 0.482–0.730
Lymph_node_metastasis 0.601 0.498–0.704
HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; OS, overall
survival; DFS, disease-free survival; 95% CI, 95% confidence interval.
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are different between HCC and ICC. Besides, the potential
functional analyses of the parent genes of DEAS found that
they may play significant roles in tumorigenesis and metabolic
process. Intriguingly, “cofactor metabolic process” and “ lipid
biosynthetic process” were identified as the common pathway of
HCC and ICC in GO analysis. And the “Ferroptosis” was
identified as the common pathway by KEGG analysis, which
has been confirmed was related with head and neck cancer and
lung cancer (47, 48). These common targets are expected to be
new potential therapeutic targets. But it should point that the
differences between such two common histological types of PCL
still dominate in major biological process.

The immune microenvironment of HCC and ICC is quite
different (49), and the role of alternative splicing in the formation
of the immune microenvironment is worth exploring. After
clustering by DEAS events, it is found that HCC and ICC have
a common immune metabolic checkpoint TDO2 (50), which is
consistent with the “cofactor metabolic process” that we have
enriched in functions. More importantly, PD-1 and PVR have
been reported in previous studies as an immunosuppressive
factor (51, 52), while BTNL9 and TNFRSF14 have been
Frontiers in Oncology | www.frontiersin.org 11
reported as an immune activating factor (53, 54). This is
consistent with the results of our cluster analysis based on
DEAS. In HCC, the PD-1 expression of cluster 2 was
significantly lower than that of clusters 1 and 3, while the
expression of BTNL9 of cluster 2 was significantly higher than
that of clusters 1 and 3. In ICC, the PVR expression of cluster 2
was significantly lower than that of clusters 1 and 3, while the
expression of TNFRSF14 of cluster 2 was significantly higher
than that of cluster 3. In addition, we also explored the
infiltration of 34 immune cells in HCC and ICC and found
that only the components of “Th1 cells” showed significant
correlation with clusters both in HCC and ICC. Previous
studies have shown that Th1 cells play a very important role in
the occurrence and development of HCC and ICC (55, 56),
which is consistent with our research. This shows that cluster
analysis based on DEAS can accurately reflect the differences in
the immune microenvironment of HCC and ICC, which
provides a theoretical basis for the development of HCC and
ICC immunotherapies to prolong patient survival. Although
HCC and ICC are hepatogenic malignancies, there are great
differences in the prognosis between them. The poor prognosis of
A B

D

E

C

FIGURE 7 | Functional experiment of ADHFE1 splicing variants in HCC cell. (A) The splicing pattern of ADHFE1_203 (ENST00000396623.8) and ADHFE1_207
(ENST00000424777.6). (B) The RNA expression of ADHFE1_203 and ADHFE1_207 in matched HCC and adjacent non-tumor frozen tissues. (C–E) MTT assay (C),
Cell Cycle analysis (D), and Transwell assays (E). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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ICC may be due to the lack of immune infiltration and the lack of
specific immunotherapeutic targets. Therefore, HCC and ICC
should be accurately distinguished. When treating common
targets, specific target therapy should be combined to achieve
accurate treatment and further improve the prognosis
of patients.

In the previous studies, ADHFE1 has been shown to be closely
related with the tumorigenesis and progression of many cancers (57,
58). In the present study, AA_ADHFE1_ID_084004 was identified
as an independent risk AS event for OS and demonstrated the same
trend in DFS. Intriguingly, although ADHFE1 was downregulated,
Alternate acceptor site (AA) event in ADHFE1 was upregulated in
HCC. This is consistent with the results of our cell function
experiment. We found that ADHFE1_203 has a stronger
anticancer effect than ADHFE1_207. It may be that the
occurrence of AA events represents an increase in the proportion
of ADHFE1_207s, and the overall anticancer effect is weakened, so
it indicates a poor prognosis. In addition, another AS event that was
identified as an independent prognostic risk factor for both OS and
DFS in ICC patients is AD_PIR_ID_008558. Its parent gene has
been confirmed to be associated with tumorigenesis (59). Although
the difference of the PIR expression was not statistically significant
between tumor and normal tissues, AD event in PIR was
significantly upregulated in ICC. This suggests that DEAS events
may play a more important role in tumor progression than its
parent gene, which is a research orientation in the future.

Due to the poor prognosis of liver cancer, it is important to
develop a predictive tool to predict the prognosis of patients. Up
to now, the predictive tool based on clinicopathological,
laboratory tests, radiology results, methylation markers, or
miRNA have been established for liver cancer patients (60–66).
However, the nomogram based on the DEAS events to predict the
Frontiers in Oncology | www.frontiersin.org 12
prognosis of liver cancer is lacking, no matter HCC or ICC. In
fact, the nomogram based on AS events and clinicopathological
has been developed in breast cancer and showed good
performance of discrimination and clinical usefulness (67). In
the present study, four nomograms were developed based on the
clinical variables and risk scores, which were calculated by the
OS-DEAS events or DFS-DEAS events. C-index and AUC of
nomogram indicated that the discrimination of all nomograms is
well. More importantly, all of C-index and almost of AUCs in
nomogram were higher than any single predictors in nomograms.
These data demonstrate that the nomogram combined with
DEAS events has high potential prognostic value in
HCC patients.

It is worth noting that a single SF usually regulates more than
one DEAS event, and the different SFs may even show an
opposite regulatory effect on the same DEAS events. This
shows that the regulation of SF is a complex network (20). In
our research, TIA1 was identified as ADHFE1-correlated SF.
Literature reports suggested TIA1 RRM2 is primarily involved in
recognizing U-rich sequences while RRM3 preferentially
interacts with C-rich sequences (68). We highlight interactions
observed in the published crystal structures. Moreover, as is
validated in previous research, TIA1 is an important tumor
suppressor involved in many aspects of carcinogenesis and
cancer development. It can regulate tumor cell proliferation,
migration in gastric cancer, colorectal cancer, and esophageal
squamous cell carcinoma (69–71). Besides, SFPQ was PIR-
correlated SF, and the structure-based alignment of SFPQ with
TIA1 indicates that SFPQ is capable of recognizing RNA. In
addition, the gene of SFPQ was also identified as tumor-related
gene. Many molecules can facilitate proliferation, migration, and
invasion of cancer cells by targeting SFPQ (72, 73). Therefore, a
A B

FIGURE 8 | Correlation analyses between SFs and OS-/DFS-DEAS events in HCC and ICC. (A, B) The correlation between SFs and OS- and DFS-DEAS events in
HCC (A) and ICC (B). The right figure displays the significance and the correlation coefficient between the expression of SFs and the PSI values of OS-/DFS-DEAS
events. If there is a circle, P <0.05, and the size of the circle represents the size of P value. The color of the circle represents the correlation coefficient. The left figure
demonstrates the correlation between the PSI values of representative DEAS events and expression of SF.
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better understanding of the specific splicing mechanism of SF
may allow a novel idea for improving patient survival.

In summary, the potential mechanisms and immune
functions of DEAS events in HCC and ICC were identified in
the present study. Despite some similarities between HCC and
ICC were found in the AS level, it should be noticed the
difference between them accounts for a greater part. In
addition, the results of our study highlight the prognostic
significance of DEAS event in HCC and ICC, and the
predictive models developed have shown the great clinical
utilization value. These results might provide new insight in
HCC and ICC prevention and treatment.
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