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Objective. Inhibition of inflammation and free radical formation in the cochlea may be involved in antioxidant treatment in
acute acoustic trauma. Procedure. Chinchilla were exposed to 105dB sound pressure level octave band noise for 6 hours. One
group of chinchilla was treated with antioxidants after noise exposure. Auditory brainstem responses, outer hair cell counts, and
immunohistochemical analyses of biomarkers in the cochlea were conducted. Results. The antioxidant treatment significantly
reduced hearing threshold shifts, outer hair cell loss, numbers of CD45" cells, as well as 4-hydroxy-2-nonenal and nitrotyrosine
formation in the cochlea. Conclusion. Antioxidant treatment may provide protection to sensory cells by inhibiting formation of
reactive oxygen and nitrogen products and migration of mononuclear phagocytes in the cochlea. The present study provides
further evidence of effectiveness of antioxidant treatment in reducing permanent hearing loss.

1. Introduction

Metabolic oxidative stress plays a significant role in acute
acoustic trauma (AAT) and provokes the production of
reactive oxygen species (ROS) and reactive nitrogen species
(RNS) in the inner ear [1-4]. In the cochlea, free radicals
and their products emerge or increase immediately after
high level noise exposure as well as a second peak that
occurs 7-12 days [2-8]. The direct relationship between the
formation of free radicals and AAT is not fully understood.
Free radicals may directly cause cochlear dysfunction and
DNA damage [5, 9, 10] and induce cell death in the inner ear
[11-14]. More importantly, a self-perpetuating reaction of
free radicals and ROS on lipid molecules may be responsible
for continuing cell damage after noise exposure [15]. ROS
and RNS may also cause mitochondrial membrane injury,

cytochrome C release, and ischemia/reperfusion damage and
trigger apoptotic cell death in the inner ear [15-19].

Based on these studies, a number of antioxidants were
studied either to enhance intrinsic cochlear stress defenses or
as exogenous antioxidants and have been successfully used to
prevent AAT through systemic or local application in several
animal models [20-27]. More importantly, postexposure
treatment in animal models [21, 24, 27, 28] provides a new
possible use of the antioxidants to treat AAT in the clinic in
the future.

Antioxidants target different pathways in the inner ear.
For example, N-acetyl-L-cysteine (NAC) provides cysteine
for synthesis of reduced glutathione (GSH), which is an
important antioxidant compound in mitochondria [24, 28—
30]. Acetyl-L-carnitine (ALCAR) can restore mitochondrial
membrane integrity and reduce ROS production [16, 25, 29].
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Protective mechanisms of 4-hydroxy phenyl N-tert-
butylnitrone (4-OHPBN), a major metabolite of phenyl
N-tert-butylnitrone (PBN), are still unclear although it has
been successfully used in the treatment of AAT [21, 31].
PBN is a spin trapping agent, and its phenyl ring reacts with
hydroxyl radicals [32]. Biological functions of PBN may
involve the reduction of oxidative stress and inflammation,
as well as attenuation of glutamate excitotoxicity [33, 34].
Although PBN was unable to reduce the auditory threshold
shifts induced by noise alone in rats [35, 36], the derivative,
4-OHPBN, alone or in combination with other antioxidants
can effectively treat AAT in chinchilla, suggesting 4-OHPBN
may have different biological functions compared to PBN
[21]. A three-drug combination (NAC + ALCAR + 4-
OHPBN) was significantly better than any single antioxidant
treatment as reflected by hearing testing through auditory
brainstem responses (ABRs) and outer hair cell (OHC)
counts [21]. However, the underlying cellular and molecular
mechanisms of these antioxidants in treating AAT have not
yet been established.

At least 2 free radical products have been used as bio-
markers of oxidative stress to label ROS and RNS activity in
the inner ear and to evaluate effects of antioxidant treatment
after noise exposure [6, 8, 27, 37]. Four-hydroxy-2-nonenal
(4-HNE) is an indicator of oxidative damage formed as an
abundant product of polyunsaturated fatty acid oxidation
and decomposition. 4-HNE reacts extensively with DNA and
proteins, depletes intracellular GSH, and alters many cell
signaling cascades [38]. Delayed 4-HNE formation has been
found in the organ of Corti of guinea pigs and was shown
to peak 7-10 days after a noise exposure of 120 dB sound
pressure level (SPL) for 5 hours [8]. Nitrotyrosine (NT),
a marker of nitric oxide (NO) production, is formed by
nitration of a tyrosine residue in proteins [39]. Another free
radical biomarker, malondialdehyde, was found in cochlea
immediately after noise exposure as well as a second peak at
12 days [6, 7, 37]. We have examined these three free radical
biomarkers in the present study. Other biomarkers that were
also examined include cytoplasmic cytochrome C [40, 41],
inducible nitric oxide synthase (iNOS) [42, 43], and caspase
3 [17, 40].

In recent years, the relationship between inflammation
and oxidative stress has been extensively studied in various
organs and systems, that is, pulmonary and cardiovascular
systems, CNS, liver, and muscle [44]. In the inner ear,
inflammatory cells have been found in different structures
of the cochlea after noise exposure [45-47]. For example,
dendritic macrophages were noted in the organ of Corti
5 days after noise exposure [45]. A large increase in the
number of CD45" cells was found in the spiral ligament
and spiral limbus 1-14 days after noise exposure [46, 47].
This inflammatory response may be involved in propagating
cellular damage in the cochlea after noise exposure [46].
Because oxidative stress and inflammation are traditionally
associated with AAT, we used an anti-CD45 antibody as an
inflammatory marker to examine the effects of antioxidant
treatment on inflammation in the cochlea.

In the present study, the cochleae were examined using
semiquantitative immunohistochemical analyses 10 days
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after noise exposure, a second time point that free radicals
reached a maximum [8], to evaluate the effectiveness of
antioxidant treatment in AAT using inflammatory, oxidative
stress, and cell death biomarkers.

2. Materials and Methods

2.1. Animals. The experimental procedures were approved
by the Institutional Animal Care and Use Committees of
the Office of Naval Research and the Oklahoma Medical
Research Foundation (OMREF). Eighteen female adult chin-
chilla laniger weighing 500-850¢g (3 to 5 years old) were
purchased from Moulton Chinchilla Ranch (Rochester, MN)
and housed in the OMRF animal facility with free access to
a standard chinchilla diet (Mazuri Chinchilla Diet, 5MO1,
PM1 Nutrition International Inc., Brentwood, MO) and tap
water throughout the experimental periods. The ambient
noise level in the animal facility was 54.7 dB (A)/20.0 uPa.
The chinchilla were randomized into 3 groups (n = 6
in each group): animals in the noise exposure plus carrier
solution (dimethyl sulfoxide, polyethylene glycol 400, and
saline) and noise plus treatment (noise/treatment) groups
were exposed to a 105 dB SPL octave-band noise for 6 hours
(detailed below). Animals in the normal control group were
not exposed to noise.

2.2. Noise Exposure. For noise exposure, two animals at a
time were placed in two small wire restraint cages on a
wooden plate. They were exposed to a 105dB SPL octave-
band noise centered at 4kHz for 6h in a sound isolation
booth (Industrial Acoustics Company, New York, NY). The
noise generation was detailed in our previous report [21].
Briefly, the noise was generated, filtered by a Tucker Davis
Technologies (TDT, Alachua, FL) device, amplified (QSC
audio PLX 3402 power amplifier, Costa Mesa, CA), and
transduced with an acoustic speaker (JBL 2350, Northridge,
CA). The dropoft of noise energy outside the octave-band
noise being produced was 20-25dB/octave. The speaker
was suspended from the ceiling of the sound booth and
positioned directly above the wire cages. A condenser micro-
phone (B&K 2804, Norcross, GA) coupled to a preamplifier
and the PULSE software system (B&K Sound & Vibration
Measurement) was placed between the two wire cages at the
level of the animals’ heads to continually monitor the noise
level during noise exposure.

2.3. Injection of Antioxidants. Animals in the noise/treatment
group received an initial injection 4 hours after the noise
exposure and then twice a day for the following 2 days.
Animals in this group received 20 mg/kg of 4-OHPBN
dissolved in dimethyl sulfoxide, polyethylene glycol 400,
and saline, 50 mg/kg of NAC (Hospira Inc., Lake Forest,
IL), and 20 mg/kg of ALCAR (Sigma-Aldrich Inc. St. Louis,
MO). These agents were intraperitoneally administered. In
the noise exposure and the normal control groups, equal
volumes of carrier solution were injected at the same
time points as in the noise/treatment group. The three-
drug combination was used in the present study since this
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combination showed the best hearing protection as reported
in our previous study [21].

2.4. Measurement of Auditory Brainstem Responses. ABR
thresholds for both ears of each animal were measured
before initial noise exposure (baseline threshold), imme-
diately after, and then 10 days after noise exposure. ABR
threshold shift was obtained as the difference between the
baseline threshold and the final ABR threshold measured 10
days after noise exposure. The ABR recordings procedure
was detailed in our previous report [21]. Briefly, animals
were lightly anesthetized with ketamine (20mg/kg) and
xylazine (1 mg/kg). The ABR thresholds were determined
by decreasing the sound intensities of the tone pips (5ms
duration and 1 ms Blackman rise/fall ramp at 0.5, 1, 2, 4,
6, and 8kHz) first at 10 dB steps until near the threshold
and then 5 dB ascending steps. Threshold was defined as the
midpoint between the lowest level of a clear response and
the next level of nonresponse. The investigators obtaining the
ABR thresholds were blinded as to the identity of the animal
groups.

2.5. Tissue Collection and HC Counting. After the last ABR
measurement, the chinchilla were euthanized with an over-
dose of ketamine and xylazine and then intracardially
perfused with 0.1 M phosphate buffered saline (PBS, pH 7.2),
followed by 4% paraformaldehyde in PBS. Cochleae were
removed and postfixed in the same fixative overnight and
then washed in PBS and stored in the buffer at 4°C. The
right cochlea from each animal was used for whole mount
and TRITC-phalloidin staining for HC counting. Percentages
of HCs were obtained by dividing the OHC count from the
experimental animals by the HC count from normal control
animals for each cochlear section [48]. Finally, the percentage
of missing HCs was plotted as a function of percent distance
from the cochlear apex by entering inputs into a worksheet
to construct a cytocochleogram [21, 48]. An equation of
cochlear frequency-place map (F = 125¢%%14, where F is the
frequency in Hz and d is percent distance from the apex) was
used to evaluate HC losses at specific frequencies of 2, 4, 6,
and 8kHz [21, 49, 50]. The left cochlea from each animal
was processed for immunohistochemical analysis (detailed
below).

2.6. Immunohistochemical Analysis. Cochleae were washed in
dH,O three times and immersed in 10% EDTA for 2 weeks
with 3-4 solution changes. After decalcification, the cochleae
were cryoprotected in 30% sucrose in PBS at 4°C overnight,
embedded in Tissue-Tek (Sakura Finetek USA Inc. Torrance,
CA) and serially sectioned in a perimodiolar plane with a
Thermo Cryotome (Thermo Fisher Scientific, Inc. Waltham,
MA) at 18-20 ym. Serial sections were mounted onto gelatin
precoated slides.

For fluorescence immunohistochemical staining, the
sections were washed 3 times with PBS, blocked in 1%
bovine serum albumin (fraction V) and 1% normal goat
serum in PBS for 1 hour, and permeabilized in 0.2% triton
X-100 in PBS (PBS/T) for 30 minutes. The sections were

then incubated with a primary antibody (1:200 mouse anti-
nitrotyrosine IgG, Upstate, Lake Placid, NY; 1:100 rabbit
anti-4-hydroxy-2-nonenal Michael adducts IgG, chemically
reduced, EMD Chemicals, Inc. Gibbstown, NJ; 1: 500 rabbit
anti-malondialdehyde polyclonal IgG, Chemicon Interna-
tional, Inc. Temecula, CA) for 2 hours. After washing with
PBS/T, Alexa Fluor 594 donkey antimouse or antirabbit IgG
(1:1000, Invitrogen, Carlsbad, CA) was applied onto the
slides for 1 hour. After rinsing with PBS, 4', 6-diamidino-2-
phenylindole (DAPI, 1:20,000) was used for nuclear stain-
ing. A coverslip was applied with ProLong Gold Antifade
Reagent (Invitrogen, Carlsbad, CA). To eliminate possible
artificial effects on fluoresce intensity that may be caused by
different staining conditions, each run of immunostaining
included the same number of slides from each group. Images
were collected with fluorescence microscopy (Olympus
BX51, Melville, NY) or confocal microscopy (Leica SP2 Con-
focal Microscope, Heidenberg, Germany). Other primary
antibodies used in the fluorescence immunohistochemical
staining include rabbit anticaspase 3 IgG (1:50, Millipore,
Temecula, CA), mouse anti-iNOS IgG (1:100, Abcam Inc,
Cambridge, MA), and rabbit anticytochrome C (1:50, Cell
Signaling Technology, Danvers, MA).

To study mononuclear phagocyte migration in the
cochleae, mouse anti-CD45 IgGl (1:25, BD Pharmin-
gen, San Jose, CA) was incubated with cochlear sections
overnight. After PBS/T washing, biotinylated antimouse
IgG (1:200, Vector Laboratories, Inc. Burlingame, CA) was
applied onto the slides for 1 hour, and Vectastain ABC and
DAB kits (Vector Laboratories, Inc. Burlingame, CA) were
then used for the immunolabeling visualization. Immuno-
positive cells had a brown reaction product. Images were
collected by light microscopy (Olympus BX51, Melville, NY).

A negative control was obtained by omitting the primary
antibody in both fluorescence and ABC immunohistochem-
ical analyses.

2.7. Quantitation of Immunostaining and Statistical Analysis.
A modified semiquantitative procedure [51] was employed
to quantify CD45" cells in the cochleae. Images were taken
by light microscopy (40x objective) from cross-sections
of the stria vascularis in every other section, and the
distance between two images was about 400 ym to ensure
nonduplicate counting. Five to six images were collected
from each cochlear turn. CD45" immunostaining density
was obtained by dividing the number of positive cells in each
cross-section of the stria vascularis by the cross-sectional
area of the stria vascularis (CD45" density = number of
CD45" cells/size of stria vascularis (per mm?)). The sizes of
the cross-sections of the stria vascularis were measured by
drawing a line along the border of the stria vascularis with
Image] software (National Institutes of Health). Only big
(>5-6 ym) dark brown dots were counted to avoid counting
melanin in the stria vascularis.

Measurement of 4-HNE relative fluorescence intensity in
the organ of Corti was conducted with LAS AF Lite software
(Leica Microsystems CMS GmbH, Heidenberg, Germany).
Two to three images were collected from each turn from



midmodiolar sections of each cochlea by fluorescence
microscopy using the same camera settings. The images were
taken only from midmodiolar sections so that a similar
shape and size of the organ of Corti could be measured
in all animals. The distance between two images was about
200—400 ym to ensure non-duplicate measurement. Relative
fluorescence intensity was measured with the software by
drawing a line along the border of the organ of Corti, from
which the mean pixel intensity of the labeling was derived.

A modified semiquantitative procedure [52] was
employed to count an NT immunostaining index in the
spiral ligament in three turns. Images were taken from
the spiral ligament by fluorescence microscopy (40x). The
images were taken from every other section, and distance
between two sections was about 400 ym to ensure non-
duplicate counting. Five to six images were collected from
each turn. The total number of cells (number of nuclei
stained by DAPI) and NT positive cells in the image were
counted using the Image] software. An immunostaining
index was obtained by dividing the number of NT positive
cells by total number of cells within the image.

The cell counting and the intensity measurement were
conducted by a technician who was blinded as to the identity
of the animal groups. ABR and cell counting data are
reported as mean + SEM. One-way ANOVA (SPSS 14.0
for windows) was used to statistically analyze the ABR
threshold shift and the missing OHC data between noise
exposure and noise/treatment groups and to determine if
there were statistically significant differences among three
groups in CD45" immunostaining density, 4-HNE relative
fluorescence intensity, and NT immunostaining index. When
a significant difference was found in ANOVA, a post hoc
test (Tukey HSD) or a paired sample student ¢-test was used
for mean comparisons between groups. A P value of less
than 0.05 was considered to be significant in the statistical
analyses.

3. Results

3.1. Antioxidant Treatment Attenuated Hearing Threshold
Shifts. The ABR thresholds were equivalent among three
groups prior to noise exposure (P > 0.05 for all frequencies,
data not shown). Compared to baseline ABR thresholds
measured before the noise exposure, there are significant
hearing threshold shifts in both the noise exposure and the
noise/treatment groups at all frequencies, but with larger
threshold shifts found in the noise exposure group, especially
at the higher frequencies (2-8 kHz). As shown in Figure 1,
the mean ABR threshold shifts in the noise exposure group
ranged from ~25dB at low frequencies (0.5-1kHz) to
~51 dB at high frequencies (2-8 kHz). In the noise/treatment
group, mean threshold shifts ranged from ~10 dB at the low
frequencies to ~25dB at the high frequencies. Compared
to the noise exposure group, significant reductions in
threshold shifts were found in the noise/treatment group
at all frequencies (0.5-8kHz, P < 0.05,<0.01 or <0.001)
with greater reductions at the high frequencies (2-8 kHz,
P < 0.001, Figure 1). The hearing threshold shift average at
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FIGURE 1: Average ABR threshold shifts at each frequency (0.5—
8kHz) 10 days after noise exposure. Hearing threshold shifts were
found in both the noise exposure and the noise/treatment groups at
all frequencies with greater shifts in the high frequencies (2-8 kHz).
Compared to the noise exposure group, significant reductions in
threshold shifts were found in the noise/treatment group at all
frequencies. There are significant differences in the threshold shifts
between the noise exposure and the noise/treatment groups at all
frequencies, especially at high frequencies (***, **, and * indicate
P < 0.001,<0.01, and <0.05, resp. Error bars represent standard
error of the means. Number of ears = 12 in each group).

higher frequencies was ~24 dB in the noise/treatment group
and ~51dB in the noise exposure group (P < 0.001). The
ABR thresholds were equivalent between two measurements
(baseline and thresholds measured before subjects were
euthanized) in the normal non-noise exposed control group
(P > 0.05 for all frequencies, data not shown). These results
indicate that antioxidant treatment used in the present study
can significantly attenuate hearing loss induced by AAT.

3.2. Antioxidant Treatment Reduced OHC Loss. As shown in
the cytocochleogram in Figure 2, the majority of missing
OHCs in the noise exposure group were located at the
region of 55-95% of the distance from cochlear apex,
representing frequencies ranging from 2 tol2kHz. This
may mirror the HC damage/death pattern in the cochlea
exposed to a narrow band noise, in which HC death had
spread apically and basally from the initial regions of injury
[53]. Reduced OHC loss was found in the noise/treatment
group compared to the noise exposure group, especially
at the 55-100% distance from cochlear apex. There was a
significant difference between these two groups in the mean
percentages of OHC loss in the cochleae (P < 0.001). Average
percentages of missing OHCs at regions corresponding to
cochlear frequencies ranging from 2 to 8 kHz were ~60% in
the noise exposure group and ~25% in the noise/treatment
group. There was a significant difference between these two
groups in the average OHC loss at the high frequency region
(P < 0.001). These results indicate that antioxidant treatment
significantly reduced OHC loss from AAT.
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FIGURE 2: A cytocochleogram representing mean percentage of
missing OHCs at the measured percent distance from the cochlear
apex in the noise exposure and the noise/treatment groups. Reduced
OHC loss was found in the noise/treatment group compared to
the noise exposure group, especially at the 55-100% distance from
cochlear apex. There is a significant difference between these two
groups in average OHC loss in the cochleae (P < 0.001, error bars
represent standard error of the means. Number of cochleae = 6 in
each group).

3.3. Antioxidant Treatment Reduced CD45% Cell Migration
into the Lateral Wall. As shown in Figure 3, a few CD45"
cells were found in the stria vascularis of the normal control
group (arrows in Figure 3(a)), but not in the spiral ligament
or in the organ of Corti (data not shown). However, a
significantly increased number of CD45" cells were detected
in the stria vascularis of the noise exposure group (arrows
in Figure 3(b)). CD45" cells in the stria vascularis were
primarily found in the basal and intermediate cell layers
with a few in the marginal cell layer. Compared to the
noise exposure group, a significantly decreased number
of CD45" cells were found in the stria vascularis of the
noise/treatment group (arrows in Figure 3(c)). A few CD45*
cells were also found in the spiral ligament of the noise
exposure and the noise/treatment groups (arrowheads in
Figures 3(b) and 3(c)). Figure 3(d) displays the results of the
CD45* immunostaining density measurement in the stria
vascularis at each turn of the cochleae of all three groups.
Two sets of ANOVA and post hoc tests (Tukey HSD) were
conducted in the statistical analyses. Firstly, we analyzed the
CD45" immunostaining densities among the three groups
at each turn (basal, middle, or apical). The results indicated
that there were statistically significant differences among the
three groups at each turn (all P < 0.001). The post hoc
test (Tukey HSD) demonstrated that there were significant
differences in pairwise comparisons among the three groups
(normal control versus noise exposure; normal control ver-
sus noise/treatment; noise exposure versus noise/treatment)
at each turn (P < 0.05 or <0.001). Then, we analyzed the
CD45* immunostaining densities among the three turns in
each group. The levels of CD45" cells at three turns are
equivalent in the normal control group (all P > 0.05), as
well as in the noise exposure group (all P > 0.05), but a

significantly reduced number of CD45" cells were found in
the middle turns compared to those in the basal turn in
the noise/treatment group (P < 0.01). These results suggest
that antioxidant treatment significantly reduced migration of
CD45* cells into the stria vascularis of three turns of cochleae
and that the treatment was more efficient in the middle turn
than in the basal turn. CD45* cells were occasionally seen in
the organ of Corti in the noise exposure and noise/treatment
groups (data not shown). No CD45%cells were found in the
spiral ganglia of all three groups (data not shown).

3.4. Antioxidant Treatment Reduced 4-HNE Formation in
the Organ of Corti. No positive 4-HNE staining was found
in the cochleae of the normal control group (Figure 4(a)).
However, in the noise-exposed cochleae, positive staining
was found in the organ of Corti in all three turns. In the basal
turns, positive 4-HNE staining was shown in inner hair cells
(IHCs) as well as Deiters and Hensen cells while most OHCs
were missing in this area, which is consistent with the OHC
counting data. In the middle turn, strong positive staining
was found in IHCs (arrow in Figure 4(b)) and in most
supporting cells (SCs, inner and outer pillar cells, Deiters
cells, and cells of Hensen and Boetthcher, arrowheads and
starburst in Figure 4(b)). The OHC region had relative weak
4-HNE immunostaining (bracket in Figure 4(b)). 4-HNE
immunostaining in the organ of Corti of the noise/treatment
group was more similar to the staining of the normal control
group (Figure 4(c)). There were statistically significant dif-
ferences among the three groups in the relative fluorescence
intensity in each turn (ANOVA, all P < 0.001). In each
turn, significant differences were found between the normal
control and the noise exposure groups, as well as between the
noise exposure and the noise/treatment groups (P < 0.001),
but not between the normal control and the noise/treatment
groups (Tukey HSD, P > 0.05, Figure 4(d)). There was no
significant difference among basal, middle, and apical turns
within each group (all P > 0.05). These results indicate that
antioxidant treatment significantly reduced the formation of
4-HNE to control levels in the organ of Corti at all three
turns. No positive 4-HNE immunostaining was found in the
lateral wall of cochlea or in the spiral ganglia of all three
groups (data not shown).

3.5. Antioxidant Treatment Inhibited NT Formation in the
Spiral Ligament. As shown in Figure 5(a), no significant NT
immunostaining was found in the spiral ligament of the
normal control group. However, strong positive staining was
found in the spiral ligament of the noise exposure group.
The staining was located in the cytoplasm of fibrocytes
(arrows in Figure 5(b)). A significantly reduced number
of NT positive cells were found in the spiral ligament of
the noise/treatment group (Figure 5(c)). Figure 5(d) displays
results of the immunostaining index measurement in the
spiral ligament in the cochlear three turns. There were
statistically significant differences among the three groups in
each turn (ANOVA, all P < 0.001). The post hoc test (Tukey
HSD) demonstrated that there were significant differences
between the normal control and noise exposure groups in all
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Figure 3: CD45" immunostaining and immunostaining density in the stria vascularis. Examples of CD45" immunostaining images obtained
from the stria vascularis in the middle turn of cochleae from the normal control (a), noise exposure (b), and noise/treatment (c) groups by
light microscopy. Few CD45" cells were found in the stria vascularis of the normal group (arrows in (a)). There was a large increase in
the number of CD45" cells in the stria vascularis of the noise exposure group (arrows in (b)). The antioxidant treatment significantly
decreased the number of CD45" cells in the stria vascularis (arrows in (c)). CD45" cells were also found in the spiral ligament of the noise
and the noise/treatment groups (arrowheads in b and c), but not in the normal control group. The results of the immunostaining density
measurement are shown in (d) (number of cochleae = 6 in each group). There were significant differences among the three groups and
in pairwise comparisons in the three groups in each turn. The numbers (1, 2, 3) in (d) indicate the normal control, noise exposure, and
noise/treatment groups, respectively. Scale bar = 20 um in (c) for (a)—(c) (error bars represent standard error of the means. *, **, *** in-

dicates P < 0.05, 0.01, 0.001, resp. Number of cochleae = 6 in each group).

three turns (P < 0.001), as well as between the noise exposure
and the noise/treatment groups in basal and middle turns
(P < 0.01 or <0.001), indicating that antioxidant treatment
significantly inhibited NT formation in the spiral ligament
in the basal and middle turns. There was trend toward
reduced NT formation in the apical turn; however, there
was no statistically significant difference between the noise
exposure and the noise/treatment groups in the apical turns.
Additionally, there was no significant difference between the
normal control and the noise/treatment groups in the middle

turn, indicating that the treatment was more efficient in the
middle turn than in the basal turn. The level of NT positive
cells was equivalent among different turns in each group (all
P > 0.05). No significant NT immunostaining was found in
the organ of Corti or in the spiral ganglion of all three groups
(data not shown).

3.6. Some Biomarkers Did Not Show Significant Positive Stain-
ing in the Cochleae 10 Days after Noise Exposure. Biomarkers
for malondialdehyde, cytochrome C, iNOS, and caspase 3
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FIGURE 4: 4-HNE immunostaining and relative fluorescence intensity in the organ of Corti. Examples of 4-HNE immunostaining images
obtained from the organ of Corti in the middle turn of cochleae from the normal control (a), noise exposure (b) and noise/treatment
(¢) groups by confocal microscopy using the same microscopic and image collecting settings. No significant 4-HNE staining was found in
the organ of Corti of the normal control group (a). Strong positive staining was seen in IHC (arrow in (b)), inner and outer pillar cells
(open arrowheads in (b)), Deiters cells (arrowheads), and cells of Hensen (starburst) and Boettcher of the noise exposure group. The OHC
region also had positive, but relatively weak 4-HNE immunostaining (bracket in B). Significantly lower HNE staining was found in the
organ of Corti in the noise/treatment group (c). The results of the relative fluorescence intensity in the organ of Corti measured by LAS
AF Lite software are shown in (d). High fluorescence intensity was found only in the organ of Corti of the noise exposure group. There
were significant differences among three groups and between the normal control and the noise exposure groups, as well as between the
noise exposure and the noise/treatment groups (***indicates P < 0.001). However, there was no significant difference between the normal
control and the noise/treatment groups (P > 0.05). There was no significant difference among three turns within each group (P > 0.05). The
numbers (1, 2, 3) in (d) indicate the normal control, noise exposure and noise/treatment groups, respectively. Brackets indicate the OHC
region in (a)—(c). Scale bar = 20 ym in (¢) for (a)—(c) (Error bars represent standard error of the means. Number of cochleae = 6 in each

group).

showed no significant positive staining in the cochleae of  exposure [17, 40]. Upregulation of iNOS was found in the
all three groups. The lack of significant positive expression  cochlea from immediately to about 1 day after noise exposure
of these biomarkers in the cochleae might be associated — [42, 43].

with the time point examined and noise intensity used in

the present study. Most of these biomarkers are present in 4. Discussion

the cochlea early after noise exposure. For example, a high

concentration of malondialdehyde was found in the cochlea  This study demonstrates that noise exposure of 105dB SPL
immediately after noise exposure with a second peak at 12 for 6 hours induced an ABR threshold shift of about 40—
days [6, 7, 37]. Apoptotic cell death has been found primarily 45 dB in chinchilla. The same noise exposure resulted in only
in the OHCs from a few minutes to 4 days after noise  about a 20dB threshold shift in the animals that received
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(b)

Immunostaining index

Basal Middle Apex

B Normal control (1)
B Noise exposure (2)
Noise/treatment (3)

(c) (d)

FIGUure 5: NT immunostaining and immunostaining index in the spiral ligament. Examples of NT immunostaining images obtained from
the spiral ligament in the middle turn of cochleae in the normal control (a), the noise exposure (B), and the noise/treatment (c) groups by
confocal microscopy. No significant NT immunostaining was found in the spiral ligament of the normal control group (A). A large number
of NT positive cells were found in the spiral ligament of the noise exposure group (arrows in (b)) while a significantly decreased number
of NT positive cells were found in the noise/treatment group (arrows in (c)). The results of the immunostaining index are shown in (d).
A high NT immunostaining index was found in the spiral ligament in all three turns of the noise exposure group. There were significant
differences between the normal control and the noise exposure groups in the cochlear three turns, and between the noise exposure and the
noise/treatment groups in the basal and middle turns. There was no significant difference between the noise exposure and the noise/treatment
groups in the apical turn. The numbers (1, 2, 3) in (d) indicate the normal control, noise exposure, and noise/treatment groups, respectively
(*** and ** indicate P < 0.001 and <0.01, resp.). Scale bar = 20 yum in (c) for (a)—(c) (error bars represent standard error of the means.
Number of cochleae = 6 in each group).

the three-antioxidant combination treatment. Consistent
with the functional protection, the treatment significantly
rescued 40-50% of OHCs from AAT. These results are
consistent with previous reports using the same noise level
and duration [21, 28, 29, 31, 54] although the results in
the present study were obtained 10 days, instead of 21
days, after noise exposure. The ABR threshold shifts in
the present study were higher than those recorded at 21
days after noise by 12-15dB, which may represent residual
temporary threshold shift. Our semiquantitative data have
demonstrated that formation of oxidative stress biomarkers
and migration of mononuclear phagocytes in the cochleae

were significantly reduced by the antioxidant treatment.
There are two significant findings in the present study. First,
the present study demonstrates that antioxidant treatment
can inhibit an aspect of inflammation in the cochlea, and this
inhibition was associated with functional and histological
recovery with the antioxidant treatment. Second, the present
study has provided further evidence that this three-drug
combination treatment protects the cochlea from oxidative
injury in AAT.

4.1. The Role of Inflammatory Response in the Cochlea
after Noise Exposure and Antioxidant Treatment. CDA45,



International Journal of Otolaryngology

a common leukocyte antigen, is present on all bone-marrow-
derived white blood cells. Normally, only a few CD45" cells
are found in the cochlea, but the number of CD45" cells
was significantly increased in the noise-exposed cochleae
[46, 47, 55]. Consistent with these reports, increases in
CD45*% cells were found in the stria vascularis and the
spiral ligament of the noise exposed cochleae in the present
study. Furthermore, the current study has demonstrated
that the antioxidant treatment significantly inhibited the
migration of CD45* cells into the cochlea by 20-58%,
suggesting that inhibition of inflammation appears to be
a new mechanism of antioxidant treatment in AAT. The
present study has also suggested as others have noted that
inhibition of inflammation may be a strategy to treat AAT
[56].

Although the previous and present studies have suggested
that therapeutic benefits can be obtained from inhibition
of inflammation in AAT [56], the role of inflammatory
cells in the noise-exposed cochleae is still disputed. It has
been proposed that inflammatory cells migrate into the
cochlea to clear cellular debris resulting from noise-exposure
and contribute to wound healing [46, 47]. However, this
hypothesis is not supported by the fact that no inflammatory
cells have been found in the organ of Corti, which is most
severely injured by noise exposure. Loss of OHCs without
any evidence of inflammatory response in the cochlea has
also been documented [57]. The number of macrophages
in the cochleae did not correlate with the damage level
in the organ of Corti because an almost equal number of
macrophages were found in cochleae exposed for 2 hours
either to 112 or 120 dB SPL octave band noise (8—16 KHz)
[46]. One possibility is that the inflammatory cells may
activate a cochlear immune response and cause more cellular
damage in the cochlea [47, 58]. A recent study demonstrated
that the excessive infiltration of hematogenous macrophages
caused more HC loss in the cochlea after kanamycin
ototoxicity [59]. However, suppression of the inflammatory
response in the cochlea could not prevent delayed HC
loss although functional protection and increased ganglion
neuron survival have been observed in a mouse AAT model
[56]. Therefore, the inflammatory response may not directly
contribute to the HC loss in the noise-damaged cochlea.
Migration of inflammatory cells into the cochlea may initially
be a response to the cellular damage in the organ of Corti, but
these inflammatory cells cause cell death in the lateral wall
[46]. This argument is supported by acute swelling and loss
of intermediate cells in the stria vascularis and loss of type II
and type IV fibrocytes in the spiral ligament after high levels
(112 or 116 dB SPL for 2 hours) of noise exposure [60, 61].
Macrophages are also a source of NO production in early
stages of wound healing [62] and may partially contribute
to the formation of RNS in the cochlea. If this is the case,
antioxidant treatment could reduce secondary injury to the
cochlea induced by the inflammatory response.

One question is why the majority of the CD45* cells
are located in the lateral wall of the cochlea, but only
very few in the organ of Corti? The major sources of the
inflammatory cytokines (i.e., IL-1«, IL-6, tumor necrosis fac-
tor a, macrophage inflammatory protein-2, and monocyte

chemoattractant protein-1) are the fibrocytes and external
sulcus cells located within the lateral wall [63, 64]. Expression
of these inflammatory mediators is increased in the lateral
wall in early stages after noise exposure [47, 55, 65], and these
mediators would attract the inflammatory cells migrating
into the lateral wall initially and then into other tissues of
the cochlea.

4.2. The Role of RNS and ROS in the Cochlea after Noise
Exposure and Antioxidant Treatment. In the present study,
strong 4-HNE staining was found in IHCs and SCs 10 days
after noise exposure; however, only weak positive staining
was found in the OHC region. The positively stained SCs
included inner and outer pillar cells, Deiters cells, and cells of
Hensen and Boettcher (Figure 4(b)). This expression pattern
was also found in the organ of Corti 21 days after noise
exposure although the fluorescence intensity at 21 days was
much weaker than that at 10 days (unpublished data). In
a previous report, strong 4-HNE staining was detected in
all cells of the organ of Corti in guinea pigs 10 days after
120dB SPL, 5 hours of noise exposure [8]. The 4-HNE
staining pattern in the present study is more like the staining
pattern at day 7 after the noise exposure in that report (see
Figure 5(d) in [8]). These results suggest that noise intensity
might be an important factor affecting distribution of 4-
HNE product in cells of the organ of Corti. Furthermore,
4-HNE was found in IHCs and SCs immediately after noise
exposure [8] and still can be seen 21 days later, indicating
that 4-HNE might form early and stay longer in IHCs
and SCs than that in OHCs. Clearance of 4-HNE in the
surviving OHCs begins around 14 days after the intense noise
exposure [8] and probably before 10 days after a relative low
dose of noise exposure used in the present study. Another
possibility is that dying OHCs may be losing 4-HNE staining
during the course of degeneration. It has been found that
delayed degeneration of OHC develops for 4 weeks after
noise exposure [66, 67].

However, how 4-HNE causes OHC loss is still unclear.
Exposing organotypic cultures of the organ of Corti of 3
day old mouse pups to 4-HNE (75-150uM), we found
many more SCs undergoing necrotic and apoptotic cell
death than OHCs, suggesting that 4-HNE may primarily
cause SC death leading to OHC death (unpublished data).
Majority of IHCs survived in the cochleae of chinchilla
in both the noise exposure and noise/treatment groups
(IHC loss was 1.90% and 1.06%, resp.) although THC had
strong 4-HNE staining, suggesting IHCs are less sensitive
to 4-HNE damage. Significantly lower expression of 4-HNE
was found in the organ of Corti of the noise/treatment
group, suggesting that the antioxidant treatment inhibits the
formation of 4-HNE in the organ of Corti. Consistent with
our in vivo results, GSH treatment can protect inner ear
HCs and hippocampal neurons from 4-HNE injury in vitro
(68, 69]. Taken together, results in all of these reports and
the present study indicate a relationship between 4-HNE
formation and cochlear cell death in AAT [27] and that
inhibition of 4-HNE formation in the cochlea may be one
of the reasons why antioxidant treatment is effective in AAT.
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Strong NT staining was found in the spiral ligament of
the noise exposure group, which was located in the cytoplasm
of fibrocytes, the predominant cell type in this area. The spi-
ral ligament is one of the nonsensory structures susceptible
to AAT. Type I and IV fibrocytes in this area are significantly
reduced after noise exposure [60, 70]. The strong expression
of NT in the fibrocytes of the spiral ligament may be
involved in the loss of type IV fibrocytes after noise exposure.
Other free radicals (0?7, 8-isoprostane, NO, NT) were also
detected in the spiral ligament immediately or few hours
after noise exposure [1, 3, 5]. The function of fibrocytes
in the spiral ligament was thought to be a purely passive
role of structural support. However, increasing evidence
suggests that they play more important and dynamic roles in
the cochlea, such as potassium ion recycling, inflammatory
reactions, and glutamate metabolism [71-73]. Loss of type
IV fibrocytes may be a primary cause of age-related hearing
loss and ultimate sensory cell degeneration in the C57BL/6]
mouse [74]. After drug treatment, a significantly decreased
expression of NT was found in the spiral ligament, suggesting
that the drug treatment inhibits NT formation in the
spiral ligament. The current results imply that antioxidant
treatment may provide additional protection to the cochlea
through inhibiting RNS formation in the spiral ligament.
However, we did not find any significant NT staining in
the organ of Corti or in the spiral ganglion 10 days after
noise exposure, suggesting that formation of RNS may be not
directly involved in OHC loss or neuron loss when examined
at this time point.

The results of 4-HNE and NT immunostaining showed
no gradients for the various turns of the cochlea 10 days
after noise exposure, yet the OHC loss and ABR threshold
shifts were not uniform throughout the cochlea. These
results suggest that noise exposure can promote free radical
formation throughout the cochlea. However, the apical HCs
are more resistant to free radicals than HCs in the basal and
middle turns [75].

4.3. Possible Mechanisms of the Antioxidants in Treating AAT.
In this three-drug combination, NAC provides cysteine
for synthesis of GSH, works as a free radical scavenger,
and inhibits cell death pathways [24, 28, 29]. ALCAR
reduces ROS production and preserves mitochondria by
serving as a precursor of acetyl-CoA, a mitochondrial
energy substrate, and restoring a key mitochondrial lipid,
cardiolipin, in oxidatively injured cells [16, 25, 29]. The
nitrone, 4-OHPBN, is designed to scavenge free radicals
as its phenyl ring reacts with hydroxyl radicals and may
also decrease inflammation by inhibiting inflammatory
mediators [32, 33, 76]. The precursor of 4-OHPBN, PBN,
has been shown to have strong anti-inflammatory effects.
PBN can decrease inducible cyclooxygenase (COX2) and
iNOS mRNA levels, inhibit COX2 catalytic activity and
lipopolysaccharide-mediated increase of nuclear factor Kap-
paB (NF-KappaB) DNA binding activity [34]. COX2, iNOS,
and NF-KappaB are important inflammatory mediators.
Thus, 4-OHPBN is likely to be the major component in
the three-drug combination to play an anti-inflammatory
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role. Therefore, the action of each of these three-drugs
contributes separately to the attenuation of free radical
formation and inflammatory responses in the cochlea to treat
AAT. The potential mechanisms of therapeutic effects of each
antioxidant will be assessed in our laboratory in an upcoming
set of experiments.

5. Conclusion

The present study confirms the functional and HC protec-
tion of this three-antioxidant combination treatment in AAT.
The results of our semiquantitative immunohistochemical
analyses have demonstrated that the antioxidant treatment
reduced not only formation of biomarkers for oxidative
stress but also migration of mononuclear phagocytes into the
cochlea. The finding in the present study that antioxidants
can inhibit inflammatory responses in the cochlea suggests
a new role for antioxidants in treating AAT in the future.
These results have also confirmed that multiple damage
mechanisms are involved in AAT and that simultaneous
attenuation of these mechanisms at different sites in the
cochlea using a combination of antioxidants to treat AAT
may be effective [27].
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