
RESEARCH ARTICLE

A permutation method for network assembly

Shawn A. MeansID*, Christian Bläsche, Carlo R. Laing

School of Natural and Computational Sciences, Massey University, Auckland, New Zealand

* S.Means@massey.ac.nz

Abstract

We present a method for assembling directed networks given a prescribed bi-degree (in-

and out-degree) sequence. This method utilises permutations of initial adjacency matrix

assemblies that conform to the prescribed in-degree sequence, yet violate the given out-

degree sequence. It combines directed edge-swapping and constrained Monte-Carlo

edge-mixing for improving approximations to the given out-degree sequence until it is

exactly matched. Our method permits inclusion or exclusion of ‘multi-edges’, allowing

assembly of weighted or binary networks. It further allows prescribing the overall percent-

age of such multiple connections—permitting exploration of a weighted synthetic network

space unlike any other method currently available for comparison of real-world networks

with controlled multi-edge proportion null spaces. The graph space is sampled by the

method non-uniformly, yet the algorithm provides weightings for the sample space across

all possible realisations allowing computation of statistical averages of network metrics as

if they were sampled uniformly. Given a sequence of in- and out- degrees, the method can

also produce simple graphs for sequences that satisfy conditions of graphicality. Our

method successfully builds networks with order O(107) edges on the scale of minutes with

a laptop running Matlab. We provide our implementation of the method on the GitHub

repository for immediate use by the research community, and demonstrate its application

to three real-world networks for null-space comparisons as well as the study of dynamics

of neuronal networks.

Introduction

Interactions between entities as disparate as genes, computers, infected people, predators

and prey or neurons of the brain are readily represented with networks [1–6]. Comprised of

nodes and edges connecting them, networks—or graphs—are naturally of great interest for

the study of such myriad systems, and, given enough detail of the underlying structure, pro-

vide an essential framework for analysing the complex dynamics emerging on the network

topology [7]. Therein lies a challenge, however: details of the network structure for a given

system are often limited to only the number of connections between entities, otherwise

known as the node-degrees. These may represent the number of sexual partners [4], number

of prey species tangled in an ecological food web [5], or number of outbound and inbound

synaptic connections between neurons [8]. Generating an actual network with a given

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Means SA, Bläsche C, Laing CR (2020) A

permutation method for network assembly. PLoS

ONE 15(10): e0240888. https://doi.org/10.1371/

journal.pone.0240888

Editor: Luc Berthouze, University of Sussex,

UNITED KINGDOM

Received: January 27, 2020

Accepted: October 5, 2020

Published: October 23, 2020

Copyright: © 2020 Means et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://github.com/smeans-massey/

permuteA.

Funding: This work is fully supported by the

Marsden Fund Council from Government funding,

managed by Royal Society Te Apārangi

(MAU1719) to CRL. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. There

was no additional external funding received for this

study.

https://orcid.org/0000-0001-9025-9662
https://doi.org/10.1371/journal.pone.0240888
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240888&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240888&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240888&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240888&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240888&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240888&domain=pdf&date_stamp=2020-10-23
https://doi.org/10.1371/journal.pone.0240888
https://doi.org/10.1371/journal.pone.0240888
http://creativecommons.org/licenses/by/4.0/
https://github.com/smeans-massey/permuteA
https://github.com/smeans-massey/permuteA

sequence of node-degrees itself can pose a challenging task, particularly if the resulting net-

work is forbidden from including multiple connections between nodes or loop-backs from a

node to itself; such a constrained network is otherwise known as a ‘simple graph’. Addition-

ally, a single degree sequence may realise numerous networks; inspecting the influence of

network topology on a system knowing only the degree sequence often compels appropriate

sampling for the space of possible network realisations to avoid introduction of bias. More-

over, sampling the space allowing inspection of statistical properties for real-world networks

requires comparison to baseline ‘null’ models. These samples permit determination of statis-

tical significance for real-world network characteristics such as assortativity or tendency of

nodes to establish links with similar nodes; naturally, this entails generating suites of syn-

thetic networks for comparison.

These network generation challenges have attracted considerable attention. Well-known

methods such as the Configuration Model (CM) [9] combined with Monte-Carlo Markov

Chain random-swapping for sampling the graph space that match given degree sequences

are utilised, but can be computationally expensive. Rapid alternatives such as the Chung-Lu

method satisfy the expected distribution of degree sequences, and can be quite suitable if

matching the sequences exactly is not required [10]. Variants with improvements are

steadily presented and analysed in the literature such as the extension of Chung-Lu to

include multi-edges via hypergeometric distributions [11], or the ‘soft’ CM aiming at meet-

ing degree distributions instead of the exact sequences [12] (see [13] for a recent overview).

However, we found no assembly method capable of not only exactly fulfilling a given degree

sequence, but also that provides any control over the resulting proportion of multiple edges

—beyond their exclusion altogether. Attention to the reciprocity of networks, or directed

edges establishing connections both ways between nodes [14] and the multiplicities of

edges, or formation of triangles between vertices [15], are related but do not address this

issue. We thus devised a novel scheme for assembling networks that we call the ‘permuta-

tion’ method—since it relies on permuting entries of an initial connectivity matrix, or the

so-called adjacency matrix, representing the connections between nodes. We present this

method with application to ‘real-world’ network degree sequences for generation of null-

model comparisons, and further present an application to our study of dynamics on neuro-

nal networks [7].

Note, we did not craft this method to explicitly address uniform sampling of the possible

realisation space, nor the substantial theoretical work already performed in this arena [16–20].

We do parsimoniously exploit some theorems for ensuring graphicality, or simply that a given

degree sequence may realise a bona fide network [21]. Nevertheless, some analysis for simple

small networks (N< 10) and performance with larger networks of interest for our neuronal

studies (N 2 O(104)) is presented. We further provide a function written in Matlab (GitHub

repository [22]) demonstrating this permutation method that accepts degree sequences, the

desired proportion of multiple-edge connections, and optionally returns estimates for the

weighted non-uniform sampling of the given graph space.

Materials and methods

We consider directional networks, or ‘bigraphs’, designated by two degree sequences: an in
degree (i.e., synaptic inputs) and an out degree (synaptic outputs) which we denote kin and

kout, respectively. We can for instance designate desired kin and kout sequences (whose sums

are equal—see below) for N nodes in a network with perhaps a desired correlation between an

individual node’s in- and out-degrees, or generated according to, say, a power-law

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 2 / 25

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0240888

distribution. And, once these sequences are so designated, the task of connecting the nodes or

wiring up the network remains. We thus here present a method for assembling a network

given these desired, or ‘target’ kin and kout sequences that optionally excludes multi-edges and

self-loops if desired, or, alternatively, attempts to meet a target proportion of multiple connec-

tions. Assuming said sequences of node in- and out-degrees are already provided in kin and

kout, we omit discussion of generating correlated sequences or other properties of interest (see

for instance [7] or [23]) and instead focus on utilising already prescribed bi-graph sequences

in the network assembly.

The example network schematic shown in Fig 1 corresponds to the in and out degree

sequences:

kin ¼ ½ 2 2 3 3 5 2 2 2 2 � ð1Þ

kout ¼ ½ 1 4 1 1 1 2 3 9 1 �:

ð2Þ

The particular realisation for the network of Fig 1 is conveniently captured in the adjacency

matrix, A, whose row entries correspond to the inbound edges and column entries correspond

Fig 1. Example model network. An example network with N = 9 nodes and directional edges connecting them in a

‘Directed Graph’ with directionality corresponding to flow of neuronal excitation. Note some edges are self-loops (e.g.,

Node 2 and 8), and multiple-connects exist between others (e.g., Node 2 and Node 3). This is therefore not a ‘simple’

graph since it includes auto- and multiple-connections.

https://doi.org/10.1371/journal.pone.0240888.g001

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 3 / 25

https://doi.org/10.1371/journal.pone.0240888.g001
https://doi.org/10.1371/journal.pone.0240888

to the outbound as follows:

A =

2
666666666666664

n1out n2out n3out n4out n5out n6out n7out n8out n9out kin

n1in 0 0 0 0 0 0 1 1 0 2
n2in 0 1 0 0 0 0 0 1 0 2
n3in 0 3 0 0 0 0 0 0 0 3
n4in 0 0 1 0 0 0 0 2 0 3
n5in 0 0 0 1 0 1 1 1 1 5
n6in 0 0 0 0 0 0 1 1 0 2
n7in 0 0 0 0 0 1 0 1 0 2
n8in 0 0 0 0 1 0 0 1 0 2
n9in 1 0 0 0 0 0 0 1 0 2
kout 1 4 1 1 1 2 3 9 1

3
777777777777775

ð3Þ

and note the appended column and row for the corresponding kin and kout is simply the row

or column sums across A, respectively. Hence, node #8 in our demonstration network of Fig 1

has in-degree of 2 and out-degree of 9. Self-loops in the network are further easily identified by

inspecting the diagonal of A for nonzero entries, appearing here for nodes 2 and 8. Note, this

is only one of many possible realisations for the given sequences of kin and kout; in general,

there are multitudes of adjacency matrices corresponding to given degree sequences, and this

particular A is merely one instance.

The permutation method

Initialisation. With the demonstration kin and kout as given in Eq (3), it is a straightfor-

ward affair to assemble a precursor adjacency matrix, which we denote A(0), with entries con-

sisting only of ‘0’s and ‘1’s thus:

A(0) =

2
6666666666664

n1out n2out n3out n4out n5out n6out n7out n8out n9out kin

n1in 1 1 0 0 0 0 0 0 0 2
n2in 1 1 0 0 0 0 0 0 0 2
n3in 1 1 1 0 0 0 0 0 0 3
n4in 1 1 1 0 0 0 0 0 0 3
n5in 1 1 1 1 1 0 0 0 0 5
n6in 1 1 0 0 0 0 0 0 0 2
n7in 1 1 0 0 0 0 0 0 0 2
n8in 1 1 0 0 0 0 0 0 0 2
n9in 1 1 0 0 0 0 0 0 0 2

3
7777777777775

ð4Þ

Notice we insert a number of solo connections (represented as ‘1’s) corresponding to the

in-degree for each node—for instance the 5 ones for node 5’s kin (labeled as n5
in)—and pad the

remaining row vector entries with ‘0’s representing the lack of an edge. Although this satisfies

each node’s designated kin, we do not concern ourselves with satisfying kout—yet. Our initial

A(0) is then permuted row-by-row to randomly position the edges represented by the ‘1’s such

that all the nodes’ kin degrees are still satisfied but with a now randomly distributed structure

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 4 / 25

https://doi.org/10.1371/journal.pone.0240888

along the rows:

A(1) =

2
666666666666664

n1out n2out n3out n4out n5out n6out n7out n8out n9out kin

n1in 0 0 0 0 0 1 1 0 0 2
n2in 0 0 0 0 0 1 1 0 0 2
n3in 0 1 0 1 0 1 0 0 0 3
n4in 0 0 0 0 1 0 1 1 0 3
n5in 0 1 1 1 0 1 1 0 0 5
n6in 0 1 1 0 0 0 0 0 0 2
n7in 0 0 0 0 0 0 1 1 0 2
n8in 0 0 1 0 0 0 0 1 0 2
n9in 0 0 0 0 0 0 1 1 0 2
k1out 0 3 3 2 1 4 6 4 0

3
777777777777775

ð5Þ

The above instance (generated via Matlab’s randperm) is but one possible form; neverthe-

less, the method maintains adherence to the given kin for any random permutation since we

permute entries by row. We now have two adjacency matrices: an A(0) with a trivial assembly,

and an A(1) permutation of row entries of A(0), both of which satisfy the given kin yet violate

the designated kout—unless we are spectacularly fortunate and the row permutations match

kout.

The algorithm. Disregarding the designated kout, however, gives us an ‘actual’ k1
out that in

all likelihood is quite incorrect: compare with the given kout in Eq (3). At this point, the

method now begins its work by manipulating entries of A(1) to reduce the error of out-degrees

until we hit the given or target kout all the while adhering to kin. We calculate an out-degree

error, kr
out, for an ith iteration of a sequence of interim adjacency matrices we denote A(i), by

comparing the current ki
out with the target:

kr
out ¼ ki

out � kt
out

rout ¼ jjk
r
outjj2; ð6Þ

where kt
out is the target out-degree. Computing the L2-norm of the difference gives us a metric

for ‘convergence’: i.e., if rout< �, we consider the procedure successful for some error toler-

ance, �.

The procedure for manipulating A(i) is key, and is illustrated in the somewhat daunting

flowchart of Fig 2; we clarify some of the terminology here. The method hinges on the feature

of A(1) such that each nodal kiout is either above, below or precisely at the target value given in

kt
out. We classify these as ‘donor’, ‘recipient’ and ‘inert’ nodes, respectively, and illustrate this

aspect by computing the difference between k1
out in Eq (5) and kt

out for our example network:

kr
out ¼ k1

out � kt
out

kr
out ¼ ½ 0 3 3 2 1 4 6 4 0 � � ½ 1 4 1 1 1 2 3 9 1 �

¼ ½ � 1 � 1 2 1 0 2 3 � 5 � 1 �:

ð7Þ

Each entry in kr
out indicates the current out-degree deviation as having too many connec-

tions (e.g., node 3 with two extra outbound edges), too few connections (e.g., node #8 with five

unfilled edge stubs) or just enough (e.g., node #5). The essence of the method is simply this:

transfer surplus outbound edges from donor nodes with too many edges to recipient nodes

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 5 / 25

https://doi.org/10.1371/journal.pone.0240888

with too few. This transfer from the pool of donor edges to recipients shifts ki
out closer to the tar-

get, all the while constraining selection of suitable transfers such that no alteration of kin is

permitted.

Random selection of a donor’s edge to an available recipient node in A is not always success-

ful. Some scenarios manifest where no open recipient edges are available for a given donor
without violating kin and the algorithm skips to another donor node. If enough of these failed

attempts occur, the inert nodes make their entrance. We exploit the inert nodes as pools of

edges for simple randomisation of the established connections of either the donor or recipient
nodes. By randomly swapping edges (non-zero entries of A) from the inert to either the donors
or recipients such that neither ki

in nor ki
out are affected, we apply a form of simulated annealing

to our system—shuffling the network. We activate this inert shuffling contingent on the ratio

of completed to total possible edge transfers for one loop over all donor nodes. For instance, 89

transfers occurring over 100 donor nodes will trigger inert shuffling at a threshold of 0.9.

Fig 2. Flowchart schematic illustrating method for manipulating entries of A(1) to satisfy both kin and kout. Once provided a sequence of node

degrees in kin and kout, the method classifies which nodes are above (donor), below (recipient) and at (inert) the target kt
out, and proceeds to transfer

surplus edges from donors to recipients. If enough failures to match suitable edges from the pool of donors to recipients occur, shuffling of edges from

the set of inert nodes is performed. The process continues until deviation from kt
out falls below acceptable tolerance, �, and we obtain a final adjacency

matrix A(f).

https://doi.org/10.1371/journal.pone.0240888.g002

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 6 / 25

https://doi.org/10.1371/journal.pone.0240888.g002
https://doi.org/10.1371/journal.pone.0240888

Varying this activation threshold can significantly reduce overall workload for the method as

illustrated in Fig 3, depending on the network. Earlier activation of the shuffling during assem-

bly effectively increases chances of finding suitable edge transfers reducing overall number of

loops over donors and hence total time to completion.

Demonstration of procedure. For our simple example A(1) in Eq 5, we can apply the algo-

rithm described and obtain a ‘simple’ graph as shown below in Eq (8). This particular instance

of A(i) required i = 9 iterations before rout fell to zero: our final A(f) satisfies kt
out exactly. Nota-

bly, this demonstration ‘toy’ network does not invoke the inert shuffling subroutine, and

achieves the goal of matching kt
out without resorting to randomisation of the network connec-

tions.

A(f) =

2
666666666666664

n1out n2out n3out n4out n5out n6out n7out n8out n9out kin

n1in 0 1 0 0 0 0 0 1 0 2
n2in 0 0 0 0 0 0 1 1 0 2
n3in 0 1 0 0 0 1 0 1 0 3
n4in 0 0 0 0 1 0 1 1 0 3
n5in 0 1 1 1 0 1 0 1 0 5
n6in 0 1 0 0 0 0 0 1 0 2
n7in 0 0 0 0 0 0 1 1 0 2
n8in 0 0 0 0 0 0 0 1 1 2
n9in 1 0 0 0 0 0 0 1 0 2
k9out 1 4 1 1 1 2 3 9 1

3
777777777777775

ð8Þ

Fig 3. Progression of method reducing error, rout, for sample network sized N = 5000; note, degree sequence generated according to a uniform

distribution and positive correlation (ρ = 0.5) between in- and out-bound degree. This particular sequence further selected for relatively high-density

and range of connectivity, with maximal degrees at or near N − 1. Error rout shown over each donor loop, time elapsed per individual edge swap, and

number of inert shuffles per loop (upper panes). Note, inert shuffling activated according to two different thresholds: a high activation threshold (left)

and low (right), depending on ratio of (# edge swaps / # possible swaps) (black trace, lower panes). Blue traces in lower panes show thresholds of inert

shuffling activation for comparison (0.9 and 0.1, respectively). At a high activation ratio of 90%, inert shuffling triggers at donor loop #1457, in this

instance, postponing failed loops, defined as donor loops with no edge transfers (normalised total failures over all loops, red trace, lower panes).

Compare with the activation ratio set to 10% where inert shuffling enters at donor loop #1495. Although this delay in inert shuffling appears slight, the

influence on number of failed loops and also time to perform edge swaps (upper panes) is dramatic, further reducing overall time of assembly by about

40%.

https://doi.org/10.1371/journal.pone.0240888.g003

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 7 / 25

https://doi.org/10.1371/journal.pone.0240888.g003
https://doi.org/10.1371/journal.pone.0240888

A quick inspection of the diagonal entries for this A(f), however, reveals a self-loop for node

#8: this is required given the node’s kout = 9. The algorithm of Fig 2 is easily configurable to

permit or deny inclusion of self-loops; and clearly here kt
out requires it. Hence, the designated

degree sequences may force inclusion of auto-connections if the degree is equal to the network

size; note, subsequent networks shown here are thus with degree sequences less than N.

While illustrative, this toy network is not quite comparable to larger sequences found in

real-world settings. We thus present examples of the algorithm’s progression for larger net-

works of size N = 5000 in Fig 3, and observe successful ‘convergence’ in both instances after

around 4000 and 5500 loops over the donor nodes, respectively. Interestingly, all pilot assem-

blies ranging over N = 100, 500, 1000, 2000 and 5000, display the same overall behaviour: rapid

initial drop of rout until exhaustion of available donor node edges for transfer to recipients.
Then very few if any edge transfers occur triggering activation of inert node shuffling, or ran-

domising the edge distributions to enable further transfers to recipient nodes. This inspired

later modifications to the method’s implementation, triggering inert shuffling depending on

the ratio of actual edge transfers to total possible instead of when no donor! recipient shifts

result. Calibrating the activation of inert shuffling leads to the two results shown in Fig 3,

where invoking the shuffling subroutine earlier in the method well before exhaustion of avail-

able donor edges accelerates assembly.

Ensuring graphicality. Our implementation of this method includes a preliminary test

ensuring the provided sequences of in- and out- degrees may actually realise a graph. We fol-

low the theoretical investigation of [21] with the following definition and relevant theorem.

Definition 1 A bidegree sequence k = (kin, kout) with members kin; kout 2 N [0, is graphic if
an adjacency matrix, A, exists with binary entries [0, 1] such that the sum of the ith row is kiin and
the jth column is kjout. Such an A may have self-loops if the diagonal includes non-zero entries.

Verification of graphicality for a bidegree sequence k is, according to a classic theorem, by

virtue of inspecting N inequalities.

Theorem 1 (Gale-Ryser/Fulkerson [24]) For a bidegree sequence k = (kin, kout) with kiin non-
increasing, k is a graphic sequence if and only if

XN

i¼1

kiin ¼
XN

i¼1

kiout ð9Þ

and for all j 2 [1..N − 1]

XN

i¼1

minðkiout; jÞ �
Xj

i¼1

kiin: ð10Þ

For our purposes, we assume a given bidegree sequence k passed to the method described

above is not sorted in any particular order; but for testing graphicality our implementation

pre-processes kin into a non-increasing sequence. Such a graphicality test is performed only

once in our implementation; we do not repeatedly inspect resulting adjacency matrices A(i)

during edge transfers unlike the method presented in [25]; hence, successful assembly of any

sequence k is not guaranteed. In practice, however, we find initial testing of a sequence ade-

quate before launching the permutation assembly and only rarely encounter failures with the

method.

Multiple edge connections. The permutation method we describe is readily applicable to

generating a network given a bidegree sequence k and a target percentage of multi-edges in the

network. Consider again the toy network illustrated in Fig 1 that includes both self-loops and

several multi-edges. Our method may generate such a network with, for instance, the following

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 8 / 25

https://doi.org/10.1371/journal.pone.0240888

precursor A(0) adjacency matrix with a target multi-edge proportion of around 10%:

A(0) =

2
6666666666664

n1out n2out n3out n4out n5out n6out n7out n8out n9out kin

n1in 1 1 0 0 0 0 0 0 0 2
n2in 1 1 0 0 0 0 0 0 0 2
n3in 3 0 0 0 0 0 0 0 0 3
n4in 2 1 0 0 0 0 0 0 0 3
n5in 1 1 1 1 1 0 0 0 0 5
n6in 1 1 0 0 0 0 0 0 0 2
n7in 1 1 0 0 0 0 0 0 0 2
n8in 1 1 0 0 0 0 0 0 0 2
n9in 1 1 0 0 0 0 0 0 0 2

3
7777777777775

ð11Þ

Multi-edges here we define as connections between nodes in addition to existing connec-

tions; so, given that definition node 3 has two multi-edges and node 4 one. The process for

constructing the precursor A(0) assigns so many multi-edges across the nodes such that a given

target proportion of multi-edges is approximately met. If otherwise precisely meeting said tar-

get violates the given sequences k, the method will instead intentionally miss the desired

multi-edge proportion since we consider the degrees of nodes inviolate.

The process of permuting the rows of A(0) to an A(1) and subsequent edge exchanges from

surpluses of donors to recipients is essentially the same as with solo-edges. However, edge

transfers are permitted only between like-connections (multi- to multi- and solo- to solo-) to

preserve the proportion of multi-edges along the sequence of A(i) intermediates. For the exam-

ple results given, adjacency matrices assembled were expressed with multi-edge proportions as

high as 99%. However, our example application to dynamics of a neuronal network was sensi-

tive to resulting assortativities that suffer distortions with multi-edge proportions over around

97%, and we thus restrict those examples within such a threshold. For comparison of the influ-

ence on the neuronal dynamics, we present results performed on networks generated with the

more traditional Configuration Model combined with multi-edge post-processing removal

routines (Fig 4).

Generating suites of the ‘null-model’ spaces corresponding to three real-world networks

were performed—comparing the connectivities of i) Macaque cortical connectivity [26], ii) E.

Coli metabolic network [27], and iii) Feline cortical and thalamic connectivity [28]. Cases i)
and ii) were with simple networks (i.e., no multi-edges) and compared with generations via

the CM. In case iii) we varied the multi-edge proportions over a wide range—well beyond the

intrinsic ‘weighting’ or proportion of the actual feline network. Although the CM variants

include weighted versions, due to its limitations regarding reproducing link densities overall

[29], and our interest in considering the influence over a range of multi-edge proportions, we

restrict ourselves in case iii) to only the method presented in this work.

For inspecting the influence of our method on network characteristics, we compute the

average nearest neighbour degree (ANND) similar to other work [30]. Whereas the node

degrees are first-order properties depending on the number of links entering and departing a

vertex, the ANND is a second-order characteristic describing the paths of length 2, measuring

the dependencies between the degrees of neighbouring nodes. This metric provides some

insight into the assortativities of networks, a ‘higher order’ characteristic, but permits examina-

tion over the range of in- and out- degrees of a network, and is computed thus:

knni ðAÞ ¼
P

j6¼i

P
k6¼jaijajk

P
aij

ð12Þ

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0240888

for a unidirectional network. The analogue for directional networks is given by

knn;outi ðAÞ ¼
P

j6¼i

P
k6¼jaijajk

P
aij

ð13Þ

knn;ini ðAÞ ¼
P

j6¼i

P
k6¼jajiakj

P
aji

ð14Þ

Fig 4. Illustration of multi-edge influence proportion on synchronisation parameter (|R|) for neuronal network, sized N = 5000. Overall little

influence of multi-edges arises until quite high densities occur at around 90% (Upper Pane) as produced by the permutation method. Networks

constructed via the Configuration Method (Lower Pane) that arbitrarily generate up to around 20% total multi-edges instead show no effect over range

of multi-edges removed via post-processing. Note, the two results presented are via different solution techniques: the upper pane solution of full suite of

equations, the lower with a mean-field approximation (see Appendix). Each curve corresponds to a unique realisation of excitability parameter suite for

group of N neurons in simulation. Generation of individual adjacency matrices, A, were performed with degree sequences produced via power-law

distribution exhibiting neutral correlation between in- and out- degrees ranging over kin, kout 2 [750, 2000]. See Appendix for more details of the

neuronal network simulation.

https://doi.org/10.1371/journal.pone.0240888.g004

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 10 / 25

https://doi.org/10.1371/journal.pone.0240888.g004
https://doi.org/10.1371/journal.pone.0240888

and for weighted directional networks

knn;outi ðA�Þ ¼
P

j6¼i

P
k6¼ja

�
ija
�
jk

A�
P

a�ij
ð15Þ

knn;ini ðA�Þ ¼
P

j6¼i

P
k6¼ja

�
jia
�
kj

A�
P

aji
ð16Þ

where the matrix A� is the weighted analogue of A with multi-edges for our purposes here,

and a total weighting of A�.

Results

We present our generated suites of synthetic networks prescribed by given degree sequences

for our chosen three datasets of ‘real-world’ systems. The first two are binary simple networks

derived from i) segregated regions and pathways obtained from anatomical studies of the con-

nections within the cerebral cortex of the macaque [26], and ii) the metabolic network of inter-

actions of the common bacterium E. Coli. [27]. The third presented suite is for a weighted—or

in our parlance here, including multi-edges—and hence a complex network derived from cor-

tical and thalamic connectivity of a cat (case iii) [28]. All sets are bidirectional so we assemble

adjacency matrices with given kin and kout degree sequences.

We generated n = 200, 000 samples of network realisations using both the CM and our per-

mutation method as shown in Fig 5 for each system i) and ii). Quite similar distributions for

these null-models based on the given sequences emerge from both assembly methods for the

rather small macaque cortex network (N = 71) and the much larger E. coli metabolic network

(N = 1039). Notably, the actual computed ANND for the raw data generally fall within the

distributions—but primarily outside the first quartiles of the whisker plots. It is the outlier

groupings—some of which exhibit significant clusters—that encompass the raw data points,

suggesting these actual real-world networks that fall well outside of the expected, null-model

distributions are indeed not assembled due to random processes.

We next applied our permutation method to sampling null-model spaces over a wide vari-

ety of prescribed densities of multi-edges for a data set derived from the cortical and thalamic

regions of the cat. Since the CM technique does not provide a way to control the proportion of

multi-edge links [29], we only present synthetic networks produced via our permutation

method. The range of multi-edge proportions were set from zero—a simple graph—to 80% for

this feline neuronal system sized N = 95 (see Fig 6). Rather unsurprisingly, the means and

range of standard deviations for the null-models mostly encompass the original ANND met-

rics when the multi-edge proportion is targeted at the same level of the raw data (Panel B).

Over the range displayed, we observe a distinct reduction in the mean value and deviation

clouds as multi-edge densities increase that asymptotically approach a rough average mean of

around 10 (for kin, Panel D). The out-bound kout ANND degree distributions—for this particu-

lar dataset—are far more confined as can be seen from Panels A-C, and not shown over the

full range. Interestingly, the deviation spread is greatest at around the observed intrinsic multi-

edge proportions (see distribution along proportion of 0.38) and gradually tightens again

upon approach to the maximal multi-edge density assembly performed (distribution along

0.8). Overall, the lower ANND distributions at the higher multi-edge proportions suggests the

network exhibits simply fewer low-degree nodes connected to higher-degree nodes, due to

concentrations of these multiple edge connected vertices. As the densities of multi-edges falls,

the rising of ANND distributions suggest more connections between lower-degree and higher

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 11 / 25

https://doi.org/10.1371/journal.pone.0240888

degree nodes: notice the peak values along the simple-graph distribution (percent multi-edge

of zero) align with the lowest degree kin.

Discussion

We applied our method to generation of networks over a variety of sizes and multi-edge densi-

ties, and observed the influence of their proportions—very high proportions—on the dynam-

ics of a neuronal network, reducing the overall coherency of a system. Generation of null-

model suites for three real-world datasets were further performed, where we showed compara-

ble behaviour between the permutation method presented and the classic CM approach.

Applied to realising a null-space encompassing entire ranges of multiple-edge densities, our

method illustrated their apparent influence on the statistical alignment of a real-world network

within the multi-edge density span.

Fig 5. Comparison of null models generated via synthetic network samples with two binary, directed datasets: Macaque cortex (A & B) and

metabolic network of E. Coli (C & D). Each dataset provided degree sequences kin and kout in turn used to generate n = 200, 000 samples of

synthetically fabricated networks via the CM (left column) or the permutation method (right column). Whisker plots show ANND values comparing

synthetic (blue) and original data (red) values. Means (blue circles), one standard deviation (blue vertical lines) and outliers beyond overall encompass

the datasets given for the ANND metric within the outlier bands. The two generation methods show similar distributions overall except for the in-

bound degree distribution of the macaque cortex where outliers are generated at significantly higher ANND values for low-degree nodes (Panel B).

https://doi.org/10.1371/journal.pone.0240888.g005

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 12 / 25

https://doi.org/10.1371/journal.pone.0240888.g005
https://doi.org/10.1371/journal.pone.0240888

However, this method we present is not without limitations; particularly regarding the uni-

form sampling of a graph space. Although the exchange of randomly-selected edge swaps from

donor to recipient nodes along with the so-called inert shuffling during the process is essentially

a directed MCMC randomisation scheme, it is not clear whether the method introduces bias

by guiding the exchanges in such a manner. Noted difficulties of assembling simple graphs

with uniform sampling [13] compelled consideration of test examples for inspecting our meth-

od’s sampling, as well as a mechanism for providing estimates of weights for the sampling

achieved—following the example of [25].

Initially, the use of a randomly permuted A(1) appeared to be a possible source of biasing;

however, we were fortunate in our use of Matlab’s randperm command. This command

Fig 6. Weighted directional network generations for the cat cortical and thalamus neuronal system with N = 95 nodes. Scatter plots show the mean

(black), one standard deviation (cyan lines) and original data (red) for ANND computed per in- and out- degrees. Three levels of prescribed multi-edge

proportions for null model suites presented for 10%, 38% (as found in raw data), and 70% in Panels A, B and C, respectively. Distributions for kin
ANND values shown over range from no multi-edges (simple network) to 80% in Panel D, with real-network ANND values shown along leftmost plane

for comparison. Actual proportion of 38% indicated with red trace at z = 0 for comparison. Note significant reduction in ANND values as multi-edge

densities increase with asymptotic approach to minimal means, yet standard deviations increase substantially as proportions pass through real-network

proportion (cyan vertical traces), then diminish. Note, vertical axis truncates plot for visibility at ANND value of 70 whereas maximal deviations reach

up to approximately 100.

https://doi.org/10.1371/journal.pone.0240888.g006

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 13 / 25

https://doi.org/10.1371/journal.pone.0240888.g006
https://doi.org/10.1371/journal.pone.0240888

uniformly permutes integer entries providing an easy start to our analysis here. Subsequent

testing of permuted forms for initial A(0)! A(1) matrices generated for wide ranges of degree

sequences and matrix sizes indeed shows uniform distributions throughout (not shown).

On the other hand, the sequence of edge exchanges for intermediate A(i) enroute to the

final satisfactory A(f) is not trivial. We follow the example investigated in [31] for a simple

3 × 3 case—partly due to the ready tractability of the combinatorics for such a small system.

With a kin and kout of [1 2 1], only five possible matrices result as follows:

AðfÞ ¼

0 1 0

1 0 1

0 1 0

0

B
B
B
@

1

C
C
C
A
;

0 1 0

1 1 0

0 0 1

0

B
B
B
@

1

C
C
C
A
;

1 0 0

0 1 1

0 1 0

0

B
B
B
@

1

C
C
C
A
;

0 0 1

1 1 0

0 1 0

0

B
B
B
@

1

C
C
C
A
;

0 1 0

0 1 1

1 0 0

0

B
B
B
@

1

C
C
C
A

ð17Þ

and notice if you will these resulting adjacency matrices include self-loops, so our discussion

here does not concern their exclusion. A suitably uniform sampling of this space should then

generate each of these 5 possibilities with even probabilities of simply 1/5 or 20%. We test

our method by initialising an A(0) then randomly permuting entries to generate one of
�

3

1

��
3

2

��
3

1

�
¼ 27 possible realisations for A(1) satisfying kin but not kout and generate A(f)

as per our scheme; histograms of the resulting A(f) production are shown in Fig (7) for two

sample sizes. At n = 1000, we observe a roughly uniform distribution, yet further sampling

does not approach the actual expected 20% proportion for each final type. Hence, we com-

puted the probability for generating each of these A(f) categories, from initial production of the

permuted A(1) along trajectories of intermediate A(i) via selected donor! recipient edge

transfers.

This entailed calculating weights of each potential number of edge selections given available

pools of donor and recipient edges. For instance, the following initial A(0) (satisfying the

Fig 7. Distribution of resulting 3x3 matrices for predescribed kin and kout = [1 2 1]. The 5 possible results should all emerge with identical

probability if the method samples these possibilities uniformly. Testing 1000 matrices (Left Pane), we obtain roughly 1/5 or 20% for each possible

matrix A(f), but only roughly. (Right Pane) Histogram of n = 50, 000 samples showing convergence to the expected—and non-uniform—distribution of

final A(f) as calculated through all possible trajectories from A(0)! A(f). Red markers above each bar indicates theoretical expected values of 0.2099,

0.2006, 0.1790, 0.2099 and 0.2006 for the 5 types of A(f), respectively.

https://doi.org/10.1371/journal.pone.0240888.g007

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 14 / 25

https://doi.org/10.1371/journal.pone.0240888.g007
https://doi.org/10.1371/journal.pone.0240888

prescribed kin), with subsequent permutation into A(1) may occur as the following pair,

Að0Þ ¼

1 0 0

1 1 0

1 0 0

0

B
B
B
@

1

C
C
C
A
;Að1Þ ¼

1 0 0

1 0 1

0 0 1

0

B
B
B
@

1

C
C
C
A
; ð18Þ

that then may follow a few distinct pathways of edge transfers, each with calculable probabili-

ties as the method traverses its way to the final A(f). For instance, this particular A(1) of 18 has

two potential transfers from donor column number 1 to recipient column number 2:

Að2Þa ¼

0 1 0

1 0 1

0 0 1

0

B
B
B
@

1

C
C
C
A
; or;Að2Þb ¼

1 0 0

0 1 1

0 0 1

0

B
B
B
@

1

C
C
C
A
: ð19Þ

that naturally corresponds to a weighting of w1 = 2, or probability of p1 = 1/w1 = 1/2 for either

possible A(2)—that we label here with subscripts ‘a’ and ‘b’. The next edge transfer is then con-

strained by whether the method traverses through variant Að2Þa or Að2Þb , since, if you will notice,

the next donor column 3 and its two edge rows have either two open sites in the corresponding

recipient column 2 as with Að2Þa , or only one as with Að2Þb . Three potential A(3) matrices then

arise:

Að3Þa ¼

0 1 0

1 1 0

0 0 1

0

B
B
B
@

1

C
C
C
A
; or;Að3Þb ¼

0 1 0

1 0 1

0 1 0

0

B
B
B
@

1

C
C
C
A
; or;Að3Þc ¼

1 0 0

0 1 1

0 1 0

0

B
B
B
@

1

C
C
C
A
; ð20Þ

with Að3Þa and Að3Þb ‘daughter’ matrices emerging from edge transfers of Að2Þa . Að3Þc is clearly the

only option from Að2Þb . The resulting weights for this third step are thus w2a = 2 and w2b = 1.

Since each of the A(3) variants are one of the five acceptable A(f) satisfying the prescribed bide-

gree sequence k, the method halts here. This gives three weights per A(1)! A(3) path as fol-

lows. Að1Þ ! Að2Þa ! ðA
ð3Þ
a orAð3Þb Þ corresponds to w1 × w2a = 2 × 2 = 4, and Að1Þ ! Að2Þb ! Að3Þc

corresponds to w1 × w2b = 2 × 1 = 2. The probabilities for each three outcomes are simply then

p3
a ¼ p3

b ¼ 1=4 and p3
c ¼ 1=2, and we observe such proportions of 25:25:50% for this suite of

A(1)! A(f) pathways.

Calculating the weights and probabilities over each individual trajectory from the 27 possi-

ble A(1) initial permutations to the five acceptable A(f) presents the expected distribution of

matrix generation as illustrated in Fig 7b. The histogram of A(f) production shows convergence

to the calculated probabilities after n = 50, 000 tests.

The deviation we observe here from the ideal uniform distribution as shown in Fig (7) is

apparently due to the restriction of trajectories from an initial, permuted A(1) to subsets of all

possible A(f)—as illustrated in our example calculation for the trajectory weights above. Distri-

butions of A(1)! A(f) realisations are shown in Fig (8) where we clearly see the A(f) depend on

which initial permutation launches the procedure. The method’s permutation of A(0) into a

A(1)—albeit uniformly—nevertheless restricts potential A(f) outcomes: the set of permitted

donor! recipient edge exchanges is clearly shaped by the initial condition, if you will, estab-

lished by a given A(1).

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 15 / 25

https://doi.org/10.1371/journal.pone.0240888

Clearly, the method does not uniformly sample the graph space. We, however, follow the

presentation given in [25] for utilising the weights of the sampling as already illustrated for our

scheme’s method traversing pathways from A(1)! A(f). Given these weights, we can deploy a

well-known biased sampling result [32], and calculate the weighted average for our suite of

A(f) via

hQsi ¼

PM
j¼1

wðtjÞQðtjÞ
PM

j¼1
wðtjÞ ð21Þ

for some metric Q. We here treat the quantity Q as the spectral radius for the resulting A(f).

Fig 8. Distributions of five possible A(f) outcomes as produced by initial, permuted A(1). Each pane shows a histogram of the 27

A(1) that eventually lead to the A(f) as noted, where distinctive patterns emerge. Observe a roughly tri-banded distribution for AðfÞ1
and a complementary banding between AðfÞ3 and AðfÞ4 . Note how most initial A(1)’s numbered between 1 and 10 lead to AðfÞ3 whereas

initial A(1)’s numbered roughly from 20 to 27 lead to AðfÞ4 .

https://doi.org/10.1371/journal.pone.0240888.g008

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 16 / 25

https://doi.org/10.1371/journal.pone.0240888.g008
https://doi.org/10.1371/journal.pone.0240888

Kim, et al., [25] used the assortativities of the adjacency matrix; however, for our tractable

3 × 3 example, the assortativities of the A(f) shown in Eq 17 are mostly zero distorting the sam-

ple mean calculation. Qs is here simply the ‘sampled’ spectral radius over all possible pathway

realisations for M samples of the trajectory space; of course, as M!1 the sample mean

should approach the actual arithmetic mean. Each tj we consider the jth trajectory from A(1)!

A(f) sampled, and w(tj) the weight resulting from the sequence of available edge transfers from

donor! recipient nodes during the method’s traversal through this trajectory space, readily

calculated via

wðtÞ ¼
Y

i

Yne

j¼1

diðjÞ: ð22Þ

The inner product is over the number of available edges (ne) for donor (di)! recipient
exchange, and the outer product is over the intermediate adjacency matrices, A(i) along the

way as illustrated in our example calculation above.

Each spectral radius for the matrices in Eq 17 is straightforward enough to compute and are

1.6180, 1.6180, 1.4142, 1.4656, and 1.4656, for the five A(f), respectively. With an arithmetic

mean of hQai = 1.51628, we should observe the weighted sampling mean hQsi of Eq 21

approach this value given large enough sample size, M; results are shown in Fig 9. Over sam-

pling of M = 106, we see indeed the sampled average of spectral radius over the trajectories

readily approach the arithmetic with relative errors falling below O(10−5) but then settling at

around O(10−3). We thus demonstrate how a metric of interest, here the spectral radius, may

be accurately estimated over a cohort of network samples by these weighted estimates.

Weights of these samplings are provided in our MATLAB implementation and are rather

straightforward to substitute for some Q of interest—they are not limited to only the spectral

radius. The hazard of combinatorial explosion requires accommodation, however. This exam-

ple matrix is quite manageable yet larger and more relevant networks demand, for instance,

handling weights with symbolic-valued type variables—otherwise overflow of double-valued

variables is certain. Nevertheless, if estimates of a metric Q are required for some sampling of a

network regime, these weights provide the means to find an accurate representation.

Direct performance comparisons with other methods are not presented here, although we

do obtain networks up to O(104) on the scale of minutes with a laptop running recent versions

of Matlab—depending on the degree sequences. The majority of networks we utilised for sim-

ulations of neuronal dynamics were sized N = 5000 and hence more challenging to assemble

than the real-world network comparisons with N of 1000 nodes or less. Assembly difficulty

depended on the degree sequence and hence edge-density of the network; for the neuronal

studies we utilised degree sequences ranging over kin, kout 2 [750–2000], and assembly com-

pleted all within around 2 minutes for any multi-edge proportion (see Table 1). Times to

assemble are primarily dependent on initial distance from target, r0
out. Networks with highly-

dense edge counts (e.g., N = 10, 000, k 2 [8500–9900]) still complete assembly quite rapidly

compared to lower edge-density networks—that exhibits greater initial r0
out by an order of mag-

nitude. The initial error r0
out is apparently driven higher with minimum and maximum degrees

spread rather widely over the network, as in the last two entries of Table 1 with N = 10, 000

and k spanning 3000-9900. These wide distributions of in- and out- degrees typically require

substantially more time to assemble, although notably earlier activation of inert shuffling miti-

gates this (also see Fig 3). Note, most assemblies shown in Table 1 reported zero inert shuffles;

this was not due to the ratio of activation set at 0.5. We tested the same k at higher shuffling

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 17 / 25

https://doi.org/10.1371/journal.pone.0240888

Fig 9. Comparison arithmetic average spectral radius over all five possible realisations for bi-degree sequence k = [1 2 1] and sampled mean

spectral radius with weights via permutation method (see text).

https://doi.org/10.1371/journal.pone.0240888.g009

Table 1. Performance statistics.

N k range Edges r0
out Swaps Shuffles Time Notes

5,000 750-2000 5.4e6 2.2e4 6.2e5 0 134 secs No multi

5,000 750-2000 5.4e6 2.2e4 6.2e5 0 139 secs 50% multi

5,000 750-2000 5.4e6 2.2e4 6.2e5 0 136 secs 90% multi

10,000 8500-9900 9.2e7 4.0e4 1.7e6 0 7.8 mins Inert on 0.5

10,000 1500-4000 2.8e7 7.2e4 3.1e6 0 14.2 mins Inert on 0.5

10,000 2000-7500 4.8e7 1.6e5 6.8e6 0 34 mins Inert on 0.5

10,000 3000-9900 6.5e7 2.0e5 8.6e6 4.1e5 3.2 hrs Inert on 0.5

10,000 3000-9900 6.5e7 2.0e5 8.6e6 4.2e5 2.8 hrs Inert on 0.9

https://doi.org/10.1371/journal.pone.0240888.t001

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 18 / 25

https://doi.org/10.1371/journal.pone.0240888.g009
https://doi.org/10.1371/journal.pone.0240888.t001
https://doi.org/10.1371/journal.pone.0240888

activation ratios to no avail: these particular sequences simply do not require any inert shuf-

fling to complete assembly, in contrast with other networks that fail without it.

A brief note on successfulness of the method. As mentioned above, we only test for graphi-

cality of k given at the outset, and do not persist in testing the resulting intermediate A(i) dur-

ing assembly—in contrast to other methods as in [25]. Interim phases of our procedure

ignores potential violations of ‘Star-constrained graphicality’ or whether a current edge addi-

tion will break graphicality of the system [33]. Instead, the effort at transferring edges main-

taining kin aimed at improving approximation to the target kout appears to avoid this issue

altogether—mostly. We do observe failed assembly attempts with smaller-sized networks (e.g.,

N = 5) that do not engage inert shuffles (not shown). Although the edge transfers of the

method are valid, it nevertheless encounters a cul-de-sac where no subsequent transfers are

possible. Such test suites however show success rates of around 80% or better depending on

the initial permutation, A(1). For our purposes with N ranging from the real-world networks

sized O(10) to substantially larger for the neuronal study, we observe few if any failed assem-

blies—if inert shuffling is enabled. Without the shuffling of edges, the method typically stalls

once the reservoir of donor surplus edges aligned with recipient nodes is exhausted, as illus-

trated in Fig 3 when the numbers of donor swaps fall to zero.

In contrast to myriad assembly methods available, our scheme permits control over propor-

tions of multi-edges in the final assembly while meeting a prescribed degree sequence exactly.

However, if matching the given degree sequence is not necessary, then the Chung-Lu method

[10] that rapidly pulls adjacency matrices based on probabilities of edge formations is faster

than our method presented here. Although Chung-Lu does not meet the exact degree

sequence, it does match the expectation and for some null-model comparisons this is perfectly

suitable. This was not the case for our study of neuronal network dynamics; moreover, the

Chung-Lu method provides no control over multi-edge proportions and was partly inspira-

tional for the formation of our permutation method. Alternatively, an extension of the Chung-

Lu method that exploits hypergeometric distributions for assignment of edges [11] satisfies the

expectation of node degree but also generates networks including multi-edges. Yet, it does so

without direct control over their density as with our permutation method that also meets the

degree sequences exactly—albeit not as quickly as the Chung-Lu technique. The ‘soft’ CM as

described in [12] alternatively aims at meeting the degree distributions instead of the exact

sequence. This nicely accommodates real-world networks exhibiting scale-free power-law dis-

tributions and particularly with fluid vertex edge counts—instead of the static degree assign-

ments typically analysed as we have done here. Given the lack of control over multi-edges in

the CM, however, we were compelled to formulate an alternative technique that provides such

control for determination of their importance in the dynamics of neuronal networks—and

illustrated here as a null-model generation method permitting exploration of the space of

multi-edge densities.

We have presented our scheme for assembly of directed networks given a bi-degree

sequence, into a crowded arena of generation methods with varied strengths and weaknesses.

This scheme permits exclusion or inclusion of multi-edges and self-loops, and allows prescrib-

ing the proportion of multi-edges in the resulting network unlike other methods. It further

meets exactly a given degree sequence, yet it is limited in that the method does not uniformly

sample the resulting graph space. Nevertheless, computing the weighted samples does con-

verge to expected means for the adjacency metric given enough samples for all possible trajec-

tories. Overall, we have further found the method quite successful at completing assemblies

but cannot guarantee that any sequence initially satisfying graphicality will indeed produce a

network. Further analysis of the apparent dependence on randomisation of inert shuffling for

success and whether the method as described inadvertently respects graphicality constraints

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 19 / 25

https://doi.org/10.1371/journal.pone.0240888

during construction may illuminate these issues. Nevertheless, this novel permutation method

supplies a means to generate networks with control over multi-edge appearances, providing

another tool among a spectrum of network assembly techniques [14, 25, 34–42] meeting either

expectations, distributions or exact values of degree sequences—none of which, to our knowl-

edge, permits such control.

Appendix

A brief description of the neuronal network model is presented here; for further detail, please

see our companion paper [7]. We utilise the Theta Neuron model [43] to simulate a network

of N spiking neurons

dyi
dt
¼ ð1 � cosðyiÞÞ þ ð1þ cosðyiÞÞ � ðZi þ IiÞ ð23Þ

where i 2 [1, N]. While the state variable θi has no physical expression, neuron i is said to fire

at θi = π. A neuron’s firing rate is determined by an intrinsic parameter ηi and an external stim-

ulus Ii. In the absence of Ii a neuron’s dynamics undergoes a saddle-node bifurcation on an

invariant circle (SNIC) as ηi is varied through 0, i.e. for ηi< 0 the state θi rests at a stable fixed

point whereas for ηi> 0 it is in a stable periodic orbit (see Fig 10) As the firing frequency can

become arbitrary low the Theta Neuron is a model for a Type I neuron. In contrast, a Type II

neuron exhibits a finite minimal firing rate. Note, that each neuron i has a designated ηi, thus

we model a network of heterogeneous neurons.

The current Ii is composed of synaptic pulses Pn(θj) of inward connected neurons j as

defined in the adjacency matrix Ai,j

Ii ¼ k �
1

hki

XN

j¼1

Ai;jPnðyjÞ ð24Þ

where hki is the mean degree of the network and κ the coupling strength. To model a single

pulse-like current we let

PnðyjÞ ¼ dnð1 � cosðyjÞÞ
n

ð25Þ

dn :

Z 2p

0

PnðyjÞ ¼ 2p ð26Þ

with dn calibrated such that the integral of Pn is independent of n, a parameter which is associ-

ated with the pulse’s sharpness. Further we find that max(Pn) is at θ = π and in the limit n!
1 Eq 25 becomes a delta function. Notice the pulse function Pn is treated as identical across

our suite of Theta Neurons: all are shaped to the same order n, yet fire independently.

The coupling itself is captured in the adjacency matrix Ai,j which is of particular interest

here, since it is the matrix of connections between neurons. Connections are considered unidi-

rectional in the networks; i.e., no explicit feedback mechanism from neuron i back to neuron j,
so all influences are exerted downstream. Entries of Ai,j are with integer terms only: ai,j = 1 if

connected, zero if not, unless they exhibit ‘multi-edge’ connections, then ai,j> 1. Connectivity

of a neuron and the number of incoming impulses from upstream neurons, or its input-

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 20 / 25

https://doi.org/10.1371/journal.pone.0240888

degree, is thus via summation over Ai,j with a fixed i:

kini ¼
XN

j¼1

Ai;j and analogous koutj ¼
XN

i¼1

Ai;j: ð27Þ

The mean degree hki can be computed as the mean value of either kin or kout

hki ¼
1

N

XN

i¼1

kini ¼
1

N

XN

i¼1

XN

j¼1

Ai;j: ð28Þ

In order to compare network dynamics of the respective adjacency matrix Ai,j we consider

the coherency of the network, or how synchronised the suite of neurons is at any time. The

Kuramoto order parameter, R, is computed as an average over all the states thus:

RðtÞ ¼
1

N

XN

j¼1

eiyj : ð29Þ

Fig 10. Illustration of θ-neuron behaviour for solo neuron simulations with no input (I = 0) over range of intrinsic excitability parameter, η,

showing idealised action-potentials when velocity of θ-neuron spikes. For positive η, θ-neuron oscillates at increasing frequency from η = 0.01 to 0.1,

spikes only once within this timeframe for 0< η< 0.01, or simply settles to equilibrium if η is negative.

https://doi.org/10.1371/journal.pone.0240888.g010

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 21 / 25

https://doi.org/10.1371/journal.pone.0240888.g010
https://doi.org/10.1371/journal.pone.0240888

This metric is complex-valued and tracks both magnitude and angle providing the degree

of network synchronisation (|R| 2 [0, 1] with 1 highly synchronised) and the overall θ for the

network. An illustration of this metric is given in Fig 11 for a small network of N = 10.

The presented results of the coherency parameter, R, in Fig 4A were performed with a full

simulation of the N = 5000 discrete θ-neuron equations in Eq 23, with a Cauchy-distribution

of excitability η parameters set to the following: η0 = −2 (center of distribution) and Δ = 0.1

(width of distribution). The strength of downstream impulses, κ, was set to 3 and the sharpness

of the pulse function of Eq 25 with n = 2. Alternatively, the results given in Fig 4B were per-

formed with a ‘mean-field’ approximation to the full discrete θ network; see our companion

paper in [7] for details of that approach.

Fig 11. Magnitude of network coherency parameter, |R|, plotted over dimensionless time for network sized N = 1000. Each trace with excitability

parameters, η drawn from Cauchy distribution with η0 = −2, Δ = 0.1, and three different coupling strengths, κ = 1, 2 or 3. Connectivity of system, Aij,

with ‘neighbour-to-neighbour’ connections; e.g., n1! n2! n3. . .n1000! n1. Initial state of network set to minimal coherency (|R| = 0) via even

distribution of θ0’s over unit circle. Each network settles into steady-state coherency of either roughy 50% (green and blue traces) or nearly full

coherency (red trace). The lowest coupling strength here, κ = 1, rather paradoxically leading to higher coherence is due to overall quiescence of

individual neurons. The suite of excitability parameters, η, are mostly negative and the small proportion of excitable neurons (η> 0) restrained by the

diminished coupling cannot stimulate their resistant neighbours to spiking—hence the overall network coherency is quite high.

https://doi.org/10.1371/journal.pone.0240888.g011

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 22 / 25

https://doi.org/10.1371/journal.pone.0240888.g011
https://doi.org/10.1371/journal.pone.0240888

Supporting information

S1 File.

(PDF)

Author Contributions

Conceptualization: Shawn A. Means.

Data curation: Christian Bläsche.

Formal analysis: Shawn A. Means.

Methodology: Shawn A. Means.

Supervision: Carlo R. Laing.

Writing – original draft: Shawn A. Means.

Writing – review & editing: Christian Bläsche, Carlo R. Laing.

References
1. Newman MEJ. Networks. Oxford University Press; 2018.

2. Conaco C, Bassett DS, Zhou H, Arcila ML, Degnan SM, Degnan BM, et al. Functionalization of a proto-

synaptic gene expression network. Proceedings of the National Academy of Sciences. 2012; 109(Sup-

plement 1):10612–10618. https://doi.org/10.1073/pnas.1201890109

3. Maslov S, Sneppen K, Zaliznyak A. Detection of topological patterns in complex networks: correlation

profile of the internet. Physica A: Statistical Mechanics and its Applications. 2004; 333:529–540. https://

doi.org/10.1016/j.physa.2003.06.002

4. Liljeros F, Edling CR, Amaral LAN, Stanley HE, Åberg Y. The web of human sexual contacts. Nature.

2001; 411(6840):907–908. https://doi.org/10.1038/35082140 PMID: 11418846

5. Dunne JA, Williams RJ, Martinez ND. Food-web structure and network theory: The role of connectance

and size. Proceedings of the National Academy of Sciences. 2002; 99(20):12917–12922. https://doi.

org/10.1073/pnas.192407699

6. Pernice V, Staude B, Cardanobile S, Rotter S. How structure determines correlations in neuronal net-

works. PLoS Computational Biology. 2011; 7(5). https://doi.org/10.1371/journal.pcbi.1002059 PMID:

21625580

7. Bläsche C, Means SA, Laing CR. Degree assortativity in networks of spiking neurons. Journal of

Computational Dynamics. 2020; 7:401. https://doi.org/10.3934/jcd.2020016

8. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode

Caenorhabditis elegans. Philosophical Transactions Of The Royal Society Of London Series B, Biologi-

cal Sciences. 1986; 314(1165):1—340. https://doi.org/10.1098/rstb.1986.0056 PMID: 22462104

9. Newman MEJ. The structure and function of complex networks. SIAM Review. 2003; 45(2):167–256.

https://doi.org/10.1137/S003614450342480

10. Chung F, Lu L. Connected Components in Random Graphs with Given Expected Degree Sequences.

Annals of Combinatorics. 2002; 6(2):125. https://doi.org/10.1007/PL00012580

11. Casiraghi G. The block-constrained configuration model. Applied Network Science. 2019; 4(1). https://

doi.org/10.1007/s41109-019-0241-1

12. van der Hoorn P, Lippner G, Krioukov D. Sparse Maximum-Entropy Random Graphs with a Given

Power-Law Degree Distribution. Journal of Statistical Physics. 2018; 173(3-4):806–844. https://doi.org/

10.1007/s10955-017-1887-7

13. Fosdick BK, Larremore DB, Nishimura J, Ugander J. Configuring Random Graph Models with Fixed

Degree Sequences. SIAM REVIEW. 2018; 60(2):315–355. https://doi.org/10.1137/16M1087175

14. Zamora-López G, Zhou C, Zlatić V, Kurths J. The generation of random directed networks with pre-

scribed 1-node and 2-node degree correlations. Journal of Physics A: Mathematical and Theoretical.

2008; 41(22).

15. Zlatić V, Garlaschelli D, Caldarelli G. Networks with arbitrary edge multiplicities. EPL. 2012; 97(2).

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 23 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0240888.s001
https://doi.org/10.1073/pnas.1201890109
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1038/35082140
http://www.ncbi.nlm.nih.gov/pubmed/11418846
https://doi.org/10.1073/pnas.192407699
https://doi.org/10.1073/pnas.192407699
https://doi.org/10.1371/journal.pcbi.1002059
http://www.ncbi.nlm.nih.gov/pubmed/21625580
https://doi.org/10.3934/jcd.2020016
https://doi.org/10.1098/rstb.1986.0056
http://www.ncbi.nlm.nih.gov/pubmed/22462104
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1007/PL00012580
https://doi.org/10.1007/s41109-019-0241-1
https://doi.org/10.1007/s41109-019-0241-1
https://doi.org/10.1007/s10955-017-1887-7
https://doi.org/10.1007/s10955-017-1887-7
https://doi.org/10.1137/16M1087175
https://doi.org/10.1371/journal.pone.0240888

16. Erdös P, Gallai T. Graphs with prescribed degrees of vertices (Hungarian). Mat Lapok. 1960; 11:264–

274.

17. Hakimi SL. On the realizability of a set of integers as degrees of the vertices of a graph. SIAM J Appl

Math. 1962; 10:496–506. https://doi.org/10.1137/0110037

18. Koren M. Sequences with a unique realization by simple graphs. Journal of Combinatorial Theory,

Series B. 1976; 21(3):235–244. https://doi.org/10.1016/S0095-8956(76)80006-8

19. Bollobás B. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs.

European Journal of Combinatorics. 1980; 1(4):311—316. https://doi.org/10.1016/S0195-6698(80)

80030-8

20. Newman MEJ, Strogatz SH, Watts DJ. Random graphs with arbitrary degree distributions and their

applications. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. 2001; 64(2

II):261181–261187.

21. Burstein D, Rubin J. Sufficient Conditions for Graphicality of Bidegree Sequences. SIAM Journal on Dis-

crete Mathematics. 2017; 31(1):50–62. https://doi.org/10.1137/15M102527X

22. Means SA. permuteA; 2020. Available from: https://github.com/smeans-massey/permuteA.

23. Lamar MD, Smith GD. Effect of node-degree correlation on synchronization of identical pulse-coupled

oscillators. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. 2010; 81(4). https://doi.

org/10.1103/PhysRevE.81.046206

24. Anstee RP. Properties of a class of (0, 1)-matrices covering a given matrix. Canad J Math. 1982; 34

(2):438–453. https://doi.org/10.4153/CJM-1982-029-3

25. Kim H, Del Genio CI, Bassler KE, Toroczkai Z. Constructing and sampling directed graphs with given

degree sequences. New Journal of Physics. 2012; 14. https://doi.org/10.1088/1367-2630/14/2/023012

26. Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional

connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United

States of America. 2007; 104(24):10240–10245. https://doi.org/10.1073/pnas.0701519104 PMID:

17548818

27. Schellenberger J, Park JO, Conrad TM, Palsson BT. BiGG: A Biochemical Genetic and Genomic knowl-

edgebase of large scale metabolic reconstructions. BMC Bioinformatics. 2010; 11. https://doi.org/10.

1186/1471-2105-11-213 PMID: 20426874

28. Scannell JW, Burns GAPC, Hilgetag CC, O’Neil MA, Young MP. The connectional organization of the

cortico-thalamic system of the cat. Cerebral Cortex. 1999; 9(3):277–299. https://doi.org/10.1093/

cercor/9.3.277 PMID: 10355908

29. Cimini G, Squartini T, Saracco F, Garlaschelli D, Gabrielli A, Caldarelli G. The statistical physics of

real-world networks. Nature Reviews Physics. 2019; 1(1):58–71. https://doi.org/10.1038/s42254-018-

0002-6

30. Squartini T, Garlaschelli D. Analytical maximum-likelihood method to detect patterns in real networks.

New Journal of Physics. 2011; 13(8):083001. https://doi.org/10.1088/1367-2630/13/8/083001

31. Gotelli NJ, Entsminger GL. Swap and fill algorithms in null model analysis: Rethinking the Knight’s Tour.

Oecologia. 2001; 129(2):281–291. https://doi.org/10.1007/s004420100717 PMID: 28547607

32. Newman MEJ, Barkema GT. Monte Carlo methods in statistical physics. Oxford University Press;

1999.

33. Kim H, Toroczkai Z, Erds PL, Miklós I, Székely LA. Degree-based graph construction. Journal of Phys-

ics A: Mathematical and Theoretical. 2009; 42(39). https://doi.org/10.1088/1751-8113/42/39/392001

34. Britton T, Deijfen M, Martin-Löf A. Generating simple random graphs with prescribed degree distribu-

tion. Journal of Statistical Physics. 2006; 124(6):1377–1397. https://doi.org/10.1007/s10955-006-

9168-x

35. Del Genio CI, Kim H, Toroczkai Z, Bassler KE. Efficient and exact sampling of simple graphs with given

arbitrary degree sequence. PLoS ONE. 2010; 5(4). https://doi.org/10.1371/journal.pone.0010012

PMID: 20386694

36. Tinhofer G. Generating Graphs Uniformly at Random. In: T G M E N H T G S MM, editor. Computational

Graph Theory. Computing Supplementum. vol. 7. Springer, Vienna; 1990.

37. McKay BD, Wormald NC. Asymptotic Enumeration by Degree Sequence of Graphs of High Degree.

European Journal of Combinatorics. 1990; 11(6):565–580. https://doi.org/10.1016/S0195-6698(13)

80042-X

38. Bayati M, Kim J, Saberi A. A Sequential Algorithm for Generating Random Graphs. Algorithmica. 2007;

58. https://doi.org/10.1007/s00453-009-9340-1

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 24 / 25

https://doi.org/10.1137/0110037
https://doi.org/10.1016/S0095-8956(76)80006-8
https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1137/15M102527X
https://github.com/smeans-massey/permuteA
https://doi.org/10.1103/PhysRevE.81.046206
https://doi.org/10.1103/PhysRevE.81.046206
https://doi.org/10.4153/CJM-1982-029-3
https://doi.org/10.1088/1367-2630/14/2/023012
https://doi.org/10.1073/pnas.0701519104
http://www.ncbi.nlm.nih.gov/pubmed/17548818
https://doi.org/10.1186/1471-2105-11-213
https://doi.org/10.1186/1471-2105-11-213
http://www.ncbi.nlm.nih.gov/pubmed/20426874
https://doi.org/10.1093/cercor/9.3.277
https://doi.org/10.1093/cercor/9.3.277
http://www.ncbi.nlm.nih.gov/pubmed/10355908
https://doi.org/10.1038/s42254-018-0002-6
https://doi.org/10.1038/s42254-018-0002-6
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1007/s004420100717
http://www.ncbi.nlm.nih.gov/pubmed/28547607
https://doi.org/10.1088/1751-8113/42/39/392001
https://doi.org/10.1007/s10955-006-9168-x
https://doi.org/10.1007/s10955-006-9168-x
https://doi.org/10.1371/journal.pone.0010012
http://www.ncbi.nlm.nih.gov/pubmed/20386694
https://doi.org/10.1016/S0195-6698(13)80042-X
https://doi.org/10.1016/S0195-6698(13)80042-X
https://doi.org/10.1007/s00453-009-9340-1
https://doi.org/10.1371/journal.pone.0240888

39. Blitzstein J, Diaconis P. A sequential importance sampling algorithm for generating random graphs with

prescribed degrees. Internet Mathematics. 2011; 6(4):489–522. https://doi.org/10.1080/15427951.

2010.557277

40. Sanderson JG, Moulton MP, Selfridge RG. Null Matrices and the Analysis of Species Co-Occurrences.

Oecologia. 1998; 116(1/2):275–283. https://doi.org/10.1007/s004420050589 PMID: 28308537

41. Steger A, Wormald N. Generating random regular graphs quickly. COMBINATORICS PROBABILITY &

COMPUTING. 1999; 8(4):377–396. https://doi.org/10.1017/S0963548399003867

42. Kleitman DJ, Wang DL. Algorithms for constructing graphs and digraphs with given valences and fac-

tors. Discrete Mathematics. 1973; 6(1):79–88. https://doi.org/10.1016/0012-365X(73)90037-X

43. Ermentrout GB, Kopell N. Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation.

SIAM Journal on Applied Mathematics. 1986; 46(2):233–253. https://doi.org/10.1137/0146017

PLOS ONE A permutation method for network assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0240888 October 23, 2020 25 / 25

https://doi.org/10.1080/15427951.2010.557277
https://doi.org/10.1080/15427951.2010.557277
https://doi.org/10.1007/s004420050589
http://www.ncbi.nlm.nih.gov/pubmed/28308537
https://doi.org/10.1017/S0963548399003867
https://doi.org/10.1016/0012-365X(73)90037-X
https://doi.org/10.1137/0146017
https://doi.org/10.1371/journal.pone.0240888

