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Nonextensive dynamics for a quantum dissipative system described by a Caldirola-Kanai (CK) Hamiltonian
is investigated in SU(1,1) coherent states. To see the effects of nonextensivity, the system is generalized
through a modification fulfilled by replacing the ordinary exponential function in the standard CK
Hamiltonian with the q-exponential function. We confirmed that the time behavior of the system is
somewhat different depending on the value of q which is the degree of nonextensivity. The effects of q on
quantum energy dissipation and other parameters are illustrated and discussed in detail.

I
n spite of the great success of Bolzmann-Gibbs statistics in describing statistical features of dynamical systems,
it turned out that this statistics is inadequate in some cases for systems that follow nonextensive dynamics.
Nonextensive systems are usually relevant to one or more phenomena among long-range spatial and/or

temporal interactions, microscopic memory effects, multifractal space-time structure, anomalous diffusion,
and self-gravitation1. This required an important amendment to thermostatistics so that the effects of nonex-
tensivity are considered. A statistical mechanics proposed by Tsallis2 is a powerful formalism to handle such
systems. Numerous systems such as DNA biology3, multifractal space-time structures involved in dissipative
systems4,5, and nonlinear phenomena in Euler turbulence6 are analyzed on the basis of Tsallis nonextensive
thermostatistics2.

Recently, a research for the effects of nonextensivity on a generalized Caldirola-Kanai (CK) Hamiltonian
system in SU(1,1) coherent state has been carried out by Özeren4. In fact, the problem of SU(1,1) coherent state
for dissipative systems has long been studied by many researchers7–12, mainly on the basis of CK Hamiltonian13,14.
Özeren replaced the usual exponential function in the CK Hamiltonian with the q-exponential function which is
crucial in nonextensive thermostatistics, and then investigated the time evolution of SU(1,1) coherent state
parameters of the modified system.

The q-exponential function is useful for describing non-exponentially decaying or dissipating characteristics of
physical systems such as fluorescence decays in complex biological systems15, surface potential decays of dielectric
materials16, and spontaneous decays of unstable quantum systems17. Other types of non-exponentially decaying
systems, that do not follow q-exponential decay, also exist. Some of them are the decay of frequency stable
biophoton signals18,19 and the decay of the scalar field in the early universe20.

The purpose of this paper is to improve the previous theory4 of the nonextensive dynamics of a modified CK
Hamiltonian system and to investigate its corresponding quantum behaviors in SU(1,1) coherent state on the
basis of the improved theory. To this end, an exact Hamiltonian dynamics will be employed and a semiclassical
behavior of the time evolution of SU(1,1) coherent state parameter and energy dissipation will be examined.

This paper is organized in the following order. First, a modified CK Hamiltonian that describes dissipation is
introduced and the corresponding SU(1,1) generators are established. Then, the effects of nonextensivity on the
SU(1,1) coherent states of the system are investigated and the corresponding results are compared to those of the
previous work4. Finally, nonextensive dynamics of the system is discussed and concluding remarks are given.

Results
Description of the generalized CK Hamiltonian. There has been great concern for dynamical problems of
dissipative systems in both classical and quantum points of view for several decades (see, for example, Ref. 21 and
references there in). However, most research in this direction is focused on the damped system described by
standard CK oscillator. The generalization of the CK Hamiltonian system regarding nonextensive dynamics may
offer interesting consequences that are absent in the standard one. Here, we introduce SU(1,1) generators for the
generalized CK Hamiltonian system and show how to describe it in terms of SU(1,1) generators.
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We start with the standard CK Hamiltonian that is given by13,14,22,23

Ĥ~e{lt p̂2

2m
z

1
2

eltmv2q̂2, ð1Þ

where l is a damping constant. As you can see, this Hamiltonian is
just obtained by replacing the mass of the simple harmonic oscillator
Hamiltonian such that

m?melt : ð2Þ

Let us now focus on the exponential function given in this expression.
A more generalized exponential function, so-called the q-exponen-
tial function, that is necessary in nonextensive mechanics is defined
as24

expq zð Þ~ 1z 1{qð Þz½ �1= 1{qð Þ, ð3Þ

under the condition 1 1 (1 2 q)z $ 0. If q , 1, the system is super-
extensive whereas it is sub-extensive when q . 1. This function
corresponds to a non-equilibrium distribution function and is equi-
valent to the Zipf-Mandelbrot distribution in the case that q is larger
than unity. It reverts to the original exponential function when q 5 1.
Notice that there appears a power-law tail in this function in an
asymptotic limit25.

The nonextensive thermostatistics uses the nonadditive Tsallis
entropy and after the standard maximization procedure under
appropriate constraints, the q-exponentials and q-Gaussians appear
as the probability densities. Two possible choices in the maximiza-
tion procedure are those that use either standard mean or escort
mean. If the escort mean is used, the definition of the q-exponential
permits us to represent its inverse function as expq(2z) with q . 1, as
already used in Ref. 4. However, if the standard mean is used, the
definition of the q-exponential does not allow us to replace [expq

(z)]21 by expq (2z) in the range q , 126. One can easily confirm this
fact from Fig. 1. We will adopt standard mean in this work in order to
investigate the nonextensive characteristics of the generalized dissip-
ative system.

The generalized CK Hamiltonian is obtained by replacing ordin-
ary exponential function with q-exponential one such that

Ĥq~
p̂2

2m expq ltð Þz
1
2

expq ltð Þmv2q̂2: ð4Þ

Many quantum features for a family of CK Hamiltonian systems,
including phase coherence, quantum tunneling, and quantum fluc-
tuations, can be studied using SU(1,1) Lie algebra27. From Methods
section (A), we can confirm that Eq. (4) can be rewritten as

Ĥq~2�hv coshq ltð ÞK̂0z�hv sinhq ltð Þ K̂zzK̂{

� �
, ð5Þ

where K̂0, K̂z, K̂{ are SU(1,1) generators defined in Eqs. (21) and
(24) and deformed hyperbolic trigonometric functions are given by

coshq zð Þ~ 1
2

expq zð Þz expq zð Þ
h i{1

� �
, ð6Þ

sinhq zð Þ~ 1
2

expq zð Þ{ expq zð Þ
h i{1

� �
: ð7Þ

We will use this Hamiltonian in order to investigate the effects of
nonextensivity on the CK Hamiltonian system. One can easily con-
firm that Eq. (5) is somewhat different from that of previous reports
(Ref. 4).

Time behavior of the system. Now, the characteristics of SU(1,1)
coherent state for the generalized CK Hamiltonian system described
by Eq. (5) will be investigated. Among several classes of the SU(1,1)
coherent state, we are interested in the Perelomov coherent state28. If
we introduce the displacement operator of the form

D̂ að Þ~exp
1
2

a2K̂z{a�2K̂{

� �� �
, ð8Þ

where a is an eigenvalue of the operator â that is defined as

â~ mv= 2�hð Þ½ �1=2q̂z 2mv�hð Þ{1=2p̂, ð9Þ

the Perelomov coherent state is obtained by acting D̂ að Þ on vacuum
state, such that

f; kj i~D̂ að Þ 0j ik: ð10Þ

Of course, â and its Hermitian adjoint satisfy the well known
commutation relation: â,â{

� 	
~1. We also introduce a SU(1,1)

coherent state parameter f, which is

f~
a2

aj j2
tanh aj j2



2

� �
: ð11Þ

We can see the time evolution of any physical observables from their
expectation values. For the case of the Hamiltonian, Eq. (5), the
expectation value in the Perelomov coherent state is obtained from

Hq,k~ f; k Ĥq

�� ��f; k
� 


: ð12Þ

Considering the formulae given in Eqs. (27)–(29) in the Methods
section, we easily have

Hq,k~
2�hvk

1{ fj j2
1z fj j2
� �

coshq ltð Þz fzf�ð Þsinhq ltð Þ
� 	

: ð13Þ

Notice that this varies depending on time. To identify the complete
time behavior of this quantity, it is necessary to know the explicit
form of f. For this reason, we see a semiclassical behavior of the time
evolution of f. Let us separate f(t) into real and imaginary parts such
that f(t) 5 x(t) 1 iy(t) where x and y are real. Then, by inserting this
into Eq. (32) given in the Methods section, we have the formula for
the time evolution of each parts

_x~2v y coshq ltð Þzxy sinhq ltð Þ
� 	

, ð14Þ

_y~{v 2x coshq ltð Þz 1zx2{y2
� �

sinhq ltð Þ
� 	

: ð15Þ

The parametric plot of (x(t), y(t)) is given in Fig. 2 with different
initial conditions (x(0), y(0)). Notice that this is very different from
that of the previous report4. For the convenience of comparison, we
have taken all auxiliary values to be the same as those of Ref. 4. The

Figure 1 | Comparison of [expq(z)]21 (solid red line) with expq (2z)
(dashed blue line) for q 5 0.8.
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trajectory of (x(t), y(t)) in that work approaches (1, 0) as time goes by.
However, (x(t), y(t)) in this work follows quite a different trajectory
from that and ends up with (x(t), y(t)) 5 (21, 0) for large t. This
discrepancy partly originates from the statistical mean, i.e., we used
standard mean while escort mean is used in Ref. 4. However, the
contribution of such different choices of statistical mean on the
discrepancy is minor. The main difference between them stems from
the misderivation of the Hamiltonian in that work.

Now we investigate the nonextensive effects on time evolution of
the system on the basis of the improved theory described so far. To
do this, we consider the dynamical energy of the system and the

fluctuations of the canonical variables. In terms of x and y, Eq. (13)
can be rewritten as

Hq,k~
2�hvk

1{x2{y2
1zx2zy2
� �

coshq ltð Þz2x sinhq ltð Þ
� 	

: ð16Þ

The energy of the system is in general different from the
Hamiltonian for dissipative systems29. In this case, the quantum
energy is given by

Eq,k~ expq ltð Þ
h i{1

Hq,k: ð17Þ

From Fig. 3, we see that the quantum energy decreases with time due
to dissipation. The energy dissipates more rapidly for large q due to
the effects of nonextensivity. The rate of energy dissipation with time
is locally maximum when the velocity of the oscillator is largest in the
vicinity of the point q 5 0. On the other hand, the energy does not
dissipate instantaneously at the turning point of the oscillator. This
outcome agrees with that of the classical analysis.

Let us see the fluctuations of canonical variables. The fluctuation
of an arbitrary observable Ô is defined in the form

DO~ f; kh jÔ2 f; kj i{ f; kh jÔ f; kj i2
h i1=2

: ð18Þ

According to this, we can obtain the fluctuation of canonical vari-
ables to be

Dq~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hk

mv 1{x2{y2ð Þ

s
1z2xzx2zy2
� �1=2

, ð19Þ

Dp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mv�hk

1{x2{y2

s
1{2xzx2zy2
� �1=2

: ð20Þ

From Fig. 4, we confirm that both Dq and Dp oscillate with time.
The envelope of oscillation for Dq decreases with time whereas that
for Dp increases. The time variation of Dq and Dp increases as q
grows as a consequence of nonextensive dynamics. We can confirm
from Fig. 4 (c) that the uncertainty product DqDp also varies signifi-
cantly with time. However, DqDp is always larger than (or equal to)
�h=2 so that the uncertainty principle holds.

Discussion
The effects of nonextensivity on time evolution of the generalized CK
Hamiltonian system that reveals dissipation are investigated through
SU(1,1) coherent state description. Using a correct Hamiltonian

Figure 2 | Parametric plot of f(t) (i.e., x(t) and y(t)) with the use of Eqs.
(14) and (15). The initial condition (x(0), y(0)) is (0.1,0) for (a), (0.3,0) for

(b), and (0.5,0) for (c). The value of q is 1.0 for solid red line, 0.9 for long

dashed green line and 0.8 for short dashed blue line. We used v 5 1 and l

5 1. The range of plot time is (tinitial, tfinal) 5 (0, 15).

Figure 3 | The energy expectation value Eq,k. The value of q is 1.0 for solid

red line, 0.9 for long dashed green line and 0.8 for short dashed blue line.

We used v 5 1, l 5 0.2, �h~1, and k 5 1/4.
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formalism, we improved the existing theory4 for its nonextensive
dynamics. To construct the Hamiltonian of the system, ordinary
exponential function in CK Hamiltonian is replaced by q-exponen-
tial function. From the parametric plot of SU(1,1) coherent state
parameter f(t), the trajectory associated with its real and imaginary
parts, (x(t), y(t)), is investigated and, as a result, we have shown that it
is different depending on the value of the nonextensive parameter q
(see Fig. 2).

We further investigated the time evolution of the system on the
basis of our improved theory. It is shown in Fig. 3 that the quantum
energy Eq,k decreases with time like a pure classical one. The

quantum energy dissipates rapidly when the oscillator attains highest
velocity at the vicinity of origin (q 5 0) whereas it does not dissipates
at the turning point of the oscillator. For a better understanding of
this, recall that the ratio of energy dissipation with time for a damped
system is proportional to the velocity of the mass. This consequence
obtained in quantum domain cannot be deduced from the existing
theory of Ref. 4 and agrees well with the classical theory. Quantum
and classical correspondence is important in order that a certain
quantum theory is valid.

The fluctuations Dq and Dp oscillate with time: the envelope of the
oscillation of Dq decreases with time while that of Dp increases.
Moreover, the uncertainty product DqDp varies significantly with
time. As an appearance of nonextensive effects, the time variation
of not only Eq,k but also Dq, Dp, and DqDp became large as q
increases. Such analysis is exact and different from the one predicted
from the theory of previous reports4. The outcomes of this research
may serve as important consequences, which are absent in the stand-
ard one that is not considered nonextensivity, on predicting time
behavior of physical quantities of the system depending on the value
of q. For q R 1, our results recover to the ordinary ones that corre-
spond to the extensive system11. Indeed, the q-exponential function is
ubiquitous and plays a crucial role in the diverse branches of physical
systems that exhibit nonextensive character.

Methods
(A) SU(1,1) generators and the modified CK Hamiltonian. We introduce SU(1,1)
generators of the form

K̂0~
1

4�h
mvq̂2z

p̂2

mv

� �
, ð21Þ

K̂1~
1

4�h
mvq̂2{

p̂2

mv

� �
, ð22Þ

K̂2~{
1

4�h
q̂p̂zp̂q̂½ �: ð23Þ

In terms of these, the annihilation and the creation operators are given by

K̂{~K̂1{iK̂2, K̂z~K̂1ziK̂2: ð24Þ

Now it is possible to represent the square of position and momentum operators in the
from

q̂2~
�h

mv
2K̂0zK̂zzK̂{

� �
, ð25Þ

p̂2~mv�h 2K̂0{K̂z{K̂{

� �
: ð26Þ

If we consider these equations, the Hamiltonian given in Eq. (4) can be rewritten in
terms of SU(1,1) generators to be Eq. (5).

Finally, the formulae necessary for evaluating Eq. (12) are given by30,31

f; k K̂0

�� ��f; k
� 


~k
1z fj j2

1{ fj j2
, ð27Þ

f; k K̂z

�� ��f; k
� 


~
2kf�

1{ fj j2
, ð28Þ

f; k K̂{

�� ��f; k
� 


~
2kf

1{ fj j2
: ð29Þ

(B) Time evolution of the SU(1,1) coherent state parameter. The Euler-Langrange
equation that describes the classical equation of motion for f introduced in Eq. (11) is
given by4

_f~ f,Hq,k
� 	


i�hð Þ, ð30Þ

where [C1, C2] is a generalized Poisson bracket:

Figure 4 | The fluctuations [Dq (a) and Dp (b)] and uncertainty product
DqDp (c). The value of q is 1.0 for solid red line, 0.9 for long dashed green

line and 0.8 for short dashed blue line. We used v 5 1, l 5 0.2, �h~1, m 5

1, and k 5 1/4.
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C1,C2½ �~
1{ fj j2
� �2

2k
LC1

Lf

LC2

Lf�
{

LC1

Lf�
LC2

Lf

� �
: ð31Þ

The execution of a little algebra after substituting Eq. (13) into Eq. (30) yields

_f~{iv 2f coshq ltð Þz 1zf2� �
sinhq ltð Þ

� 	
: ð32Þ
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