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Target prioritization is essential for drug discovery and repositioning. Applying
computational methods to analyze and process multi-omics data to find new
drug targets is a practical approach for achieving this. Despite an increasing
number of methods for generating datasets such as genomics, phenomics, and
proteomics, attempts to integrate and mine such datasets remain limited in scope.
Developing hybrid intelligence solutions that combine human intelligence in the
scientific domain and disease biology with the ability to mine multiple databases
simultaneously may help augment drug target discovery and identify novel drug-
indication associations. We believe that integrating different data sources using a
singular numerical scoring system in a hybrid intelligent framework could help to
bridge these different omics layers and facilitate rapid drug target prioritization for
studies in drug discovery, development or repositioning. Herein, we describe our
prototype of the StarGazer pipeline which combines multi-source, multi-omics data
with a novel target prioritization scoring system in an interactive Python-based
Streamlit dashboard. StarGazer displays target prioritization scores for genes
associated with 1844 phenotypic traits, and is available via https://github.com/
AstraZeneca/StarGazer.
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INTRODUCTION

Drug repositioning has been rapidly gaining attention in the drug
discovery domain during the past decade (Xue et al., 2018). Drug
repositioning/repurposing describes the act of identifying
alternative uses for a drug beyond the scope of its original
indication, regardless of whether it has been FDA-approved or
has failed in clinical trials (Pushpakom et al., 2019). The reasons
for investing into drug repositioning are very numerous indeed.

Traditionally, a standard drug development cycle is estimated
to take around 10 years and requires billions of dollars of
investment, notwithstanding the still disappointingly high
failure rate at clinical trials (Li et al., 2016). In light of these
problems, drug repositioning holds potential to drastically reduce
the time and money needed to bring a drug to the market: it has
been estimated to reduce the time by half and cut costs by 5-fold
when compared to developing a new drug from scratch (Shameer
et al., 2015). These factors alone highlight the appealing
opportunity to bring medicines to patients faster, and
potentially into areas of unmet therapeutic demand. Moreover,
it allows for the existing arsenal of approved drugs to be more
broadly utilized, and for the opportunity to salvage some costs
involved in the development of drugs that failed in clinical trials.
Finally, the sheer variety in successful and promising
repositioning strategies to date speaks to the potential for
unearthing profound biological links between different
diseases, driving paradigm shifts in our approach to modern
medicine (Lee and Bhakta, 2021).

Drug target prioritization is an essential step for repositioning
as it aims to highlight the potential drug targets for a particular
disease. Applying computational methods to analyze and process
multi-omics data is an effective approach for achieving this
(Ashburn and Thor, 2004; Glicksberg et al., 2014; Shameer
et al., 2018a; Pushpakom et al., 2019; Guo et al., 2021;
Rapicavoli et al., 2022). Whilst there is now a vast wealth of
biochemical and biomedical data in the current era of high-
throughput omics technology, our ability to integrate and
interpret these data has lagged behind and is presenting a
great challenge in disease biology (Shameer et al., 2015). While
machine learning approaches are generally used to develop tools
to integrate, analyze and interpret multi-omics data, it remains a
challenge that mere automation of predicting biological insights
might overrepresent hypotheses that cannot be validated using
function test experiments (Hodos et al., 2016; Peters et al., 2017).
In such a scenario, we recommend the application of a hybrid
intelligence platform that enables visual intelligence, quick
search, contextual interpretations with quantitative approaches
as a way to address this problem. Hybrid intelligence systems
have been developed to address challenging problems in
biomedicine, including remote patient diagnosis (Abu-Doleh
et al., 2012; Li et al., 2014a; Akata et al., 2020; Guo et al.,
2021; Weissler et al., 2021). However, such approaches are not
readily available to address challenges in data integration and
mining associated with drug target prioritization and drug
repositioning.

Data from genome-wide association studies (GWAS) and
phenome-wide association studies (PheWAS) have been used

for drug target prioritization (Ferrero and Agarwal, 2018). Whilst
GWAS aim to identify associations between genetic variants with
a single phenotype, PheWAS interrogate numerous phenotypic
traits at once (Denny et al., 2010). As of 06 October 2021, the
EMBL-EBI GWAS catalog collates associations from 5,370
studies that, in total, identified more than 290,000 associations.
The utility of this GWAS dataset can be further amplified by
narrowing down the genes of interest to only those with known
drug indications (Sanseau et al., 2012). Importantly, a three-step
strategy for drug repositioning using PheWAS data has already
been proposed (Rastegar-Mojarad et al., 2015): (Xue et al.,
2018)—identify all genes with known associations with the
phenotypic trait of interest using PheWAS data; (Pushpakom
et al., 2019);—identify all drugs with associations with the
previously identified genes using data from DrugBank; and (Li
et al., 2016)—return all the drugs identified in the previous step as
candidates for repositioning for the original phenotypic trait of
interest. Others have gone further by incorporating a
combination of data from GWASs (Khosravi et al., 2019),
expression profile analysis (Lau and So, 2020), functional
annotation, biological network analysis, and gene-set
association (Reay and Cairns, 2021).

Taken together, these data highlight the potential of using
GWAS and PheWAS data for drug target prioritization. However,
the field is still young, and integrating disparate data sources
remains relatively limited in scope (Gallo et al., 2021). We
hypothesize that integrating multimodal data sources using a
singular numerical scoring system could accelerate the discovery
and prioritization of drug targets. In light of this, we present our
interactive dashboard, StarGazer, which aims to address these
challenges by integrating three different datatypes (i.e., disease-
target association, target druggability, and target protein-protein
interaction) into a novel scoring system, utilizing real-time API
calls and Python-based Streamlit technology.While these types of
datasets have been used for numerous repositioning studies
separately (Liu et al., 2014; Khaladkar et al., 2017; Hermawan
et al., 2020;Wijetunga et al., 2020; Adikusuma et al., 2021; Attique
et al., 2021; Ghoussaini et al., 2021; Portelli et al., 2021; Tan et al.,
2021; Varghese and Majumdar, 2022; Zhao et al., 2022),
StarGazer represents the first ever integration of the PheWAS
catalog, Open Targets, STRING and Pharos, all of which are well-
curated, well-studied, open access databases. Furthermore,
computational repositioning studies focus largely on singular
diseases, phenotypes or drugs, but StarGazer is equipped for
flexible investigation into any of the 1,844 phenotypes and traits
within the dashboard. Much of the data is up-to-date with the
latest science, as it is loaded in real-time before it is analyzed in
real time. StarGazer’s drug target prioritization mode allows for
rapid identification of potential drug targets for a disease of
interest, also providing immediate analysis of various aspects
surrounding drug development, such as druggability and the
nature of the target-disease association. In addition to this
target prioritization feature, we anticipate that StarGazer’s
ability to display all phenotypes associated with genes or gene
variants of interest in an easily digestible manner to be of great
value to exploratory or analytical workflows. Furthermore,
StarGazer’s other features include the support of initial
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discoveries by interrogating the precise contribution of evidence
from each data source.

DATA

Disease-target data are acquired from the PheWAS catalog
(https://phewascatalog.org/phewas) and OpenTargets (https://
genetics.opentargets.org/). The latest PheWAS catalog was
created in 2013 by generating odds ratios of association
between 3,144 SNPs identified in GWASs and 1,358
phenotypes derived from the electronic medical records of
13,835 individuals of European ancestry, and the data is
loaded locally (Denny et al., 2013). The list of phenotypic
variants from the PheWAS catalog as well as from the
GWASs within the PheWAS catalog were aggregated and
filtered to remove duplicates, producing a list of 1844
phenotypic traits which StarGazer uses for subsequent
analysis. OpenTargets version 22.02 is the latest version at the
time of writing, and provides 7,980,448 target-disease association
scores extracted from 21 public databases containing diverse
forms of evidence, from genetic and drug associations to text
mining and animal model data amongst others (Ochoa et al.,
2021). Data from OpenTargets is acquired in real-time via
API calls.

Target druggability data are acquired in real-time via API
calls through Pharos (https://pharos.nih.gov/) to access the
Target Central Resource Database (TCRD) (Sheils et al.,
2021). The TCRD categorizes 20,412 targets, at the time of
writing, into four groups of increasing druggability evidence:
Tdark, Tbio, Tchem, and Tclin. A variety of evidence is
integrated for classification, such as data from ChEMBL

(Mendez et al., 2019), Guide to Pharmacology (Armstrong
et al., 2019), DrugCentral (Avram et al., 2021), and
antibodypedia (Kiermer, 2008), amongst many more, as
well as gene ontology and text-mining analysis. Tclin genes
are already targets of approved drugs, whilst Tchem genes
have drugs with evidence of sufficient activity against the
gene. Tbio genes have weak evidence for druggability, and
Tdark genes have an unknown level of druggability.

Protein-protein interaction data are acquired in real-time via
API calls from the STRING database (https://string-db.org/).
STRING version 11.5 contains data of 20,052,394,042 protein-
protein interactions from 14,094 organisms, of which only
human genes and orthologous genes were used in StarGazer
(Szklarczyk et al., 2021), which were analyzed using the Python
package, pyvis. Gene ontology enrichment analysis is also
performed by STRING.

METHODS

StarGazer was built using Streamlit (https://streamlit.io/), a
relatively new Python-based tool for developing web
applications for machine learning and data science. It enables
data scientists to build web applications purely from Python
scripts quickly and seamlessly. The Streamlit dashboard allows
for local files to be loaded, as well as data to be requested from
databases via real-time API calls. The StarGazer drug target
prioritization framework considers the following five features
for each disease (Figure 1): (Xue et al., 2018)—the odds ratios of
association between targets and phenotypic variants of interest
from GWAS and PheWAS data; (Pushpakom et al., 2019);—the
target-disease association scores from Open Targets; (Li et al.,

FIGURE 1 | The StarGazer drug target prioritization framework considers the following five features for each of the 1844 diseases in StarGazer’s disease list (Xue
et al., 2018):—the odds ratios of association between targets and phenotypic variants of interest from GWAS and PheWAS data (Pushpakom et al., 2019);—the target-
disease association scores from Open Targets (Li et al., 2016);—the druggability data of genes of interest from Pharos (Shameer et al., 2015);—the degree of nodes in
protein-protein interaction networks of genes of interest from STRING; and (Lee and Bhakta, 2021)—the presence of the gene variant of interest in both PheWAS
and GWAS datasets. All data, except the PheWAS and GWAS data, are loaded in real-time by API calls and therefore present the latest evidence for drug repositioning
strategies. The above five features are then integrated to provide a singular numerical StarGazer score which quantifies the drug repositioning potential of a gene.
StarGazer is built on the Python-based Streamlit platform, which is largely used for building sleek and modern web applications for machine-learning and data science.
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2016);—the druggability data of genes of interest from Pharos;
(Shameer et al., 2015);—the degree of nodes in protein-protein
interaction networks of genes of interest from STRING; and (Lee
and Bhakta, 2021)—the presence of the gene variant of interest in
both PheWAS and GWAS datasets. Each gene was analyzed with
respect to each of these five features, and five scores were
computed corresponding to each of the above features. These
five scores were then normalized to ensure equal maximum
contribution, before summing the five normalized scores to
obtain an overall score (i.e., the StarGazer score) which has a
maximum score of 1. The targets were then ranked in descending
order to facilitate target prioritization.

Processing of Disease-Target Data
Analysis of the PheWAS and GWAS odds ratios involved
identifying risk associations where the odds ratio ≥1
(i.e., more associated with the occurrence of the phenotype),
and protective associations where the odds ratio <1 (i.e., more
associated with the non-occurrence of the disease). In the risk
allele-based target prioritization, odds ratios were taken as they
were. However, in protective-allele-based target prioritization,
odds ratios were subtracted by 1, as the lower ratio implies higher
magnitude of association. An average value was taken for odds
ratios from multiple studies of the same gene, before normalizing
to generate the feature score. Another feature score was generated

by determining if the gene target was present in both the PheWAS
and GWAS datasets, assigning a score of 1 for the PheWAS-
GWAS intersection score, which is otherwise 0. Finally, the
target-disease association feature scores from OpenTargets
were values between 0 and 1, calculated in a similar manner
as the PheWAS catalogue analysis.

Processing of Target Druggability Data
For analysis of the druggability data from Pharos, the number of
distinct druggability levels that a target has was counted, with the
exception of Tdark, e.g., a target with Tbio, Tclin, and Tdark
labels is scored 2 (1 + 1 + 0). These scores were then normalized
against the highest druggability feature score of each gene.

Processing of Protein-Protein Interaction
Data
The degree of the node in the protein-protein interaction
networks from STRING is the number of proteins directly
connected to the target node via functional associations, which
include experimentally confirmed interactions, predicted
interactions and text mining data. Node degrees were
computed for each gene in a network and calculated as a ratio
of the highest node degree in that network, as a gene with higher
interactivity within a STRING network is more likely to be

FIGURE 2 | The StarGazer interface after searching “HLA-G” in Gene mode. At p = 0.05, the first allele returned is rs11206510. The color-coded bar chart shows
the odds ratio of association of the allele with each phenotype. The table on the right is the same data tabulated which can be downloaded as a csv file. The StarGazer
Variant mode is similar in appearance.
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biologically underpinning the molecular pathway that
contributes to a phenotype. The calculation of node degrees
scores this way also reduces effects of false positive interactions.

RESULTS

The StarGazer dashboard (https://github.com/AstraZeneca/
StarGazer) offers eight modes of data exploration for drug
target prioritization using the data analyzed as described in
Methods. The modern yet simple interface allows for rapid
navigation without the need for specialist training or
programming experience. StarGazer allows users to search
by genes or gene variants which displays all associated
phenotypic variants ranked by odds ratio graphically, as
well as in tabular format (Figure 2). Red bars indicate an
odds ratio of greater than 1 (i.e., risk association), whilst blue
bars indicate less than 1 (i.e., protective association). Users
can also search by the PheWAS, GWAS, and GWAS-PheWAS
Union modes of exploration, which returns odds ratios of all
variants of genes associated with the phenotype of interest
from the respective datasets, as well as their corresponding
druggability levels (Figure 3). When searching in the GWAS-
PheWAS Intersection mode, only variants with associations
identified in both GWAS and PheWAS datasets are shown
(Figure 4). For these variants, the dashboard also provides
association odds ratios, druggability data, protein-protein
interaction networks and gene ontology enrichment

analysis for the disease of interest (Figure 5). Finally, when
users search by disease target prioritization, the overall
StarGazer score is shown for each gene with association
with the disease of interest (Figure 6). Contextual
information on any of these genes can be found
immediately using the build-in NCBI search tool. For each
of these exploration modes, users can also modify the p-value
to only display associations of desired statistical significance
assigned by the origin data source.

Use Case: StarGazer for Understanding
Complex Diseases
In the following case study, we posed as someone who was simply
curious about the possible mechanistic causes of insomnia, and
consequently adopted a more exploratory workflow. As insomnia
is a complex and relatively understudied disorder, we set the
p-value to a less stringent 0.05 to prevent issues in, for example,
study sample size or sensitivity frommasking any potentially true
associations. This returned a list of 106 genes with associations
with insomnia, 62 of which had at least one risk-associated allele,
and 46 had at least one protection-associated allele (Table 1).
After searching on NCBI, there were three genes found to have
significant relevance to insomnia. DISC1 encodes a scaffold
protein which is involved in brain development, and its
mutations have been implicated in schizophrenia and other
psychiatric disorders (Dahoun et al., 2017); MAOA encodes a
mitochondrial oxidative deaminase targeting amines such as

FIGURE 3 | The StarGazer interface after searching “Multiple sclerosis” in PheWAS mode. At p = 0.05, 7.37% of genes with associations with multiple sclerosis
were categorized as Tclin, i.e., already targets of FDA-approved drugs. The distribution of genes in each druggability level is shown by pie chart and scatter plot, the latter
of which also showing the odds ratios of each allele of each gene. Some gene names are not shown. This data is re-analyzed to show only risk alleles, or only protective
alleles. Tabulated data can be visualized and downloaded. The StarGazer modes, GWAS and GWAS-PheWAS Union, are similar in appearance.
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dopamine, norepinephrine, and serotonin, and mutations in the
gene can result in Brunner syndrome, a psychiatric and sleep
disorder (Brunner et al., 2007); MEIS1 is a HOX gene thought to
have a pleiotropic effect on chronic insomnia disorder, and have
possible association with restless leg syndrome (Sarayloo et al.,
2019). We also found genes with a variety of functions and
unclear links with insomnia. Tumor suppressor genes,
CMTM7 (Li et al., 2014b), NKAPL (Okuda et al., 2015) and
ATM (encoding ATM checkpoint kinase) (Shiloh and Ziv, 2013)
may allude to aberrant DNA damage responses contributing to
insomnia, and indeed, there are several reports of links between
DNA damage and sleep in the literature (Carroll et al., 2016; Zada
et al., 2021). HLA isoforms indicate a potential immunity-related
cause of insomnia (Choo, 2007). In vitro mutants in vesicular
trafficking protein, dynamin-1, have impaired ability to recycle
neurotransmitter at synapses (Chung et al., 2010), providing a
more obvious potential link with insomnia. Finally, genes with
noticeably pleiotropic effect were also found to have a high

StarGazer score. One such example is estrogen receptor
(ESR1), important for gestation in women but is in addition
expressed in many non-reproductive tissues in both sexes, as it
has roles more broadly in growth and metabolism (Barros and
Gustafsson, 2011). Not only is estrogen receptor linked with
breast cancer but also with osteoporosis (Gennari et al., 2007),
and thus makes for a peculiar hit on the StarGazer analysis.
Although additional investigations are required to ascertain the
link between these genes and phenotypes, it is exciting to
hypothesize about the underlying molecular mechanisms. This
is especially the case for insomnia, a disorder of sleep which is a
biological process we still have a relatively poor understanding of.

DISCUSSION

StarGazer is a novel application built for rapid investigation of
drug repositioning strategies. It combines multi-source, multi-

FIGURE 4 | The StarGazer interface after searching “Type 2 diabetes” in GWAS-PheWAS Intersection mode. At p = 0.05, 23 SNPs were identified to have
associations in both PheWASs and GWASs. Top left: pie chart displaying the proportion of SNPs that were identified in either PheWAS or GWAS datasets, or in both
datasets. Top right: pie chart displaying druggability information of the genes of these SNPs. Tclin in red implies genes already have drugs targeting them available on the
market, whilst Tchem, Tbio, Tdark, and None, indicate progressively decreasing levels of druggability. Bottom left: scatter plot highlighting individually reported
odds-ratios of associations of SNPs from various GWASs. Bottom right: a protein-protein interaction network constructed from the genes of alleles detected in both
GWASs and the PheWAS catalog. The gene ontology enrichment analysis feature is not shown in the figure.
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omics data with a novel target prioritization scoring system in an
interactive Python-based Streamlit dashboard. StarGazer
analyzes and integrates disease-target associations, druggability
data, and protein-protein interaction data before extracting five
features from the data to create an overall StarGazer score for
every potential target associated with StarGazer’s curated list of
1844 phenotypic variants.

StarGazer is adapted to facilitate exploration of the human
biology landscape from a birds-eye view, allowing rapid digestion
of information from PheWASs/GWASs, which otherwise
contains many tens of thousands of complex multivariate
datapoints. Streamlit, as a user interface package adapted for
complex data visualization and user interactivity, was considered
to be a well-suited technology for such a task. Indeed, the
importance of the flexibility in visualization methods, and live

data retrieval and analysis is becoming increasingly clear, with
their applications ever-expanding (Badgeley et al., 2016;
Moosavinasab et al., 2016).

We demonstrate the utility in integrating several omics
datasets and returning easy-to-interpret analysis metrics in an
interactive dashboard. One can easily imagine the power of such a
strategy as we incorporate state-of-the-art, machine learning-
based, multi-omics integration techniques, as well as a wider
variety of high quality data. In an era where the speed at which we
can generate data is accelerating at a higher rate than we can
analyze it, we anticipate that integrative scores and visualization
tools will grow increasingly essential in biology, and that we must
begin to break away from the more rigid, single-use analysis
framework that forms the modern paradigm for analyzing not
just GWAS and PheWAS data (Diogo et al., 2018; Ferrero and

FIGURE 5 | The StarGazer interface after searching “ASCVD” in Protein-protein interaction mode. Protein-protein interaction networks are shown of all alleles, risk
alleles, and protective alleles. The node degree of the genes of these alleles are computed, and gene ontology enrichment analysis is performed on the right.
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Agarwal, 2018; Robinson et al., 2018; Lau and So, 2020), but
multi-omics data in general (Subramanian et al., 2020).

StarGazer has been built with the goal of pushing multi-omics
integration towards upward scalability by providing users with
immediate access to contextual information on genes of potential
interest by automatically performing several steps of follow-up
analysis on all genes - this saves a considerable amount of time
from performing speculative follow-up analysis. These follow-up
analysis steps are completed in bulk through the processing of the
single-omic layers, which removes the need for users to analyze
every gene separately for various properties and then later
compare the results to make sense of the evidence. Not only
does integrating single-omic layers increase the speed of
exploratory data analysis, but it also provides additional value
from combining multiple pieces of evidence as opposed to

focusing on individual single high-confidence pieces of
information, especially when the different types of data are
likely to have an intimate biological relationship, e.g.,
combining a gene’s DNA, RNA and protein information
together is likely to be more valuable than analyzing them
independently as they are functionally coupled. This approach
may be our best strategy for uncovering complex and profound
relationships and hence, the phrase “the whole is greater than the
sum of its parts” holds particularly true in the context of multi-
omics data analysis. A more integrated strategy may also be more
useful in helping us understand the genetic basis of complex
diseases driven by genes and gene variants with pleiotropic
functions or effects. Applying the latest ideas on pleiotropy in
biological systems to future work may allow us to obtain a more
complete understanding of genome-phenome relationships and

FIGURE 6 | The StarGazer interface after searching “Breast cancer” in Disease Target Prioritization mode. At p = 0.05, 140 genes are returned to have association
with breast cancer. Genes are ranked in StarGazer score, which describes how suitable a gene is for drug repositioning. The subsequent five columns are the individual
scores of the five features extracted from all of the data that contribute to the StarGazer score. Data are separated into all alleles, risk alleles, then protective alleles, and
can be downloaded as csv files.
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thus drive novel discoveries previously inaccessible in the
biomedical field (Shameer et al., 2021).

Limitations
This should, of course, highlight to the reader the current co-
dependence between broader exploratory analytical approaches,
such as StarGazer, with those that possess stronger statistical
power, aimed at target confirmation at the cost of breadth and
fewer omics layers, and of course, experimental confirmation.
Moving forwards, we should hope that the field develops more
sophisticated strategies for these types of analysis. All in all, we
anticipate StarGazer to be potentially useful in providing insights
into many types of biological pathways, as long as the molecular
perturbations that are linked with disease lie close to the genetic
level. Whilst it is easy to imagine StarGazer’s utility for studying
diseases caused by variants of proteins or nucleic acids due to
their more direct connection to genome-level information,
studying metabolic disorders of carbohydrates and lipids
would be possible but more difficult.

We wish to highlight that, although the barrier to entry for
multi-omics data analysis is low, there seems yet a limitless space
for improvement in the field at the time of writing. In the future,
we aim to incorporate gene ontology terms enrichment analysis,
gene semantic similarity, and gene expression data into our target
prioritization framework, and improve on the implementation of
protein-protein interaction networks (Shameer et al., 2016; Peters

et al., 2017). Whilst the current version of StarGazer extracts
several features for target-disease associations, the assessment of
target druggability uses only one dataset to generate one feature.
Although the knowledge-based classification of the genome that
Pharos provides is very high quality data, it is less indicative of
future potential developments as it reflects only the current status
of the druggability landscape of human biology. Therefore, more
predictive datasets, such as computational docking predictions
using structural data frommolecular techniques or even AI-based
computational prediction, may provide more robust insight into
the future (Baek et al., 2021; Jumper et al., 2021).

StarGazer’s use of API calls allows for themajority of its data to be
updated automatically with the latest relevant studies, aside from the
PheWAS catalog which was performed in 2013—it would be
invaluable if a similar study was repeated to include the GWAS
datawhichwas generated during the decade that has elapsed since the
original effort. Furthermore, a variety of machine learning strategies
have been applied to multi-omics data analysis and show great
promise in assisting precision medicine and repositioning
(Shameer et al., 2018b; Nicora et al., 2020; Reel et al., 2021), and
is therefore an area we are interested in developing for StarGazer.
Another avenue for future development is to improve on the
standardization of clinical terms between the different datasets,
which is a problem not unique to StarGazer but found
ubiquitously in healthcare-related work (Wears, 2015; Beck et al.,
2019). This problem manifested itself as data from OpenTargets

TABLE 1 | Top 30 hits from Disease Target Prioritization mode analysis of “Insomnia” using StarGazer.

Gene Name StarGazer Score Odds-
Ratio

OpenTargets
Associations

Indicator Phe/GWAS Druggability Score Network Degree
Score

HLA-DRB1 0.456 0.725 0.000 0.000 1.000 0.556
ESR1 0.433 0.655 0.009 0.000 0.500 1.000
GRIN2B 0.407 0.756 0.000 0.000 0.500 0.778
MEIS1 0.395 0.251 1.000 0.000 0.500 0.222
MAOA 0.344 0.888 0.000 0.000 0.500 0.333
DNM1 0.337 0.630 0.000 0.000 0.500 0.556
HLA-DQB1 0.320 0.653 0.000 0.000 0.500 0.444
BMP4 0.307 0.591 0.000 0.000 0.500 0.444
ATM 0.293 0.188 0.000 0.000 0.500 0.778
CMTM7 0.288 0.941 0.000 0.000 0.500 0.000
NKAPL 0.288 0.938 0.000 0.000 0.500 0.000
GRIA1 0.286 0.263 0.000 0.000 0.500 0.667
TOMM40 0.280 0.677 0.000 0.000 0.500 0.222
NR5A2 0.278 0.668 0.000 0.000 0.500 0.222
HDAC9 0.276 0.768 0.000 0.000 0.500 0.111
MS4A6A 0.271 0.631 0.000 0.000 0.500 0.222
DISC1 0.267 0.166 0.000 0.000 0.500 0.667
ST6GAL1 0.265 0.716 0.000 0.000 0.500 0.111
SLC22A3 0.264 0.600 0.000 0.000 0.500 0.222
EFNA5 0.264 0.600 0.000 0.000 0.500 0.222
NRGN 0.263 0.706 0.000 0.000 0.500 0.111
DRD2 0.263 0.000 0.150 0.000 0.500 0.667
RNASET2 0.263 0.591 0.000 0.000 0.500 0.222
FGFR2 0.263 0.257 0.000 0.000 0.500 0.556
UBE2L3 0.262 0.701 0.000 0.000 0.500 0.111
YDJC 0.260 0.690 0.000 0.000 0.500 0.111
CDC42BPB 0.260 0.690 0.000 0.000 0.500 0.111
LAMP3 0.258 0.791 0.000 0.000 0.500 0.000
ARG1 0.254 0.660 0.000 0.000 0.500 0.111
CCND3 0.251 0.643 0.000 0.000 0.500 0.111

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8680159

Lee et al. StarGazer: Hybrid Intelligence Target Discovery

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


being underrepresented in the overall StarGazer score. We
hypothesize that using a combination of standardized codes for
clinical terms, such as ICD-9/-10 (https://www.cdc.gov/nchs/icd/
icd9.htm, https://www.cdc.gov/nchs/icd/icd10.htm), and EFO
(https://www.ebi.ac.uk/efo/faq.html), would help with this
problem, as well as further curate our list of 1844 phenotypic
variants. Currently, the code for installation can be found on
GitHub (https://github.com/AstraZeneca/StarGazer).

CONCLUSION

We have created StarGazer (https://github.com/AstraZeneca/
StarGazer), an interactive dashboard that facilitates rapid
investigation of potential novel drug targets and repositioning
strategies. It integrates three different types of data (disease-target
data, target druggability data, and protein-protein interaction
data) from four different knowledgebases (the PheWAS catalog,
OpenTargets, Pharos, and STRING) to extract five features that
are then processed to return a singular normalized “StarGazer”
score. All genes with associations with any of the 1844 phenotypic
variants in the StarGazer disease list are then ranked in suitability
for drug repositioning strategies for the disease of interest.

We demonstrate the utility in integrating several omics
datasets to return easy-to-interpret analysis metrics in an
interactive dashboard. One can easily imagine the power of
such a strategy as we incorporate machine learning techniques
as well as a wider variety of high quality data. It is anticipated that
such integrative analysis strategies will become commonplace as
biomedical data science grows to explore more multi-disciplinary
and multi-omic datasets. Integrative scores and visualization

tools for high dimensional data will become essential as we
navigate science in this era where we are generating data at a
such an enormous pace, thus we have positioned StarGazer to
push multi-omics integration towards upward scalability.
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