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There have been numerous advances in the development of computational and statistical
methods and applications of big data and artificial intelligence (AI) techniques for com-
puter-aided drug design (CADD). Drug design is a costly and laborious process consider-
ing the biological complexity of diseases. To effectively and efficiently design and
develop a new drug, CADD can be used to apply cutting-edge techniques to various lim-
itations in the drug design field. Data pre-processing approaches, which clean the raw
data for consistent and reproducible applications of big data and AI methods are intro-
duced. We include the current status of the applicability of big data and AI methods to
drug design areas such as the identification of binding sites in target proteins, structure-
based virtual screening (SBVS), and absorption, distribution, metabolism, excretion and
toxicity (ADMET) property prediction. Data pre-processing and applications of big data
and AI methods enable the accurate and comprehensive analysis of massive biomedical
data and the development of predictive models in the field of drug design. Understanding
and analyzing biological, chemical, or pharmaceutical architectures of biomedical entities
related to drug design will provide beneficial information in the biomedical big data era.

Introduction
Drug design and discovery is a complicated, costly and laborious process considering the complexity of
diseases. It involves the identification of potential targets and the development of therapeutically safe
and effective drugs [1–3]. The process can benefit from computer-aided drug design (CADD), where
various computational and statistical methods can be applied to effectively analyze biomedical entities
for target identification and hit hunting [4,5]. CADD can further utilize the combined biochemical
space to gain safety, efficacy and avoid toxicity for the completion of drug development. With the adop-
tion of in silico techniques in academia, industry and government [6,7], significant progress has been
made in drug design and discovery. Recently, with the growth of big data in biological, chemical and
pharmaceutical medicine, various machine learning algorithms have been optimized and applied in the
field of CADD. This integration offers significant improvement in the efficiency of drug design and dis-
covery process. Successful applications in drug design, discovery and development can be achieved only
when effective computational methods and tools are provided with accurate and reliable pre-processed
data [8,9]. Hereafter, big data and artificial intelligence (AI) approaches to data pre-processing [10],
modeling [11,12] and representative applications in drug design and discovery will be introduced.

Big data and AI methods in the drug discovery process
The limitations in the traditional drug discovery field caused by size and complexity of biomedical
data can be computationally formulated and solved with the advent of computing and analysis techni-
ques using big data and AI algorithms [13,14]. Big data and AI approaches covering pre-processing
data, applications of AI algorithms and statistical methods help to build automated models to analyze
protein three-dimensional structures, drug-receptor interactions, ADMET property prediction, etc.
[15] (Figure 1).
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Pre-processing and understanding data in CADD
The pre-processing steps are crucial for properly understanding and analyzing biochemical data and most
importantly providing reliable data in the development of predictive models. For biomedical big data analysis, a
data matrix with n samples and p biomedical features is considered. In the data matrix, p features can be any
biomedical entities such as molecular descriptors, fingerprints, genes, sequence positions, protein structures,
metabolites, etc. To statistically pre-process data, missing data imputation, outlier detection and redundant
feature elimination are used (Figure 1). Implementing methods for data pre-processing requires effective algo-
rithms for the accuracy of prediction and efficiency to run the program with optimized speed. The most rele-
vant R packages for data pre-processing are listed in Table 1.

Missing data imputation
AI models, which learn the patterns and structures of sparse drug discovery data, often include insufficient
information about the data. The size of experimental values in sparse drug discovery data may not be sufficient,
and if a model is trained on sparse data, the prediction of an outcome using this model may lead to inaccurate
or inconsistent prediction results. Filling missing values with an imputation model handling molecular descrip-
tors will improve AI models to analyze drug discovery data.
Since there are very few methods imputing missing values in drug discovery data analysis, a missing data

imputation model such as Alchemite [16], a novel application of neural network, can be utilized to replace

Figure 1. Data pre-processing and modeling.

Data pre-processing steps include missing data imputation, outlier detection, and redundant feature elimination. After the input

data are pre-processed, predictive modeling including unsupervised learning (clustering and dimensionality reduction) and

supervised learning (regression and classification) can be utilized.

Table 1 Software programs for data pre-processing

Application Method
Software
program Link

Missing data imputation Neural Networks (NN) Alchemite [23] https://intellegens.ai/products-services/alchemite-analytics/

Outlier detection Neural Networks (NN) Alchemite [23] https://intellegens.ai/products-services/alchemite-analytics/

Redundant feature
elimination

Random Forest (RF) RGIFE [22] http://ico2s.org/software/rgife.html
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missing values. In missing data imputation, the Alchemite method clearly outperforms random forest models,
which present uncertainties. Alchemite deep learning imputation improving the prediction model has been
proved to outperform collective matrix factorization, deep neural network or random forest when using sparse
experimental ADMET data. Alchemite can estimate uncertainties on outcome prediction detecting assay
activities [16].

Outlier detection
Data values in drug discovery datasets, such as the quantitative structure-activity relationship (QSAR) model, can
be grouped by similarity using standard statistical methods. Identifying outlier compounds based on the standard-
ization techniques can have a great impact on the QSAR model [17]. If data values that do not follow patterns in
the data (i.e., outliers) are included or significant data values are excluded as outliers, the constructed model
would lead to wrong predictions. For reliable prediction results, the molecular datasets, which are used to build
the prediction model should cover the chemical space, and a new compound outside the applicability domain of
molecule dataset should be detected [18,19]. Hence, outliers should be excluded before building the prediction
model. There are very few QSAR models setting a reliable approach using dataset that includes potential outliers.
Alchemite algorithm can also be used to detect potential outliers in the drug discovery data [16]. In this process,
features following patterns in the data can be clustered and outliers excluded from the clustering procedure will
be detected. Thus, Alchemite software program can conduct both missing data imputation and outlier detection
to impute missing values and detect extreme values not following the patterns in data.

Redundant feature elimination
When the prediction model selects multiple significant features in the dataset, selecting redundant features
such as highly correlated variables in statistical analysis and biological meaning can lead to a misinterpretation
of the model analysis. It is essential to exclude redundant features for the appropriate comprehension of pre-
dictive models [20]. For instance, redundant feature elimination based on the information of target proteins in
drug–protein interactions can avoid the class imbalance problem and remove the repeated features [21] to
determine the best filtered significant molecular features. RGIFE, a ranked guided iterative feature elimination
method [22], which iteratively removes the redundant features in the drug discovery data can be utilized. By
removing redundant features and selecting relatively small set of relevant features, RGIFE helps machine learn-
ing classifiers to obtain a similar or better performance. RGIFE utilizing RF (Random Forest) algorithm can
recursively select significant features by removing redundant features in the data. It is shown that over different
biomedical datasets, RGIFE produces similar or better results compared with other feature selection algorithms
such as correlation-based feature selection (CFS), Support Vector Machine Recursive Feature Elimination
(SVM-RFE), ReliefF, Chi-Square and L1-based feature selection. The features selected by RGIFE were proven to
produce relevant findings from a biological point of view [22].

AI-based modeling methods
In this section, AI methods for the construction of predictive models are introduced. In particular, we focus on
regression methods, which build the models for the prediction of continuous outcomes; classification methods,
which build the model for prediction of different classes; clustering methods, which group features based on
similarity or distance between two features; and dimensionality reduction methods, which extract low-
dimensional data consisting of significant features from high-dimensional data (Figure 1). Regression and clas-
sification belong to supervised learning, which estimates the outcome learning the structure of the input data.
Clustering and dimensionality reduction belong to unsupervised learning, which investigates the interaction of
features in the input data. Regarding regression and classification approaches, given input data and a target
outcome, each model can be trained to learn the data to predict an outcome involving testing and possibly val-
idation processes; training data is a portion of the input data used to build a model whereas testing data is a
portion of the input data used to test and validate the performance of the model. It should be noted that most
AI methods can be used for different categories of learning or analysis: As an example, neural networks can be
used for clustering, regression and classification, and k-nearest neighbors can be utilized for missing data
imputation to pre-process data and for classification of data values. It should be assumed that for each
AI-based modeling method, drug discovery data with n rows of samples and p columns of features are used. In
Tables 2 and 3, up-to-date software programs using AI-based modeling methods are listed including a brief
description and their application in CADD.
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Recent applications of big data & AI-driven technologies in
CADD
There are several drug design areas where AI technologies have been successfully implemented in CADD. In
this section, we focus on three relevant applications for the structure-based drug design processes: the identifi-
cation of binding sites in target proteins, structure-based virtual screening (SBVS) and prediction of pharmaco-
kinetic (ADME) and toxicity (T) properties. Furthermore, algorithms based on DT with molecular data can be
utilized to analyze the effect of FDA-approved drugs, such as drug-induced liver injury and methods including
NBC can be used to build frameworks to investigate exposures related to biologically, chemically or

Table 2 Supervised AI modeling applications in drug design

Category Name Summary

Regression Penalized Linear
Regression

Penalized Linear Regression estimates significant interactions between
features in an n-by-p data matrix and the continuous outcome [24]. It can be
used for efficiently handling the data when the number of features including
molecular descriptors, exceeds the number of compound samples [25].

Partial Least Squares
Regression (PLSR)

PLSR detects new significant features by combining the feature coordinates
and extracts the optimal set of latent features by linearly combining them
[26]. An extended version of PLS, a kernel-based PLS for pharmacophore
mapping of QSAR methods provides types and environment effects of
atoms [27].

Classification Penalized Logistic
Regression

Penalized Logistic Regression evaluates significant interactions between
features in an n-by-p data matrix and the categorical outcome [28]. It can be
used to efficiently identify the most influential descriptors to build a QSAR
classification model with both high prediction accuracy and easy
interpretability. [29].

Support Vector Machine
(SVM)

SVM builds a multidimensional hyperplane that separates data values in one
category from data values in other categories by computing the largest
possible distance between data values of different categories [30]. Biological
or chemical structures with the optimal descriptors can be appropriately
analyzed with SVM for QSAR predictions [31].

K-Nearest Neighbors
(kNN)

kNN defines a predicted category of an unknown sample based on the K
closest data values in a training set [32]. Fuzzy kNN classification method
was utilized to analyze drug compound data based on a 2D fingerprint via G
protein-coupled receptors [33].

Naïve Bayesian Classifier
(NBC)

NBC calculates the set of probabilities by counting the frequency of
categories for the feature to be predicted in the data [34]. One advantage
utilizing a NBC with structural fingerprints, such as ECFP6, is to find
important descriptor features frequently appearing in two classifying
outcomes for the design of inhibitors [35].

Decision Tree (DT) DT expands subtrees and leaves to obtain a node labeled with a predicted
outcome category [36]. Application of DT method can be used to prove that
the outcome, the inhibition of InhA by ETH, is significantly related to specific
residues determined by DT [37].

Random Forest (RF) RF, an ensemble of classification methods, efficiently analyzes
high-dimensional data, merging and obtaining outcomes over individual
decision trees [38]. RF method has been applied to meaningfully connect
several drugs over cell lines using genomic information, drug targets and
pharmacological information [39].

Neural Networks (NN) NN algorithm sets input features in an input layer, implements weighted
transformations over hidden layers, and evaluates the outcome on an output
layer [40]. Protein data are often treated as a grid of voxels. Grid-based
approaches allows to project grid voxels into multi-channel protein
descriptors, as for instance geometry and energy-based strategies [41].
Thus, each protein voxel contains the information of all descriptors. Protein
multichannel grids have been successfully processed in 3D convolutional
network (3D-CNN) models for the identification of protein binding sites and
the prediction of good protein binders (see Section 3).
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pharmaceutically diverse compound datasets [52]. AI-based software programs and tools used for these three
applications are listed in Table 4. Each application includes different AI modeling methods.

Identification of binding sites in target proteins
Protein binding sites are structural elements whereupon drug-like molecules bind and trigger a therapeutic
response. The large-scale identification of such binding sites still remains challenging [53,54]. This is in part
attributed to the dynamic nature of proteins, which sample a wide range of conformations in solution and
often only a fraction of them harbor binding sites. The increasing number of available conformations together
with the complexity of protein conformational landscapes make protein data analysis more challenging [55,56].
To search for those pharmaceutically rich protein conformations, several tools have been developed using clas-
sical approaches including Fpocket [57], SiteHound [58] and MetaPocket [59]. These tools can predict binding
sites considering geometric and potential energy factors of protein surfaces. Different AI methods such as over-
sampling and binary classification (ENRI) [56], random forest (P2Rank) [53] and most recently deep learning
approaches (DeepSite) [41,60] have emerged as potential strategies to enhance the binding pocket identification
performance.
In this new scenario, Kozlovskii and Popov [54] developed BiteNet (Binding site neural Network), a rapid

and accurate deep learning approach. After a curation procedure, 5,946 protein–ligand complexes containing
11,949 binding sites from Protein data bank [61] were used as training data set for the construction of a neural
network model. Protein–ligand complexes structures offer a wide coverage of protein binding pockets, which
usually are not detectable in ligand-free structures [62]. In the BiteNet fashion, protein ensembles are treated as
3D videos, protein structures as 3D images and binding sites as objects. This is performed by processing the
data in a 3D-CNN as protein multi-channel grids of voxels in which the channels only consider atomic dens-
ities. It proves that in absence of geometry and energy descriptors (i.e., by essentially treating proteins as 3D

Table 3 Unsupervised AI modeling applications in drug design

Category Name Summary

Clustering K-Means Clustering K-means Clustering defines K clusters representing categories where
the input data values are partitioned into [42]. In drug discovery studies,
K-means clustering can generate proper molecular descriptors for each
sample, compute the similarity between compound samples, and group
compound features based on computed similarity [43].

Hierarchical Clustering
(HC)

In HC, the partitions of data values can be assigned with increasing
cluster hierarchy. The partitioning process is finalized when a single
cluster containing all n data values is formed or n clusters are assigned
to n different data values each [44,45]. One of the most useful graphical
representation of hierarchical cluster of compounds is a dendrogram, a
tree diagram representing the distance between molecular features [43].

Dimensionality
Reduction

Principal Component
Analysis (PCA)

PCA transforms the original features into principal components, which
are uncorrelated to each other but contain information from the original
data [46,47]. PCA can be employed to build QSAR models with
molecular descriptors, which explains how compound samples cause
an impact on the biological, chemical, or pharmaceutical target. PCA
model predicts biological activity when additional molecular descriptors
are taken into the analysis of the same biological target, such as a
protein affected by different receptors [48].

Linear Discriminant
Analysis (LDA)

LDA builds a prediction model, which classifies patterns in the data
[49]. LDA detects features that better separate the categories of data by
projecting the original data points on to these features. If two or more
categories are estimated for given data points, LDA better separates
them by applying the transformation mechanism [50]. An extended
version of LDA, multi-label linear discriminant analysis, conducts feature
dimension reduction of drug data features before constructing and
predicting models. This dimensionality reduction step enhances the
accuracy of the prediction models and decreases the computing time of
training in the prediction model to analyze drug discovery data [51].
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images), binding sites can be successfully predicted. In fact, BiteNet significantly outperforms classical binding
site prediction methods and state-of-the-art AI methods in terms of predictive power and computational effi-
ciency. The thoughtful curation of the training set and preparation of the training process were found to be the
key for the outperformance of BiteNet [54]. Thus, deep learning-based tools can be successfully applied to
identify druggable conformations along molecular dynamics (MD) trajectories as input (Figure 2). The detected
druggable conformations are advantageous to the following structure-based drug design procedures.
In practice, there are some aspects that need special attention for users when using a deep learning software

for binding site prediction. First, it is inevitable that such training sets contain false negatives because protein–
ligand complexes may also encompass empty binding sites, as a consequence, the prediction of some binding
sites and especially novel allosteric sites could be omitted. Thus, the combination of classical and deep learning
approaches could be beneficial by yielding complementary outcomes. Second, it is advisable to consider the
applicability domain derived from the training data set. It has been shown that the performance of different

Table 4 Software and tools for AI modeling applications in structure-based drug design

Application Method Software program Link

Identification of binding sites
in target proteins

NBC ENRI [56] Source code: https://github.com/
fibonaccirabbits/enri

DT
RF

P2Rank [53] Source code: http://github.com/
rdk/p2rank

NN DeepSite [60] Web server: www.playmolecule.
org/deepsite/

NN BiteNet [54] Data set: https://doi.org/10.5281/
zenodo.4043664
Source code: https://github.com/
i-Molecule/bitenet
Web server: https://sites.skoltech.
ru/imolecule/tools/bitenet/

K-Means Clustering
HC
PCA

iFeature [79] Web server: https://ifeature.erc.
monash.edu/

LDA SpotOn [80] Web server: https://alcazar.
science.uu.nl/cgi/services/
SPOTON/spoton/

Structure-based Virtual
Screening (SBVS)

NN DeepBSP [68] Source code: https://github.com/
BaoJingxiao/DeepBSP

Penalized linear
regression/Penalized
logistic regression

SAnDReS [81] Source code: https://github.com/
azevedolab/sandres

RF RF-Score-v3 [82] Software: http://istar.cse.cuhk.
edu.hk/rf-score-3.tgz
http://crcm.marseille.inserm.fr/
fileadmin/rf-score-3.tgz

Prediction of
Pharmacokinetics (ADME)
and Toxicity (T)

SVM
NBC

SwissADME [73] Web server: http://www.
swissadme.ch/

RF
SVM
kNN

admetSAR2.0 [83] Web server: http://lmmd.ecust.
edu.cn/admetsar2/

kNN vNN-ADMET [76] Web server: https://vnnadmet.
bhsai.org/vnnadmet/

RF
NN

AMPL [77] Source code: https://github.com/
ATOMconsortium/AMPL

RF
SVM
PLSR
NBC
DT

ADMETlab [84] Web server: https://admet.scbdd.
com/home/index/
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Figure 2. Overview of the applications workflow and their interconnection.

On the left, the training data set sources and curation process are shown. The data type and the relevant information for the

training process of each application are described in the horizontal arrows. On the right, the different neural network models

built using the training data are represented. Application i uses protein ensembles as input and provides druggable

conformations encompassing binding sites as output. Application ii is fed with the docked complexes between the druggable

conformations and drug candidates as input, yielding hit compounds as output. Application iii takes the hit compounds as

input to finally obtain the lead compounds.
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methods depend on the protein family under study. Third, training sets overlook protein flexibility since they
are usually constructed from X-ray rigid structures. This can be addressed with data augmentation techniques
by computationally generating ensembles of protein–ligand conformations [63].

Structure-based virtual screening (SBVS)
Once druggable protein conformations are identified, one may proceed to obtain good binders from a chemical
space of drug candidates that can cause the desired therapeutic effects. Those potent binders are referred to as hit
compounds. Molecular interactions between drug candidates and protein binding sites can be virtually simulated
using docking techniques. Specifically, in SBVS, a vast number of ligands from chemical libraries are ranked
according to their binding affinity, which is predicted by a regression model, known as scoring function (SF) [64].
Recently, a new generation of SFs has been developed, which apply AI to utilize the ever-growing biological

and structural data [65]. AI-based SFs continue to show their outperformance over classical SFs, with their
ability to learn from low-level features in protein–ligand complexes [66]. In addition, unlike traditional SFs, the
flexible nature of AI-based SFs allows customization of training datasets to focus on protein families of interest
[67], including additional information to improve predictive performance [66] or diversify outcomes. For
instance, instead of binding affinity, AI-based SFs developed in the DeepBSP tool [68] can directly predict the
root mean square deviation (RMSD) between the docked and the native binding poses. In DeepBSP, a thor-
oughly curated dataset of 11,925 native protein–ligand complexes from PBDbind database [69] and more than
165,000 docked poses were represented using 3D voxel grids. These volumetric data, together with respective
RMSD values calculated using DockRMSD program were used to train the model with a 3D-CNN structure
(Figure 2). This model does not generate ligand–protein poses but re-rank ensembles of docked poses used as
inputs by predicting their hypothetical RMSD values. The AI-based SF shows significantly improved docking
power compared with that produced by the native SF of the baseline docking program (Autodock Vina) [68].
This model can support one in selecting good binders with correct binding structures from a pool of generated
docking poses to eventually identify hit compounds.
However, there is current controversy over the applications of AI-based SFs in SBVS due to the lack of eligible

validation experiments [66,70]. In retrospective validation on frequently used benchmark datasets, AI-based SFs
stably showed good performance both when trained with protein–ligand complex information and when trained
with ligand information alone [66,70]. These results indicate that the protein structural information does not sig-
nificantly affect the prediction tasks. Bias-controlled validation considering the lack of interpretability of AI-based
algorithms in general is required in order to ensure the reliability of the methods in the field [70].

Prediction of pharmacokinetic properties and toxicity
The prediction of absorption, distribution, metabolism, and excretion (ADME) properties and toxicity (T)
helps the selection of good drug candidates [71,72] and fosters drug-likeness in the process of drug develop-
ment. Recent studies have employed a wide range of AI-based methods to predict ADMET properties to reduce
a preclinical failure in the drug discovery industry (Figure 2). The SwissADME web tool provides the prediction
of physicochemical properties, descriptors, and drug-likeness with the ADMET properties, which are built by
SVM or Bayesian methods [73]. AdmetSAR web server with 27 predictive models [74] and admetSAR2.0 with
47 predictive models were developed. The collected dataset was represented as molecular fingerprints and con-
structed using RF, SVM, and kNN models. In another study, variable nearest neighbor (vNN) method was
developed as a complement to the kNN method [75]. Fifteen prediction models were constructed using vNN
and implemented in the vNN-ADMET web server [76]. ATOM Modeling PipeLine, an open-source software
pipeline was built to construct prediction models [77]. It covers data curation, model training and tuning, visu-
alization and analysis. Regarding data curation, RDKit and MolVS packages were provided, and DeepChem,
Mordred, and Molecular Operating Environment were included in the module. Diverse datasets can be used
and supported by RF, XGBoost, NN, GCNN methods to construct new models.
As prediction model quality depends on input data, large high-quality data are required to obtain accurate

prediction results. With numerous efforts to build comprehensive databases and benchmarks [78] together with
algorithmic development, a better prediction of ADMET properties will be obtained in the field of drug discov-
ery using AI-based modeling.
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Perspectives
• With the utilization of big data and AI methods, CADD enables a better understanding of

health and disease. Effective and efficient approaches for the analysis of biomedical big data
help to identify significant targets or define features strongly related to specific health
outcomes.

• Recent development and applications of big data and AI techniques to build computational
and statistical models to solve various problems in drug discovery requires high-quality data
as essential parts of research. We have discussed different sections of big data pre-
processing, AI modeling methods and AI-based applications in drug design, including the
identification of binding sites in target proteins, SBVS and ADMET property prediction.

• Despite the present success, there is still a big room for improvement in terms of method
accuracy. Furthermore, the increase in high-dimensional data arising from structural and
dynamic elements of sophisticated biochemical entities, will push the drug design field to the
innovation of big data and AI tools based on theories and methodologies in statistics.
Combined approaches of different data pre-processing and AI methods that learn core pat-
terns from the structures of biomedical big data could significantly improve the predictive
models for the drug design, discovery and development.
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