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Introduction

Glioblastoma multiform is the most common brain tumor 
in humans with very aggressive progression [1]. Despite 
the fact that glioblastoma is a rare tumor (<10 per 100,000 
people in the world), its poor prognosis with survival 
rate of 14–15 months after diagnosis makes it a global 
medical problem [2]. Tumor progression in the case of 
glioblastoma is very fast and poorly controlled with tra-
ditional chemotherapy. The dismal prognosis is a direct 
result of the fact that standard therapies fail to eradicate 
residual or infiltrating cells that reside adjacent to and 
infiltrate normal brain tissue [3]. The complexity of 

glioblastoma development and sensitivity to common 
therapeutic protocols is caused by several factors, includ-
ing heterogeneity of glial cells within the tumor and 
appearance of different subclones, high level of vasculari-
zation due to excessive neoagiogenesis, impaired integrity 
of the blood–brain barrier, variability in the intracerebral 
location, multiple routes for cell migration, existence of 
tumor- controlled microenvironment with glioblastoma- 
associated stem cells, or perivascular cells affecting tumor 
growth in a complex and poorly predicted manner  
[4, 5]. Although several therapies are currently in use, 
including small- molecule kinase inhibitors, antivascular 
endothelial growth factor monoclonal antibodies, immune 
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Abstract

Glioblastoma multiforme is the most common and aggressive primary brain 
tumor, with an extremely poor prognosis. The lack of detailed knowledge about 
the cellular and molecular mechanisms involved in glioblastoma development 
restricts the design of efficient therapies. A recent study using state- of- art tech-
nologies explores the role of pericytes in the glioblastoma microenvironment. 
Glioblastoma- activated pericytes develop an immunosuppressive phenotype, 
 reducing T- cell activation through the induction of an anti- inflammatory 
 response. Strikingly, pericytes support glioblastoma growth in vitro and in vivo. 
Here, we describe succinctly the results and implications of the findings reported 
in pericytes’ and glioblastomas’ biology. The emerging knowledge from this 
study will be essential for the treatment of brain tumors.
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checkpoint inhibitors, epigenetic modulators, and transfer 
of lethal genes into tumor cells, glioblastoma treatment 
is still the most challenging task in clinical oncology  
[2, 6]. Establishment of the tumor microenvironment is 
a key mechanism of acquiring self- controlled and autono-
mous growth in the tumors. The lack of a detailed knowl-
edge about the cellular and molecular mechanisms 
mediating glioblastoma progression restricts the design of 
effective antitumoral treatments. Cerebral microvessels have 
higher pericytes/endothelial cells ratio (10–30- fold) than 
other tissues [7], therefore, contribution of blood vessels, 
specifically pericytes, to the establishment of glioblastoma 
microenvironment has attracted interest in the recent years.

Pericytes were defined, more than a century ago, as a 
population of contractile cells with long projections encir-
cling the blood vessel walls [8–10]. The limited capacity 
of microscopy, before the 21st century, resulted in the 
notion of the pericyte acting merely as a vascular sup-
porting cell [11]. Recently, several modern technologies, 
such as confocal microscopy and transgenic mice models, 
led to rapidly expanding insights into the varying func-
tions, sometimes unexpected, of pericytes in physiology 
and pathology. Pericytes interact with astrocytes to regulate 
the maintenance of the blood–brain barrier [12–14]. They 
also participate in vascular development, maturation, and 
remodeling, as well as contributing to its normal archi-
tecture and permeability [15–19]. Pericytes regulate the 
blood flow [20], and recent studies showed that pericytes 
can function as stem cells, generating several other cell 
types, including neural cells [3, 21–31].

Pericytes Affect Glioblastoma 
Immune Microenvironment

Interestingly, immune regulation also depends of pericytes. 
The reader is referred to excellent reviews that discuss 

these pericytes roles in detail [32, 33]. In brief, pericytes 
play immune functions by regulating lymphocytes activa-
tion [34–37], by attracting innate leukocytes that exit 
through the sprouting vessels [38], by contributing to 
the clearance of toxic cellular byproducts, as pericytes 
possess phagocytic activity [39], and by affecting blood 
coagulation [40–47]. Nonetheless, little is known about 
the pericytes’ roles in the brain tumor microenvironment. 
Now, in a recent article in Oncotarget, Valdor and col-
leagues show that the conditioning by brain tumor cells 
induces immunosuppression by pericytes [48]. The authors 
discovered that, after activation by glioblastoma tumor 
cells, pericytes secrete high levels of anti- inflammatory 
cytokines, such as IL- 10 and TGFβ, while they do not 
produce proinflammatory cytokines, such as IL- 1, IL- 23, 
and IL12, which could be produced in other conditions 
by brain pericytes [49]. This immunomodulatory phe-
notype in brain pericytes requires glioblastoma tumor 
cell–pericyte interaction [48]. The glioblastoma- activated 
pericytes downregulate the expression of costimulatory 
surface membrane molecules, such as CD80, CD86, and 
the major histocompatibility complex class II. Additionally, 
Valdor and colleagues revealed that in response to the 
interaction with glioblastoma cancer cells, T- cell activa-
tion by pericytes is impaired [48]. Normal brain pericytes 
activated proliferation and IL- 2 production by T cells. 
In contrast, in the presence of glioblastoma- activated 
pericytes, T cells showed defective proliferation and IL- 2 
production.

Strikingly, pericytes promoted glioblastoma growth in 
vitro and in vivo. This work provides a novel possible 
central cellular population to be pharmacologically targeted 
in patients with brain tumors. Here, we discuss the find-
ings from this study and evaluate recent advances in our 
understanding of the roles of pericytes in the glioblastoma 
microenvironment (Fig. 1).

Figure 1. Influence of pericytes in the glioblastoma microenvironment. Pericytes are associated to cerebral blood vessels. The study of Valdor and 
colleagues now reveals a novel very important function of pericytes during glioblastoma development [48]. Glioblastoma- activated pericytes increase 
the expression of anti- inflammatory molecules, such as IL- 10, TGFβ, and MHC- II, favoring immunosuppression and tumor growth. With the appearance 
of state- of- art modern techniques technologies [38], future studies will reveal in detail all cellular components and their interaction with tumor cells 
in the glioblastoma microenvironment.
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Perspectives/future Directions

The conclusions from this study claiming the immuno-
suppressive role of pericytes in the glioblastoma micro-
environment are based on observations made in animals 
that received transplants of pericytes previously propagated 
in culture, or on experiments performed utilizing pericytes 
grown in vitro. Note that artificial conditions and high 
concentration of mitogens that characterize cell culture 
systems may induce some characteristics in pericytes that 
may not be shared by the corresponding endogenous brain 
pericytes in vivo under pathophysiological conditions 
[24,50]. Transgenic mouse models constitute currently the 
most reliable strategy to study the behavior of any given 
cell population in vivo [51]. These mice have been widely 
applied to study cell types within diverse tissues micro-
environments. The ability to delete single genes in specific 
cell types in adult mice has allowed us to answer specific 
questions regarding the roles of different cell populations 
in the regulation of several physiologic and pathologic 
processes [52–57]. In the brain tumor microenvironment, 
the exact identities of all cells that play important roles 
in the pathogenesis of this condition remain uncertain 
[58, 59]. Valdor et al. (2017) now proposed that pericytes 
develop an immunosuppressive phenotype in response to 
interaction with glioblastoma cells [48]. Nevertheless, 
important anti- inflammatory cytokines have not been 
conditionally deleted from brain pericytes, so there is no 
direct evidence that pericytes are the only/main function-
ally important source of those cytokines to produce the 
immunosuppression during glioblastoma progression. This 
issue may be addressed, owing to technological break-
throughs, by analyzing the effect of genetic ablation of 
specific cytokines such as IL- 10 and TGFβ in brain peri-
cytes on the glioblastoma development. Moreover, the 
generation of IL10-  or TGFβ- floxed mice to be crossed 
with pericyte- specific inducible CreER driver, such as 
NG2- CreERT2 [59], will allow us to specifically delete 
these cytokines in pericytes. In addition to studies in 
genetically modified mouse models, transcriptomic and 
single cell analysis represents fundamental tools that will 
help us understand the roles of pericytes within the brain 
tumor microenvironment.

Valdor and colleagues used a xenografted mouse model 
of glioblastoma, in which immunocompetent mice received 
human glioblastoma cancer cells [48]. Human glioblastoma 
cells cause some level of immune reaction in immuno-
competent mice, simply because these cells derive from 
another specie. Having the immune rejection of the host 
as a limiting factor, the use of other mouse models for 
glioblastoma that do not require transplantation may allow 
to study endogenous pericytes at different stages of glio-
blastoma development. A spontaneous mouse model of 

glioblastoma has been engineered, Nf1/Trp53 mutant mice 
develop endogenous glioblastoma [60] and could be used 
in future studies of pericytes biology during brain tumor 
progression.

Pericytes Heterogeneity

Valdor and colleagues examine pericytes as a homogene-
ous cell population in their work. Nevertheless, pericytes 
have been shown to be heterogeneous regarding their 
phenotype, distribution, origin, marker expression, and 
function [62]. Pericytes associated with different blood 
vessel types differ in their morphology, markers, and func-
tion [60, 63–69]. At least two pericyte subpopulations 
have been described in the brain. Type- 1 and type- 2 
pericytes were distinguished based on the presence or 
absence of Nestin- GFP expression [70]. Another group 
identified two brain pericyte subsets based on their het-
erogeneous expression of desmin, α smooth muscle actin, 
and glutamate aspartate transporter (Glast) [71]. Also, 
ATP sensitive potassium channel Kir6.1 only labels a subset 
of pericytes in the brain [72]. Interestingly, only type- 2 
pericytes participate in tumoral angiogenesis [29]. Thus, 
whether only a fraction of pericytes promote immunosup-
pression during glioblastoma growth still needs to be 
explored. It would be interesting to evaluate whether 
distinct pericytes’ subsets behave differently after exposure 
to glioblastoma tumor cells. Furthermore, the precise 
identity of glioblastoma cancer cells is poorly defined. It 
seems that these tumors comprise of heterogeneous malig-
nant cells with subclones and glioblastoma stem cells. 
Whether these malignant cell populations interact differ-
ently with pericytes should be explored in future 
studies.

A central nervous system pericyte subpopulation have 
been recently shown to take part in the formation of the 
scar tissue after brain lesion, which is a major obstacle 
to neuronal regeneration in patients with this condition 
[70, 73]. The lesion induces an increase in the number 
of a pericyte subtype, while the number of the other 
pericyte subtype did not change [70]. Interestingly, some 
brain pericytes dissociate from endothelial cells, losing 
contact with the blood vessels after the lesion. It will be 
interesting to understand whether the pericytes that par-
ticipate in scar formation are the same or differ from 
the ones that promote immunosuppression in the glio-
blastoma microenvironment. Also, do the glioblastoma- 
activated pericytes detach from the blood vessels and suffer 
a phenotypic switch? From a drug development perspective, 
pericytes provide a central cellular target with a stereotyped 
molecular repertoire and responses to signals. Nevertheless, 
as pericytes have important physiologic functions, what 
will turn out to be more challenging will be to limit 
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deleterious pericyte functions while preserving the healthy 
ones. Additionally, it will be important to study whether 
pericytes’- induced immunosuppression is important in 
other cancers.

Other Perivascular Cells

The method of pericyte isolation used by Valdor et al. 
(2017) could result in the presence of other perivascular 
cells in these cultures. To avoid this, isolation by sorting 
based on several molecular membrane markers would be 
preferred. Although pericytes are defined by their ana-
tomical perivascular position, not all perivascular cells are 
pericytes. Several cells that share molecular markers with 
pericytes have been described as perivascular: that is mac-
rophages [74, 75], adventitial cells [76], smooth muscle 
cells [60], and fibroblasts [77]. Even well- established peri-
cytic markers, PDGFRβ and NG2, can be expressed in 
other cell types in certain pathophysiological settings. For 
instance, PDGFRβ is a known marker of fibroblasts in 
the central nervous system [77, 78]. NG2 proteoglycan 
can be expressed in macrophages [79], and pericytes not 
expressing NG2 were also described [38]. Although none 
of brain pericyte markers are specific, when used in com-
bination they distinguish pericytes from other cell types. 
Also, the combination of immunolabeling of the vascular 
basal lamina with pericyte molecular markers will confirm 
the exact nature of those cells. Recently, new molecular 
markers were described for pericytes, such as Tbx18 [24], 
Gli1 [80], and others. Future studies should clarify whether 
the perivascular population of cells activated by glioblas-
toma cells to produce immunosuppression in the brain 
in vivo are pericytes. Additionally, it will be interesting 
to explore the role of different perivascular cell popula-
tions in immunosuppression as well as tumor growth in 
the glioblastoma microenvironment.

Pericytes’ capacity to form several cell types is well 
known; the general consensus holds that pericytes behave 
as stem cells under certain conditions [3, 24–27, 80, 81]. 
A recent study showed that pericytes expressing NG2 
proteoglycan are the cell of origin for mesenchymal tumors, 
such as bone and soft tissue sarcomas [82]. It will be 
interesting to explore whether the same may happen in 
the glioblastoma. Recently, it has been shown by lineage 
tracing technologies that, in the central nervous system, 
glioblastoma stem cells form pericytes that support blood 
vessel function and tumor progression [83, 84]. Future 
works should explore whether some of the glioblastoma 
malignant cancer cells derive from pericytes. Another 
interesting question that derives from this study is whether 
or not pericyte- induced immunosuppression in the glio-
blastoma microenvironment is reversible upon removal 
of the tumor cells. Pericyte- intrinsic changes may be 

reversible or not but are continuous reinforcing signals 
from the glioblastoma cells needed for pericytes’ produc-
tion of anti- inflammatory cytokines? Thus, analyses of 
pericytes, after long time of exposure to glioblastoma 
cancer cells, should be performed in future experimental 
settings.

Signals Produced by Brain Pericytes

In addition to functioning as stem cells, pericytes can also 
regulate the behavior of other stem cells, being an impor-
tant component of stem cell niches in several organs [60, 
85]. During embryonic development, perivascular niches 
for hematopoietic stem cells have been also described the 
spleen [86], placenta [87], and fetal liver [85]. In the adult 
bone marrow, it was recently demonstrated that CXCL12 
derived from pericytes is essential for hematopoietic stem 
cell maintenance in this organ [60]. Also, in the brain, 
perivascular niches are important to regulate neural stem 
cells [88]. These studies suggest that perivascular cells 
provide an adaptive niches for stem cells at physiologic 
conditions. One interesting question is whether pericytes 
also are important cellular components of the niche for 
glioblastoma stem cells. The study by Valdor et al. (2017) 
demonstrates that glioblastoma- activated pericytes release 
IL- 10 and TGFβ [48]. Nevertheless, it still remains poorly 
explored whether other factors produced by brain pericytes 
are important for the support of glioblastoma growth. 
Pericytes release a plethora of molecules, including growth 
factors and cytokines [89–98]. Which molecules produced 
by brain pericytes are important during glioblastoma devel-
opment remains to be elucidated. In addition to tran-
scriptomic and single cell analysis, genetic mouse models 
will help to address this. For instance, using pericyte- specific 
inducible CreER drivers crossed to cytokines- floxed mice, 
specific cytokines could be deleted genetically at different 
time points specifically from pericytes in the brain, and 
glioblastoma progression could be analyzed. Thus, future 
studies should reveal whether there are common cellular 
and molecular mechanisms to form normal and glioblas-
toma stem cell niches in the brain.

Conclusion

The study by Valdor and colleagues reveals a novel impor-
tant role of pericytes in the glioblastoma microenviron-
ment. Nevertheless, our understanding of pericytes biology 
in the brain still remains limited, and the complexity and 
interactions of different cellular components of the brain 
microenvironment during glioblastoma progression should 
be elucidated in future studies. An enormous challenge 
for the future will be to translate the research from experi-
mental models into humans. Whether tumor cells during 
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human cancer development promote the same immuno-
suppressive phenotype in human pericytes in the brain 
remains to be determined. Improving the availability of 
human glioblastoma samples will be essential to reach 
this objective.
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