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Abstract

Lamins are crucial proteins for nuclear functionality. Here, we
provide new evidence showing that increased lamin B1 levels
contribute to the pathophysiology of Huntington’s disease (HD), a
CAG repeat-associated neurodegenerative disorder. Through fluo-
rescence-activated nuclear suspension imaging, we show that
nucleus from striatal medium-sized spiny and CA1 hippocampal
neurons display increased lamin B1 levels, in correlation with altered
nuclear morphology and nucleocytoplasmic transport disruption.
Moreover, ChIP-sequencing analysis shows an alteration of lamin-
associated chromatin domains in hippocampal nuclei, accompanied
by changes in chromatin accessibility and transcriptional dysregula-
tion. Supporting lamin B1 alterations as a causal role in mutant
huntingtin-mediated neurodegeneration, pharmacological normal-
ization of lamin B1 levels in the hippocampus of the R6/1 mouse
model of HD by betulinic acid administration restored nuclear home-
ostasis and prevented motor and cognitive dysfunction. Collectively,
our work points increased lamin B1 levels as a new pathogenic
mechanism in HD and provides a novel target for its intervention.
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Introduction

Lamins are type V intermediate filaments that together with lamin-

binding proteins are embedded into the inner nuclear membrane

and constitute the nuclear lamina (de Leeuw et al, 2018). This

family of proteins is classified into two subgroups: A-type lamins

(lamins A and C), encoded by the LMNA gene, and B-type lamins

(lamins B1 and B2), encoded by LMNB1 and LMNB2 genes, respec-

tively (de Leeuw et al, 2018). It was long thought that their only

function was to provide a structural support to the nuclear

envelope membrane, but evidence indicates that they are involved

in a wide variety of cell functions and processes, including DNA

replication, transcription, chromatin organization, and nucleus–-
cytoplasm interaction (Hozak et al, 1995). While lamins A and C

are expressed exclusively in differentiated cells, lamin B is present

in almost all cell types independently of their differentiation state

(Verstraeten et al, 2007). This suggests that B-type lamins are

essential for the survival of mammalian cells (Harborth et al,

2001).

Alterations in lamins content or structure lead to a particular type

of nuclear envelopathies called laminopathies (Schreiber &

Kennedy, 2013). While many laminopathies are associated with

mutations in LMNA gene (Schreiber & Kennedy, 2013), only two

have been associated with alterations in lamin B: the autosomal
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dominant leukodystrophy (Padiath, 2019) and the acquired partial

lipodystrophy (Hegele et al, 2006) caused by LMNB1 and LMNB2

mutations, respectively. Interestingly, in the last few years, lamin B

alterations have also been found in neurodegenerative disorders

such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) (Liu

et al, 2012; Frost, 2016). Strikingly, two cellular functions in which

lamin B plays a critical role, RNA nuclear exportation (Gasset-Rosa

et al, 2017) and nuclear pore complex organization (Grima et al,

2017), are altered in Huntington’s disease (HD), an autosomal domi-

nant neurodegenerative disorder caused by an inherited CAG repeat

expansion in the exon 1 of the huntingtin (htt) gene (HDCRG,

1993). This mutation results in the lengthening of the polyglutamine

chain at the amino terminus of the huntingtin (Htt) protein inducing

self-association and aggregation. Consequently, mutant Htt (mHtt)

loses its biological functions and becomes toxic (Ross & Poirier,

2004). In HD, medium-sized spiny neurons (MSNs), the GABAergic

output projection neurons that account for the vast majority

(90–95%) of all striatal neurons, are mainly affected. Although

motor symptoms are the most prominent, psychiatric alterations

and cognitive decline appear first in HD patients and become more

evident as the disease progresses. Cognitive deficits are related to

the dysfunction of the corticostriatal pathway and the hippocampus

and, together with motor deficits, have been replicated in most HD

mouse models (Puigdellı́vol et al, 2016).

Molecular mechanisms leading to neuronal dysfunction in HD

remain to be elucidated. Previous results from our laboratory

suggested that decreased levels of the pro-apoptotic kinase PKCδ
would lead to an aberrant accumulation of lamin B (Ru�e et al, 2014)

which, in turn, could have a significant influence in the nuclear

lamina structure and function (Lin & Fu, 2009; Ferrera et al, 2014).

Therefore, here we sought to deeply characterize the impact of

lamin alterations in HD brain at physiological (studying nuclear

lamina morphology and nucleocytoplasmic transport), transcrip-

tomic (by generating RNA-sequencing (RNA-seq) data), and epige-

netic (analyzing lamin chromatin binding and chromatin

accessibility) levels by using the R6/1 transgenic mouse model of

HD and human post-mortem brain samples.

Results

Lamin B levels are increased in a region-specific manner in
HD brain

Lamin B1, lamin B2, and lamin A/C protein levels were analyzed in

the striatum, cortex, and hippocampus of wild-type and R6/1 mice,

a transgenic mouse model of HD overexpressing the exon 1 of the

human mHtt (Mangiarini et al, 1996), at different ages. Western blot

analysis revealed an increase in lamin B1 (Fig 1A) and lamin B2

(Fig 1B) levels in all three regions from early disease stages in R6/1
mice, whereas lamin A/C protein levels remained unchanged until

30 weeks of age in the striatum and hippocampus (Fig EV1). Since

the most important alterations were found in lamin B isoforms, we

investigated whether such an increase was reproducible in the brain

of HD patients. Western blot analysis revealed that lamin B1 levels

were significantly higher, in comparison with levels in non-affected

individuals, in the putamen of HD patients at Vonsattel (VS) grade

III–grade IV, and in the frontal cortex of HD patients at grade

I–grade II and grade III–grade IV (Fig EV2A). Unexpectedly, no

significant changes were found within the hippocampus of HD

patients at any disease stage. On the other hand, lamin B2 protein

levels were only increased in the frontal cortex of HD patients (Fig

EV2B). Consequently, only lamin B1 levels are consistently affected

in the brain of R6/1 mice and HD patients.

Previous studies have shown lamin alterations in the nucleus of

aged human fibroblasts (Freund et al, 2012) and keratinocytes

(Dreesen et al, 2013). In order to discard that our observations were

due merely to the aging process itself, we analyzed the correlation

between lamin B1 levels and age in human samples from the puta-

men, cortex, and hippocampus. We observed no correlation between

age and lamin B1 levels in any of the brain regions analyzed

(Appendix Fig S1A–C). In addition, the distribution of ages showed

that control and HD samples were age-matched (Appendix Fig S1D).

Thus, our results indicate that alterations in lamin B1 levels are

occurring because of the HD pathology itself. In contrast to other

studies showing that some altered mechanisms, such as transcrip-

tomic dysregulation, are dependent on the CAG repeat length (Lang-

felder et al, 2016), we did not observe a correlation between the

number of CAG repeats and lamin B1 protein levels in the putamen,

hippocampus, and cortex of HD patients (Appendix Fig S2). Thus,

lamin B1 alteration is dependent on the pathological stage rather than

on the original number of inherited CAGs.

In an attempt to investigate the molecular mechanisms leading

to the increase in lamin B1 levels, and considering our previous

results showing a possible link between decreased PKCδ and

increased lamin B levels in HD brain (Ru�e et al, 2014), we

knocked down PKCδ in striatal cells expressing mHtt. Once the

efficiency of PKCδ siRNA was analyzed by Western blot (Fig

EV3A), wild-type striatal cells (STHdhQ7/Q7) were co-transfected

with exon 1 encoded N-terminal Htt with 94 glutamines fused to

cyan-fluorescent protein (CFP) (N-mHtt-CFP) and a PKCδ siRNA

or a scramble siRNA as a control. Lamin B1 levels were analyzed

by immunocytochemistry 24 h after transfection. We observed that

lamin B1 levels were increased in the nucleus of striatal cells

transfected with N-mHtt-CFP in the PKCδ siRNA condition as

compared to those cells transfected with N-mHtt-CFP plus scram-

ble siRNA (Fig EV3B and C). Moreover, we analyzed PKCδ levels

in striatal and hippocampal samples from the same R6/1 mice used

to analyze lamin B1 levels, and we observed a significant correla-

tion between the reduction in PKCδ and the increase in lamin B1

levels in the striatum, but not in the hippocampus (Fig EV3D).

Therefore, our results suggest that decreased PKCδ levels could be

involved in the accumulation of lamin B1 in R6/1 mouse striatum,

but not in the hippocampus.

Lamin B1-increased levels are mainly localized in neurons

To address the cell type specificity of the lamin B1 increase, we

performed NeuN and lamin B1 co-immunostaining (with or without

GFAP), in brain sections obtained from 30-week-old R6/1 mice and

from HD patients at different stages of the disease, and their corre-

sponding controls. Observation of confocal z-stacks images from the

striatum of R6/1 mice showed a strong increase in lamin B1 signal,

which was more prominent in NeuN-positive nuclei (Fig 2A). These

nuclei showed nuclear lamina invaginations and lamin B1 delocal-

ization within the nucleoplasm, resulting in altered morphological
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parameters as compared to wild-type mice nuclei (Fig EV4).

Furthermore, and similarly to what we observed for GFAP-positive

cells, nucleus from striatal oligodendrocytes did not show alter-

ations in lamin B1 levels nor in morphology (Appendix Fig S3). In

line with that, neurons from the putamen of HD patients displayed

lamin B1 signal delocalization within the nucleus, while lamin B1

was not altered in the nuclei of GFAP-positive cells (Fig 2B and C).

In the hippocampus of R6/1 mice, the dentate gyrus (DG) and the

Cornu ammonis 1 (CA1) regions presented the highest increase in

lamin B1 signal (Fig 3A). Moreover, CA1 neuronal nuclei displayed

morphological alterations and lamin B1 protein delocalization from

the nuclear periphery, as observed in 3D reconstructions of z-stack

A

B

Figure 1. Lamin B1 and lamin B2 are differentially increased in R6/1 mouse brain.

Lamin B1 and lamin B2 were analyzed by Western blot in R6/1 mice at different stages of the disease progression (w: weeks) and their corresponding controls (WT: wild-
type littermates).
A Quantification and representative immunoblots of lamin B1 in the striatum (8w, 12w, and 20w: N = 6 for both genotypes; 30w: N = 4 and 5 for WT and R6/1 mice,

respectively), hippocampus (8w: N = 8 and 6 for WT and R6/1 mice, respectively; 12w: N = 7 and 6 for WT and R6/1 mice, respectively; 20w: N = 5 and 6 for WT and
R6/1 mice, respectively; 30w: N = 8 and 5 for WT and R6/1 mice, respectively), and cortex (8w: N = 5 and 4 for WT and R6/1 mice, respectively; 12w and 20w: N = 6
for both genotypes; 30w: N = 6 and 5 for WT and R6/1 mice, respectively).

B Quantification and representative immunoblots of lamin B2 in the striatum (8w, 12w, and 20w: N = 6 for both genotypes, 30w: N = 5 for both genotypes),
hippocampus (8w: N = 8 and 6 for WT and R6/1 mice, respectively; 12w: N = 6 and 7 for WT and R6/1 mice, respectively; 20w: N = 5 for both genotypes; 30w: N = 8
and 5 for WT and R6/1 mice, respectively), and cortex (8w and 12w: N = 6 for both genotypes; 20w: N = 5 for both genotypes; 30w: N = 8 and 5 for WT and R6/1
mice, respectively).

Data information: Data are expressed as a percentage of controls. Each point corresponds to the value from an individual sample. Bars represent the mean � SEM.
*P < 0.05, **P < 0.01, and ***P < 0.001 as compared with WT mice (two-tailed unpaired Student’s t-test). Tubulin was used as loading control. Exact P values are
reported in Appendix Table S3.
Source data are available online for this figure.
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lamin B1 images (Fig 3B). Interestingly, at early disease stages

(12 weeks), these changes appeared to be restricted to the CA1

region (Appendix Fig S4). Strikingly, these morphological alterations

seemed to be independent to the presence of mHtt inclusions as

indicated by the EM48 immunostaining in the R6/1 mice striatal and

CA1 hippocampal nuclei (Appendix Fig S5). Overall, these results

indicated a cell-type-specific increase in lamin B1 levels in response

to mHtt in co-occurrence with lamin B1 delocalization and nuclear

lamina morphological alterations that seemed to be independent of

the presence of mHtt inclusions.

Cell type-specific nuclear morphology alterations correlate with
increased lamin B1 levels

To further confirm our observations indicating increased lamin B1

protein levels and nuclear morphology alteration in specific cell

populations, fluorescence-activated nuclear suspension imaging

(FANSI) method was developed by combining nuclear isolation

from brain tissue with immunostaining (Benito et al, 2015) and the

recently developed imaging flow cytometry (Barteneva & Vorobjev,

2016), allowing the acquisition of individual nucleus images. By

combining antibodies against Ctip2 and NeuN, we discerned

between MSNs (Ctip2+/NeuN+), which represent around 90% of

total striatal neurons (Kemp & Powell, 1971), striatal interneurons

(Ctip2−/NeuN+), and glial cells (Ctip2−/NeuN−; Appendix Fig S6A).

As shown in Fig 4, we detected an increase in lamin B1 levels and

altered nuclear morphology in 30-week-old R6/1 MSNs (Fig 4A), but

not in striatal interneurons (Fig 4B) nor in glial cells (Appendix Fig

S7), supporting our previous observations (see Fig 2 and

Appendix Fig S3). Nuclear area and total number of counted nuclei

were not altered in comparison with wild-type mice, in agreement

with the lack of neuronal death observed in R6/1 mouse brain (Fran-

celle et al, 2014). In addition, we confirmed that these alterations

were independent to the presence of mHtt inclusions. As shown in

Fig 4C, alterations in lamin B1 levels and nuclear morphology simi-

larly occur in striatal neuronal nuclei with or without mHtt inclu-

sions. In the putamen of HD patients, the number of Ctip2+/NeuN+

nuclei examined by FANSI was extremely low (10 neuronal nuclei

in average for each sample) what made it difficult to reach a conclu-

sion (Appendix Fig S8A). Therefore, we decided to analyze lamin

B1 intensity and circularity by immunohistochemistry. We observed

that lamin B1 intensity was increased only in the nuclei of MSNs

from VS III-IV patients, in correlation with altered nuclear morphol-

ogy (Fig 4D). In addition, and accordingly to results obtained in R6/
1 mice striatum, FANSI analysis showed no alterations in the nuclei

of striatal glial cells from HD patients in comparison with control

individuals (Appendix Fig S8B). In the hippocampus, to distinguish

between DG and CA1 neuronal nuclei, we used antibodies against

Ctip2 and Prox1 (Appendix Fig S6B). In 30-week-old R6/1 mouse

hippocampus, we detected increased lamin B1 levels only in CA1

neuronal nuclei (Ctip2+/ Prox1−) in concomitance with morphologi-

cal alterations, while neuronal nuclei from DG (Ctip2+/ Prox1+)

were relatively spared. Furthermore, no alterations were found in

the total number of nuclei or in nuclear area (Fig 4E). Altogether,

these results suggest that increased lamin B1 levels contribute to

nuclear morphology alterations in specific neuronal populations in

HD brain. To test this, striatal primary cultures were transfected

with a plasmid expressing lamin B1-mApple or mApple as a control,

and nuclear morphology was examined 24 h after transfection by

confocal microscopy. We observed that lamin B1 overexpression in

cultured striatal neurons induced a dramatic alteration of nuclear

morphology (Fig 5A and B) and chromatin condensation (Fig 5B).

Increased lamin B1 levels correlate with alterations in nuclear
permeability in MSNs and CA1 hippocampal neurons from
R6/1 mice

Our previous results showed that striatal MSNs and CA1 hippocampal

neuronal nuclei are preferentially affected by altered lamin B1 levels.

Since alterations in nuclear architecture lead to changes in nuclear

permeability (Hatch & Hetzer, 2014), we wondered whether increased

lamin B1 levels could contribute to nuclear transport abnormalities.

To address this hypothesis, we performed fluorescence recovery after

photobleaching (FRAP) experiments in isolated 30-week-old wild-

type and R6/1 mice neuronal nuclei by using 20 kDa FITC-dextran

(Fig 6A). We detected that half-time of recovery (t1/2) in R6/1 striatal

MSNs (Fig 6B) and CA1 hippocampal (Fig 6C), but not DG (Fig 6D),

nuclei was slower than in wild-type mice. Bleaching percentage and

maximum fluorescence recovered (plateau) did not differ between

genotypes (Appendix Fig S9A and B). As a validation, FRAP was

performed in the background, where any of the analyzed parameters

was found altered (Appendix Fig S9C). Altogether, our results show

an alteration in the passive diffusion of dextran into neuronal nuclei

containing greater lamin B1 protein levels, suggesting that nucleocy-

toplasmic passive transport abnormalities are linked to lamin B1

alterations in a cell type-dependent manner.

Lamin B1 chromatin binding is impaired in R6/1
mice hippocampus

Lamin B1 is classically associated with large heterochromatin

domains called lamin-associated domains (LADs), characterized by

▸Figure 2. Lamin B1 distribution in the striatum of R6/1 mouse and in the putamen of HD patients.

A Mouse brain tissue was processed for immunohistochemistry by combining anti-lamin B1 (red) and anti-NeuN (green) antibodies. Representative images (maximal Z-
projections) showing the distribution of lamin B1 in the striatum of 30-week-old wild-type (WT) and R6/1 mice. Yellow arrowheads show co-localization between
lamin B1 and NeuN, and white arrowheads show NeuN negative lamin B1-positive nuclei. Scale bar 50 and 25 µm for low and high magnification, respectively.

B Lamin B1 distribution in human putamen was analyzed by immunohistochemistry. Antibody against lamin B1 (red) was combined with DAPI Fluoromount-G (blue)
to label nuclei. Representative images show the distribution of lamin B1 in the putamen of non-affected individuals (CTL) and HD patients at different stages of the
disease (VS II-IV: Vonsattel grades). Yellow and white arrowheads indicate MSNs and glial cells, respectively. Scale bar 50 and 20 µm for low and high magnification,
respectively.

C The distribution of lamin B1 in the putamen of HD patients was analyzed by immunohistochemistry. Anti-lamin B1 antibody (red) was combined with anti-GFAP
antibody (green), and nuclei were labeled with DAPI Fluoromount-G (blue). Representative images show the distribution of lamin B1 at Vonsattel grade III. Yellow
arrowheads indicate MSNs, and white arrowheads indicate GFAP-positive cells. Scale bar 10 µm.
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low gene expression levels (Belmont et al, 1993). Recently,

however, LADs have been linked to actively transcribed euchro-

matic regions (Pascual-Reguant et al, 2018). Therefore, we set out to

study whether increased lamin B1 levels in HD brain could alter

their chromatin-binding landscape. For that, we generated lamin B1

chromatin immunoprecipitation and sequencing (ChIP-seq) data in

30-week-old wild-type and R6/1 mice hippocampus (age and region

showing the highest increase in lamin B1 levels). We immunopre-

cipitated lamin B1 and verified that both heterochromatin and

euchromatin fractions were efficiently sonicated (Appendix Fig

S10A and B). This indicated that all lamin B1-bound regions should

be captured in our ChIP-seq experiments. We ran the EED peak

A

B

C

Figure 2.
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A

B

Figure 3. Lamin B1 distribution in the hippocampus of R6/1 mouse.

Hippocampal sections from 30-week-old wild-type (WT) and R6/1 mice were labeled with anti-lamin B1 antibody (red), and anti-GFAP antibody (green) and nuclei were
labeled with DAPI Fluoromount-G (blue).
A Representative images showing the distribution of lamin B1. On the left, images showing maximal Z-projection. Scale bar 150 µm. Small images correspond to CA1

and DG magnified images showing independent DAPI, GFAP, and lamin B1 channels, and merge, of representative confocal Z-stack images. Scale bar 50 µm.
B Left, representative images showing the distribution of lamin B1 in the nuclei of CA-1 hippocampal neurons from WT and R6/1 mice along different Z-axis planes (1-

6). On the right, a 3D reconstruction of the Z-stack confocal images generated using ImageJ. Scale bar 20 µm.
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calling tool (Lund et al, 2014) and identified 145 and 166 LADs in

wild-type and R6/1 mice hippocampus, respectively (Fig 7A and B),

showing a genotype-dependent component in our lamin B1 ChIP-

seq data (Appendix Fig S10C). These numbers were consistently

found in triplicates of each experiment (Appendix Fig S10D and E),

and the regions overlapped with LADs previously identified in

neural progenitor cells using DamID (Peric-Hupkes et al, 2010)

(Appendix Fig S10F). Our LADs were depleted of H3K9ac and CTCF

and highly enriched in H3K9me3, which are major features of

canonical gene-silencing LADs (Appendix Fig S10G). We observed a

lower average size and lamin B1 binding in R6/1 mice-specific LADs

(Fig 7A and B). Interestingly, while most of the regions identified by

EDD were common between wild-type and R6/1 mice, a small

subset of them were specifically identified in one of the genotypes

(Fig 7C). We found regions specific from R6/1 mouse, but they were

equally enriched in lamin B1 in both genotypes, suggesting an arte-

factual origin from the EDD tool. For wild-type mice-specific

regions, however, we observed a clear reduction in lamin B1 bind-

ing in R6/1 mice (Fig 7C). Genes located within common LADs

between wild-type and R6/1 mice were enriched in terms mostly

related to “olfactory sensory perception” and “keratinization” (Fig 7

D). However, genes within wild-type mice exclusively identified

regions showed a strong differential functional signature, being

mostly enriched in genes related to “nucleosome assembly” (Fig 7

D). In line with this, nuclear fractionation clearly showed a reduc-

tion in the proportion of lamin B1 bound to chromatin, with a paral-

lel accumulation of lamin B1 protein within the nucleoplasm

(Fig 7E). Altogether, these results suggest that alterations in lamin

B1 protein levels and localization in R6/1 mice hippocampus lead to

changes in the genome-wide map of LADs, which ultimately could

affect the expression and accessibility of certain genes.

Chromatin accessibility, gene transcription, and LAD organization
in R6/1 mice hippocampus

To study the impact of lamin B1 chromatin-binding alterations in

chromatin state and gene expression, we analyzed chromatin acces-

sibility and gene expression levels by generating assay for trans-

posase-accessible chromatin and parallel sequencing (ATAC-seq;

Fig 8A and Appendix Fig S11A) and RNA-seq data using 30-week-

old R6/1 mice hippocampus. We identified a similar number of

ATAC-seq peaks in wild-type and R6/1 mice hippocampus

(260,284 � 4,559 and 254,672 � 9,030, respectively) by using three

independent biological replicates, indicating no massive changes in

chromatin accessibility between genotypes. Differential peak acces-

sibility analysis showed a high genotype-dependent component in

our ATAC-seq data (Appendix Fig S11B), and identified 1,304 and

803 regions with gained or lost accessibility, respectively, in R6/1
mice hippocampus (adjusted P-value < 0.05). These regions were

predominantly distal regulatory elements localized at intronic and

intergenic regions (Appendix Fig S11D). Motif analysis identified

EGR1/2 and NEUROD2 as centrally transcription factors enriched in

each set of differential accessible peaks (Appendix Fig S11C). To

gain insight into functional relevance of these changes, differential

accessible regions were annotated to the closest transcription start

site (TSS). Genes showing a loss of accessibility in R6/1 mice

displayed a clear neuronal signature, with enriched terms such as

“positive regulation of synapse” or “chemical synaptic

transmission”, while genes associated with an increase in chromatin

accessibility were mostly associated with developmental- and tran-

scriptional-related terms (Fig 8B). The transcriptome of both geno-

types (n = 9) clearly differed (as shown by PCA in Appendix Fig

S11E). We found 2,145 up-regulated and 2,280 down-regulated

genes (adjusted P-value < 0.001) in R6/1 with respect to wild-type

mice hippocampus. Gene ontology analysis of differentially

expressed genes showed high homology with the one found in our

ATAC-seq data, with a predominance of neuronal-related and tran-

scriptional-related terms for down- and up-regulated genes, respec-

tively (Appendix Fig S11F). In addition, we found a substantial

overlap with previously identified sets of altered expressed genes in

other HD mouse models (Appendix Fig S11G) (Langfelder et al,

2016; Herv�as-Corpi�on et al, 2018). As expected, we found that only

genes showing the highest transcriptional dysregulation (adjusted P-

value < 0.001, |fold change| > 2) displayed significant changes in

chromatin accessibility at their TSS as compared with genes only fil-

tered according to their adjusted P-value (Fig 8C and Appendix Fig

S11H). However, when analyzing transcriptional changes associated

with identified differential accessible regions, a clear correlation was

observed (Fig 8D), suggesting that distal regulatory element accessi-

bility better accounts for transcriptional dysregulation in R6/1 mice

hippocampus.

When focusing on LADs reported in both genotypes, as expected,

we found a particular enrichment in genes with low transcriptional

rate (Fig 9A). However, when we analyzed LADs specifically found

in wild-type mice or common between both genotypes (Fig 7C),

minor changes were found either at transcriptional level (Fig 9B) or

in terms of chromatin accessibility (Fig 9C), indicating that loss of

lamin B1 binding in R6/1 mice hippocampal cells does not lead to a

global transcriptional induction in these regions. Additionally, we

analyzed the presence of genes differentially expressed within the

set of genes specifically found in wild-type mice LADs (lost in R6/1
mouse; see Fig 7C) or in wild-type and R6/1 mice common LADs

(Fig 9D). We found that genes differentially expressed between

wild-type and R6/1 mice were more enriched in wild-type-specific

LADs than in wild-type and R6/1 common LADs (up-regulated: 119/
1242 in wild-type-specific LADs versus 142/3654 in common LADs;

down-regulated: 110/1242 in wild-type-specific LADs versus 198/
3654 in common LADs), indicating that loss of lamin B1 chromatin

binding in R6/1 mice hippocampal cells could lead to chromatin

reorganization affecting genes within these regions. However, when

focusing on highly dysregulated genes (|fold change| > 2), this

enrichment was only observed for down-regulated genes (down-

regulated: 10/1,242 in wild-type-specific LADs versus 21/3,654 in

common LADs; up-regulated: 3/1,242 in wild-type-specific LADs

versus 9/3,654 in common LADs). Furthermore, we analyzed

whether regions with differential accessibility between wild-type

and R6/1 mice displayed changes in lamin B1 chromatin binding.

Not surprisingly, ATAC-seq regions were generally depleted of

lamin B1 occupancy (Fig 9E, left panel). However, when comparing

regions showing increased or decreased chromatin accessibility in

R6/1 mice to unchanged regions, a highest occupancy of lamin B1

was observed in the first, especially in regions with decreased acces-

sibility (Fig 9E, right panel). Interestingly, a significant decrease in

lamin B1 occupancy was observed in regions with increased accessi-

bility in R6/1 mice, suggesting that lamin B1 chromatin-binding

impairment could indeed lead to localized increase in chromatin
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◀ Figure 4. Increase in lamin B1 levels and altered nuclear morphology occur in striatal MSNs and hippocampal CA-1 neurons from R6/1 mice.

Lamin B1 levels and morphology were analyzed in specific neuronal nuclei from the striatum and hippocampus of 30-week-old wild-type (WT) and R6/1 mice, and in the
putamen of HD patients by FANSI and immunohistochemistry, respectively.
A Graphs show the quantification of different parameters in mice striatal MSN nuclei (Ctip2+/NeuN+). N = 4 for both genotypes. An average of 5,000 nuclei were

analyzed for each sample. Representative images are shown. Scale bar 7 µm.
B Graphs show the quantification of different parameters in mice striatal interneurons (Ctip2-/NeuN+). N = 4 for both genotypes. An average of 5,000 nuclei were

analyzed for each sample. Representative images are shown. Scale bar 7 µm.
C Graphs show the quantification of lamin B1 intensity and circularity in 30-week-old R6/1 mouse striatal neuronal nuclei with (mHtt +) or without (mHtt −) nuclear

inclusions. N = 6. EM48 antibody was used to label mHtt inclusions. Representative images are shown. Scale bar 7 µm.
D Graphs showing lamin B1 intensity and circularity in MSN nuclei from the putamen of HD patients at different stages of the disease (VS: Vonsattel grade) and

corresponding controls (CTL: non-affected individuals). N = 6 for CTL, N = 3 for VS I-II, and N = 4 for VS III-IV. An average of 50 nuclei were examined for each
sample. Representative images (maximal Z-projections) are shown. Scale bar 7 µm.

E Graphs show the quantification of different parameters in hippocampal CA1 (Ctip2+/Prox1−) and DG (Ctip2+/Prox1+) neuronal nuclei. N = 4 for each genotype.
Representative images are shown. Scale bar 7 µm.

Data information: Each point corresponds to the value from an individual sample. Bars represent the mean � SEM. Data in (A-C) and (E) were analyzed by two-tailed
unpaired Student’s t-test. *P < 0.05, **P < 0.01, and ***P < 0.001 as compared with corresponding controls. Data in (D) were analyzed by one-way ANOVA followed by
Tukey’s post hoc test. *P < 0.05 as compared with CTL; #P < 0.05 as compared with VS I-II. Exact P values are reported in Appendix Table S3.
Source data are available online for this figure.

A

B

Figure 5. Lamin B1 overexpression in primary striatal neurons alters nuclear morphology.

Primary striatal neurons were transfected with a vector to overexpress lamin B1 (mApple-LB1) or with an empty vector (mApple-C1), and lamin B1 intensity and nuclear
circularity were examined by immunocytochemistry against lamin B1 24 h after transfection.
A Graphs show the quantification of lamin B1 intensity and circularity. N = 3. An average of 12 nuclei were examined in each culture. Data are expressed as a

percentage of controls. Bars represent the mean � SEM. *P < 0.05 and **P < 0.01 as compared to mApple-C1 control neurons (two-tailed unpaired Student’s t-test).
Exact P values are reported in Appendix Table S3.

B Representative images showing primary striatal neurons transfected with mApple-C1 or with mApple-Lamin B1, both in red. Neuronal nuclei were stained with DAPI
Fluoromount-G (blue). Lamin B1 is shown in white. Scale bar 10 µm.

Source data are available online for this figure.
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accessibility in distal regulatory elements in R6/1 mice hippocam-

pus. Overall, our results suggest that while no massive changes at

transcriptional or chromatin accessibility levels are associated with

the loss of lamin B1 heterochromatin binding, a small subset of dif-

ferentially expressed genes could be affected. Moreover, distal regu-

latory elements, and more particularly those found in regions with

gained accessibility in R6/1 mice, appear to be the more sensitive to

these lamin B1 alterations.

Treatment with betulinic acid prevents cognitive impairment in
R6/1 mice

Given the increase in lamin B1 levels and the altered nuclear

morphology and function found in R6/1 mice brain neurons, we

hypothesized that these disturbances could be possibly contributing

to motor and cognitive impairment present in HD. Betulinic acid has

been shown to transcriptionally repress LMNB1 expression (Li et al,

2013). Thus, as a clinical translational approach, we treated R6/1
mice from 8 to 20 weeks of age with 50 mg/kg betulinic acid and

analyzed behavioral, biochemical, and histopathological changes

following the timeline depicted in Fig 10A. First, we analyzed

hippocampal-dependent learning and memory by using novel object

location test (NOLT) and novel object recognition test (NORT). As

previously described (Garcia-Forn et al, 2018), vehicle-treated R6/1
mice showed impaired hippocampal-dependent learning and

memory relative to wild-type mice with a decreased percentage of

time exploring the moved (Fig 10B) or the novel (Fig 10C) objects.

Interestingly, betulinic acid-treated R6/1 mice explored similarly to

wild-type mice in the NOLT (Fig 10B) and NORT (Fig 10C), suggest-

ing that chronic administration of betulinic acid prevents cognitive

dysfunction in R6/1 mice. To assess whether learning of a corticos-

triatal motor task was also improved after treatment with betulinic

acid, we performed the accelerating rotarod task at 15 weeks of age,

when R6/1 mice show a clear difference in the performance

compared with wild-type mice (Garcia-Forn et al, 2018). Vehicle-

treated R6/1 mice displayed poor performance with a lower latency

to fall compared with control mice (Fig 10D). Importantly, betulinic

acid-treated R6/1 mice showed a significant, although partial,

improvement of their motor learning abilities.

Next, we investigated whether chronic betulinic acid treatment

affected lamin B1 protein levels in different brain regions. A reduc-

tion in lamin B1 protein levels in the cortex and hippocampus, but

not in the striatum, was detected in betulinic acid-treated compared

with vehicle-treated R6/1 mice (Fig 10E). Analysis using FANSI

revealed a normalization of lamin B1 levels in the nuclei of

hippocampal CA1 neurons in betulinic acid-treated R6/1 mice

(Fig 10F), accompanied by a partial rescue of nuclear morphology

alterations (Fig 10F). In line with these results, we observed an

amelioration of nucleocytoplasmic transport dysfunction, since half-

time of recovery after photobleaching of nuclear dextran fluores-

cence was similar in betulinic acid-treated R6/1 and vehicle-treated

wild-type mice hippocampal CA1 neuronal nuclei (Fig 10G). Impor-

tantly, as observed at 30 weeks of age, lamin B1 levels and nuclear

morphology or permeability alterations were not detected in

hippocampal DG neuronal nuclei from 20-week-old vehicle- or betu-

linic acid-treated R6/1 mice (Appendix Fig S12A and B).

Finally, we analyzed whether several hallmarks of the disease

were affected by the treatment with betulinic acid. We found that

betulinic acid did not prevent the loss in DARPP-32 levels in the

striatum of R6/1 mice, whereas it completely prevented the loss in

hippocampal PSD-95 levels (Appendix Fig S12C and D). Moreover,

A

B

C

D

Figure 6. Altered nuclear permeability in R6/1 mice striatal MSNs and
hippocampal CA1 neuronal nuclei.

A Scheme showing the experimental approach followed to measure
nuclear permeability by FRAP.

B–D Nuclear permeability in 30-week-old wild-type (WT) and R6/1 mice
striatal MSNs, CA1, and DG neuronal nuclei, respectively. (B and C) N = 4
for each condition; (D) N = 5 for each condition. An average of 25 nuclei
were analyzed for each sample.

Data information: In graphs, each point corresponds to the value from an
individual sample. Bars represent the mean � SEM. *P < 0.05 as compared
with WT mice (two-tailed unpaired Student’s t-test). Exact P values are
reported in Appendix Table S3.
Source data are available online for this figure.
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we found that the number and area of mHtt aggregates in betulinic

acid-treated R6/1 mice were similar to those found in the vehicle-

treated group, both in the striatum and in the hippocampus

(Appendix Fig S12E and F), indicating that betulinic acid effects

were independent from mHtt aggregation.

Discussion

Here, we show that (I) lamin B1 protein levels are increased in

vulnerable regions of HD brain correlating with altered nuclear

morphology; (II) nucleocytoplasmic transport of small molecules is

altered in neurons showing increased lamin B1 levels in R6/1 mouse

brain; (III) in R6/1 mice hippocampus (a) lamin B1 alterations corre-

late with partial unstructuring of LADs and (b) changes in chro-

matin accessibility mostly localize at distal regulatory elements,

correlate with transcriptional dysregulation, and are partially associ-

ated with lamin B1 chromatin-binding alterations; and (IV) pharma-

cologic regulation of lamin B1 levels improves nucleocytoplasmic

transport in CA1 hippocampal neurons and ameliorates behavioral

abnormalities in R6/1 mouse.

We found that, among all lamin isoforms, lamin B1 was consis-

tently affected in the brain of both HD patients and mouse models

from early stages of the disease. B-type, but not A-type lamins, are

essential for brain development (Kim et al, 2011). In fact, none of

the laminopathies related to mutations in lamin A/C courses with

neuronal dysfunction, which could explain why lamin A/C was

unaltered in most R6/1 brain regions. Alterations in B-type lamins

have been reported in neurodegenerative disorders and aging. For

instance, and in contrast to our results, decreased lamin B levels are

found in brains from AD (Frost et al, 2016) and PD patients bearing

the LRRK2 (G2019S) mutation (Liu et al, 2012), and in aged primary

human fibroblasts (Freund et al, 2012) and keratinocytes (Dreesen

et al, 2013), being a marker of cellular senescence. Here, we show

that increased lamin B1 levels in the brain of HD patients are not

due to the aging process itself but rather to the pathogenic process.

Interestingly, autosomal dominant leukodystrophy, a laminopathy

caused by the duplication of the LMNB1 gene, courses with severe

central nervous system affectation, whose symptoms recall those of

HD (Padiath et al, 2006). These evidences prompt the idea that

increased lamin B1 levels in HD brain may be participating in the

pathophysiology of the disease.

The accumulation of lamin B1 in neuronal nuclei from HD brain

could be produced by different mechanisms such as increased tran-

scription and/or translation, or decreased degradation. Increased

transcription seems improbable since RNA-seq data generated from

hippocampus of 30-week-old R6/1 mice do not show alterations in

lamin B1 RNA levels (present results) (Herv�as-Corpi�on et al, 2018).

In addition, although we have recently showed increased translation

in the striatum of HD mouse models and patients, the proteomic

analysis did not reveal lamin B1 as one of the proteins with

increased translation (Creus-Muncunill et al, 2019). Therefore, we

hypothesized that increased lamin B1 protein levels in HD brain

could be the result of different altered post-translational mecha-

nisms such as decreased PKCδ (Ru�e et al, 2014) and/or altered

autophagy-mediated lamin B1 degradation (Dou et al, 2015) and/or
increased stabilization due to overactivation of p38MAPK (Barascu

et al, 2012). Here, we show that knock-down of PKCδ in striatal

cells increases lamin B1 levels in their nuclei, and that decreased

PKCδ levels correlate with increased lamin B1 levels in the striatum,

but not in the hippocampus, of R6/1 mice. Therefore, our results

suggest that mechanisms leading to increased lamin B1 levels in HD

brain could differ in a region-dependent manner, with downregula-

tion of PKCδ playing a role in the striatum.

Immunohistochemical analysis of lamin B1 in R6/1 mouse brain

suggested that the increase occurred in striatal MSNs, hippocampal

CA1, and DG neurons. Our newly developed technique, FANSI, con-

firmed the increase in lamin B1 levels in nuclei of R6/1 striatal MSNs

and showed that in the hippocampus CA1 neurons, but not DG

neurons, were affected. Interestingly, these affected populations are

the most vulnerable neurons in HD brain and their dysfunction

participate in the motor and cognitive phenotype (Vonsattel & DiFi-

glia, 1998; Murphy et al, 2000). In the putamen of HD patients,

FANSI results indicated a significant loss of MSNs, but not of glial

cells, as previously described (Vonsattel et al, 1985). However, this

technique seemed unsuitable to analyze nuclear alterations in MSNs

◀ Figure 7. Lamin B1 chromatin binding in wild-type and R6/1 mice hippocampus.

A UCSC genome browser capture of lamin B1 ChIP-seq signal (log(LB1/Input)) and LADs discovered in wild-type (WT LAD) and R6/1 (R6/1 LADs) mice in combination
with NPC lamin B1 DamID (top). Black arrows highlight differences in identified LADs between WT and R6/1 mice ChIP-seq data. Box plots of LAD size (log10(LAD
size + 1)) and of LAD score (log10(LAD score + 1)) obtained by EDD (bottom) from WT (N = 3) and R6/1 (N = 3) lamin B1 ChIP-seq data. Hipp, hippocampus. The
bottom and top of the boxes are the first and third quartiles, and the line within represents the median. The whiskers denote the interval within 1.5 times the
interquartile range (IQR) from the median.

B Venn diagram of overlapping LADs between wild-type (WT, N = 3) and R6/1 (N = 3) mice hippocampus (top). Metaprofile of lamin B1 and input datasets mean read
density within common LADs for WT and R6/1 mice (bottom).

C UCSC genome browser capture of lamin B1 ChIP-seq signal (log(LB1/Input)) LADs discovered in wild-type (WT LADs) and R6/1 (R6/1 LADs) mice; and common (green),
wild-type (WT)-specific (WT spec. LADs, red), and R6/1-specific (R6/1 spec. LADs, blue) LADs identified by EDD (top, WT (N = 3), R6/1 (N = 3)). Black arrows highlight
WT-specific LADs not identified in R6/1 mice. Box plot of average size (log10(LAD size + 1)) for common, WT-specific, and R6/1-specific LADs (right). The bottom and
top of the boxes are the first and third quartiles, and the line within represents the median. The whiskers denote the interval within 1.5 times the interquartile range
(IQR) from the median.

D Lamin B1 enrichment in common, wild-type (WT, N = 3)-specific (spec), and R6/1 (N = 3)-specific LADs (log10(LB1/Input reads + 1) in hippocampus (Hipp; left). Bar
graphs of significant (Benjamini’s adjusted P-value < 0.05) Biological Processes terms from DAVID for genes within common and WT-specific LADs (right). Gene-term
enrichment was estimated by DAVID using a modified Fisher’s exact test and Benjamini’s multiple correction test. Bars represent the –log10 (Benjamini’s adjusted P-
value). Exact P values are reported in Appendix Table S3.

E Representative immunoblot showing lamin B1 levels in the nucleoplasm (Nucleop) and chromatin (Chrom) in the hippocampus of 30-week-old wild-type (WT, N = 7)
and R6/1 (N = 7) mice. TBP, TATA-binding protein.

Source data are available online for this figure.
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from HD patients as, after sample processing, the number of nuclei

remaining was very low. In addition, when these nuclei were

analyzed, they did not present differences in comparison with the

nuclei from non-affected individuals. In contrast, the analysis of

lamin B1 levels by immunohistochemistry in HD patient MSN nuclei

revealed similar alterations to those seen in R6/1 mice MSNs.

A

B

C D

Figure 8.
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Therefore, we speculate that nuclear abnormalities potentiate MSN

loss after processing of the tissue, probably due to repeated centrifu-

gation, besides the neurodegenerative process itself. This could

result in the evaluation of those MSNs with a healthier nuclear

envelope (including “normal” lamin B1 levels) and not all the MSNs

remaining in the tissue. Indeed, immunohistochemistry analyses

confirmed an increase in lamin B1 levels in striatal neuronal nuclei

from VS III-IV HD patients in comparison with control individuals.

Altogether, our data support the idea of a cell-type-dependent

increase in lamin B1 levels, specifically in those neurons preferen-

tially affected in HD.

Our results show that increased lamin B1 levels correlate with

altered nuclear morphology in the R6/1 mice brain-specific neurons.

In fact, we show that the overexpression of lamin B1 in striatal

cultured neurons alters nuclear morphology. In agreement with our

results: (i) Nuclear morphology alterations in autosomal dominant

leukodystrophy brain cells have been related to increased lamin B1

levels (Ferrera et al, 2014), and (ii) by using lamin B1 as a marker,

nuclear envelope abnormalities have been shown in the brain of HD

patients and mouse models (Gasset-Rosa et al, 2017). Furthermore,

decreased levels of lamin B1 also result in nuclear morphology alter-

ations in AD (Frost et al, 2016) and PD (Liu et al, 2012) neurons

suggesting that proper lamin B1 levels are necessary to maintain a

correct neuronal nucleus morphology. In addition, nucleocytoplas-

mic transport was altered in those nuclei with increased lamin B1

levels in accordance with previous literature showing a link

between alterations in lamins and nuclear dysfunction. For instance,

in Hutchinson–Gilford progeria syndrome, the mutated form of A-

type lamin induces nucleocytoplasmic transport dysregulation by

inhibiting the nuclear localization of Ubc9 and disrupting the nucle-

ocytoplasmic Ran gradient, necessary for active transport (Kelley

et al, 2011). In addition, cells expressing progerin presented

perturbed passive and active transport toward and from the nucleus

(Ferri et al, 2017). Similarly, increased levels of lamin B1 affect

◀ Figure 8. Hippocampal chromatin accessibility and gene expression analysis in R6/1 mice hippocampus.

A Scheme showing major steps of ATAC-seq technique.
B UCSC genome browser capture of wild-type (WT, N = 3) and R6/1 (N = 3) mice hippocampus ATAC-seq data, hippocampal H3K9ac, and unchanged, closed in R6/1,

and open in R6/1 accessible detected regions (left) in Tuba1α, Gabra2α, and Dlx2 gene locus. Arrows in blue (closed in R6/1) and red (open in R6/1) indicate differential
accessible regions. Bar graphs of significant (Benjamini’s adjusted P-value < 0.05) Biological Processes terms from DAVID for genes associated with decreased (right
top) or increased (right bottom) chromatin accessibility regions. Gene-term enrichment estimated by DAVID using a modified Fisher’s exact test and Benjamini’s
multiple correction test. Bars represent the –log10 (Benjamini’s adjusted P-value). Exact P values are reported in Appendix Table S3.

C Box plots showing average gene expression (log10(FPKMs + 1) for genes up- or down-regulated (adjusted P-value < 0.001, |FC|>2) in R6/1 (N = 9) versus WT (N = 9)
mice (left). The bottom and top of the boxes are the first and third quartiles, and the line within represents the median. The whiskers denote the interval within 1.5
times the interquartile range (IQR) from the median. Heat map showing expression profile (log10 (FPKMs + 1)) of genes up- or down-regulated (adjusted P-
value < 0.001, |FC|>2, N = 9) in R6/1 mice (mid). Genes are ranked by the degree of expression. Numbers in color scale show the correspondence between gene
expression values and colors. Box plots showing average TSS chromatin accessibility (log10(ATAC reads + 1), N = 3) for genes up- or down-regulated (adjusted P-
value < 0.001, |FC|>2, N = 9) in R6/1 versus WT mice hippocampus (right). Exact P values are reported in Appendix Table S3. The bottom and top of the boxes are the
first and third quartiles, and the line within represents the median. The whiskers denote the interval within 1.5 times the interquartile range (IQR) from the median.

D Average gene expression (closed or open regions FPKMs/ unchanged regions FPKMs) for genes associated with differential accessible regions in R6/1 (N = 9) versus
WT (N = 9) mice (adjusted P-value < 0.05, N = 3). Each point corresponds to the value from an individual sample. Data are shown as the mean � SEM. *P < 0.05 as
compared with WT mice (two-tailed unpaired Student’s t-test). Exact P values are reported in Appendix Table S3.

Source data are available online for this figure.

▸Figure 9. Chromatin accessibility, gene expression, and lamin B1 chromatin-binding interconnexion.

A Box plots of average expression (log10(FPKMs + 1)) for genes sublists 1-5 (lowest to highest expression) for wild-type (WT, N = 3) mice (left). Pie charts of gene
distribution among generated sublists (1-5) for all genes (middle) and genes in LADs (right) in WT mice. The bottom and top of the boxes are the first and third
quartiles, and the line within represents the median. The whiskers denote the interval within 1.5 times the interquartile range (IQR) from the median.

B Average gene expression (FPKMs) of genes found in common and wild-type (WT, N = 3)-specific LADs for WT (N = 9) and R6/1 (N = 9) mice. Each point corresponds
to the value from an individual sample. Data are shown as the mean � SEM. * P < 0.05 as compared to WT mice (two-tailed unpaired Student’s t-test). Exact P
values are reported in Appendix Table S3.

C Average chromatin accessibility (normalized read counts) of genes found in common and wild-type (WT, N = 3)-specific LADs for WT (N = 3) and R6/1 (N = 3) mice.
Each point corresponds to the value from an individual sample. Data are shown as the mean � SEM. The Wilcoxon–Mann–Whitney test was used for statistical
analysis. Exact P values are reported in Appendix Table S3.

D Venn diagram showing the total number of genes found in common and wild-type (WT)-specific LAD regions (left). Bar graph showing the number of up- and down-
regulated genes found in common and WT-specific LAD regions filtering only according to adjusted P-value (adjusted P-value < 0.001) or additionally with fold
change (adjusted P-value < 0.001, |FC| > 2) obtained from deseq2 differential expression analysis (see methods).

E UCSC genome browser capture of wild-type (WT, N = 3) and R6/1 (N = 3) mice hippocampus ATAC-seq data, lamin B1 ChIP-seq (log(Lb1 ChIP/Input)) for WT (N = 3)
and R6/1 (N = 3) mice hippocampus, hippocampal H3K9ac, CTCF, and H3K9me3 for WT mice hippocampus in Fos locus (left). Enhancer regions (E1-E5) are indicated
with arrows. Box plot of lamin B1 enrichment (log10(Lb1 ChIP/Input)) for regions with unchanged, decreased (closed in R6/1), and increased (opened in R6/1)
chromatin accessibility in R6/1 (N = 3) mice hippocampus. * P < 0.05 as compared to WT (N = 3) mice (the Wilcoxon–Mann–Whitney test). Exact P values are
reported in Appendix Table S3. The bottom and top of the boxes are the first and third quartiles, and the line within represents the median. The whiskers denote the
interval within 1.5 times the interquartile range (IQR) from the median.

Data information: In all graphs, bars represent the mean � SEM and each point corresponds to the value from an individual sample. Statistical analysis was performed
by one-way ANOVA followed by Bonferroni’s post hoc test except in (D) where data were analyzed by two-way ANOVA followed by Bonferroni’s post hoc test. Exact P
values are reported in Appendix Table S3.
Source data are available online for this figure.
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nuclear export in HEK293 cells (Lin & Fu, 2009) and reduces nuclear

ion channel opening in fibroblasts from autosomal dominant

leukodystrophy patients (Ferrera et al, 2014). Furthermore, altered

lamin B levels and nucleocytoplasmic transport occur in AD (Efte-

kharzadeh et al, 2018) and PD (Chalovich et al, 2006) although

these alterations have never been linked between them. Altered

nucleocytoplasmic mRNA transport has been previously reported in

other HD models and has been indirectly associated with nucleo-

porins sequestration by mHtt inclusions (Gasset-Rosa et al, 2017;

Grima et al, 2017). In contrast, our immunohistochemical and

FANSI analyses indicated that increased lamin B1 and morphologi-

cal alterations occur in R6/1 mouse striatal and hippocampal

neuronal nuclei with and without the presence of mHtt inclusions.

These differences may be due to the use of different HD models, in

which forms of mHtt aggregation differ (Morton et al, 2000;

Hansson et al, 2001; Heng et al, 2010). Altogether, here we show

nuclear morphology and nucleocytoplasmic transport abnormalities

in HD brain that occur in a neuron type-dependent manner and that

are related, at least in part, to increased lamin B1 protein levels.

In order to study the consequences of lamin B1 alterations in

nuclear lamina heterochromatin organization, we generated, for the

first time, lamin B1 ChIP-seq data in mouse central nervous system

tissue and characterized hippocampal LADs which, as expected,

showed high homology with previous identified domains using

DamID (Peric-Hupkes et al, 2010). Our lamin B1 ChIP-seq data,

together with nuclear fractionation experiments, clearly showed a

perturbation in nuclear lamina heterochromatin organization and

lamin B1 chromatin binding. Interestingly, previous studies demon-

strated that lamin B1 overexpression in the central nervous system

leads to epigenetic alterations affecting the heterochromatin protein 1

β (HP1β) and methylated histone H3 (H3K9) as well as transcriptional

programs mostly linked to glial cells (Lin & Fu, 2009). In line with
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Figure 9.
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that, the striatum of the R6/2 mouse model of HD shows important

alterations in H3K9me3 coverage (Lee et al, 2017) that, as we have

shown, is highly enriched in LADs. While the high extent of transcrip-

tional and chromatin accessibility alterations we have identified in R6/
1 mice hippocampus can be hardly explained exclusively by the subtle

alterations identified in lamin B1 ChIP-seq data, our results indicated

that regions with gained chromatin accessibility in our ATAC-seq data

showed a global decrease in the binding of lamin B1, correlative

increased expression, and were enriched in terms associated with cell

division and development, more typically associated with glial than to

A

B

E

F G

C D

Figure 10.

16 of 25 EMBO Molecular Medicine 13: e12105 | 2021 ª 2020 The Authors

EMBO Molecular Medicine Rafael Alcalá-Vida et al



neuronal cells (Merienne et al, 2019), suggesting that chromatin relax-

ation and consequent induction of gene expression could be, at least

in part, a result of the loss of lamin B1 chromatin binding. In accor-

dance with this, a previous study showed a general gain of chromatin

accessibility in HD T cells (Park et al, 2017), while our hippocampal

ATAC-seq data showed a bi-directionality in chromatin accessibility

changes, with a clear compaction of neuronal-associated regulatory

regions and increased chromatin relaxation in developmental related

ones. This is in agreement with a recent study demonstrating that HD

neuronal and glial cells are affected in opposite ways at transcriptional

level (Merienne et al, 2019). Our R6/1 hippocampal transcriptional

data showed a great overlap with previously generated data in addi-

tional HD models (Valor et al, 2013; Langfelder et al, 2016), and

according to a recent study, these common transcriptional signatures

present high homology with those found in knockouts for histone

acetyltransferases and methyltransferases (Herv�as-Corpi�on et al,

2018). Being shown the interplay between lamin B1 protein levels and

H3K9me3, highly dependent on the activity of methyltransferases, it

can be speculated that nuclear lamina alterations identified in the

present work could lead to a reorganization of H3K9me3 coverage in

HD hippocampus. Altogether, our data suggest a new mechanism

contributing to the complex epigenetic landscape of HD (reviewed in

Francelle et al, 2017).

Finally, with the purpose of addressing the therapeutic relevance

of our findings, we used betulinic acid, which has the potential to

normalize lamin B1 protein levels (Li et al, 2013). We show a bene-

ficial effect in preventing HD cognitive dysfunction and, for the first

time, in normalizing lamin B1 protein levels in the brain in vivo.

Interestingly, we observed a functional recovery of hippocampal

memory-dependent tasks, which at the molecular level coincides

with a normalization of lamin B1 levels in the hippocampus of R6/1
mice, an improvement in nuclear morphology and function of CA1

neurons, and no effect on mHtt aggregates. The fact that nuclear

improvement occurred despite the presence of mHtt aggregates

supports a role of lamin B1 alterations in the nuclear dysfunction

previously observed in HD (Gasset-Rosa et al, 2017; Grima et al,

2017). In line with our results, cytotoxicity is reduced in primary

cortical neurons expressing mHtt after pharmacological restoration

of nucleocytoplasmic transport (Grima et al, 2017). Our results

strengthen the idea of a relationship between increased lamin B1

levels and alterations in nuclear morphology and function in HD, at

least in CA1 hippocampal neurons, as previously suggested in auto-

somal dominant leukodystrophy (Ferrera et al, 2014), which ulti-

mately contribute to the HD phenotype. In contrast, lamin B1 levels

were not normalized in the striatum after betulinic acid treatment

although partial amelioration of motor learning dysfunction was

observed in R6/1 mice. Since cortical pyramidal neuronal project to

the striatum and betulinic acid normalized lamin B1 levels in the

cortex, we speculate that the improvement of cortical neuronal func-

tion could have beneficial effects on MSNs, reflected by the preven-

tion in the decrease in DARPP-32 protein levels, a hallmark of HD

(Bibb et al, 2000), and consequently, motor performance is partially

improved. In addition to the regulation of lamin B1 levels, betulinic

acid has been shown to exert beneficial effects in affected brain

through the regulation of cAMP, cGMP, and BDNF levels (Kaundal

et al, 2018), long-term potentiation (Navabi et al, 2018), oxidative

stress (Lu et al, 2011), or inflammation (Li et al, 2018), which may

contribute to the improvement of R6/1 mice cognitive behavior.

Therefore, our results open a new therapeutic window not only for

HD, but also for autosomal dominant leukodystrophy, for which no

effective treatment is available yet (Padiath, 2019).

Altogether, our findings suggest a relationship between increased

lamin B1 levels and nuclear morphological and functional alter-

ations in specific HD brain neurons, which may contribute to the

pathophysiology of the disease and could have promising applica-

tions at the therapeutic level.

Materials and Methods

HD mouse model

Male R6/1 transgenic mice (B6CBA background) expressing the exon

1 of mHtt with 145 CAG repeats and their wild-type littermate

◀ Figure 10. Chronic treatment with betulinic acid improves cognitive function and modulates lamin B1 levels in the hippocampus and cortex of R6/1 mice.

A Timeline of the behavioral, biochemical, and histopathological analyses performed in wild-type (WT) and R6/1 mice to assess the effect of betulinic acid (BA)
administration. w, weeks; AR, accelerating rotarod.

B, C Graphs show the percentage of time exploring each object with respect to the total exploration time in the (B) NOLT and (C) NORT, 5 weeks after treatment (Veh,
vehicle; BA, betulinic acid; WT, wild-type). ****P < 0.0001 compared with the corresponding old location/object. WT veh N = 13; R6/1 veh N = 10; R6/1 + BA
N = 10.

D Accelerating rotarod was assessed after 7 weeks of treatment. **P < 0.01 and ***P < 0.001 compared with vehicle-treated wild-type (WT) mice; #P < 0.05
compared with vehicle-treated R6/1 mice. WT veh N = 13; R6/1 veh N = 9; R6/1 + BA N = 9.

E Lamin B1 levels were analyzed by Western blot in the striatum (WT veh N = 10; R6/1 veh N = 6; R6/1 + BA N = 7), hippocampus (WT veh N = 12; R6/1 veh N = 8;
R6/1 + BA N = 7), and cortex (WT veh N = 11; R6/1 veh N = 6; R6/1 + BA N = 7) after 12 weeks of treatment. *P < 0.05, **P < 0.05 compared with vehicle-treated
wild-type (WT) mice and #P < 0.05 compared with vehicle-treated R6/1 mice. Representative immunoblots of lamin B1 and α-tubulin (as loading control) for each
treatment group are shown.

F Lamin B1 intensity and nuclear morphology were analyzed by FANSI in hippocampal CA1 neuronal nuclei from wild-type (WT) and R6/1 mice after 12 weeks of
treatment. *P < 0.05 compared with vehicle-treated WT mice. *P < 0.05 as compared to vehicle-treated WT mice. Lamin B1 intensity: WT veh N = 6; R6/1 veh
N = 5; R6/1 + BA N = 4; lamin B1 circularity: WT veh N = 6; R6/1 veh N = 5; R6/1 + BA N = 5.

G Nuclear permeability was analyzed by FRAP in hippocampal CA1 neuronal nuclei after 12 weeks of treatment. *P < 0.05 compared with vehicle-treated wild-type
(WT) mice. WT veh N = 4; R6/1 veh N = 5; R6/1 + BA N = 6.

Data information: In all graphs, bars represent the mean � SEM and each point corresponds to the value from an individual sample. Statistical analysis was performed
by one-way ANOVA followed by Bonferroni’s post hoc test except in (D) where data were analyzed by two-way ANOVA followed by Bonferroni’s post hoc test. Exact P
values are reported in Appendix Table S3.
Source data are available online for this figure.
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controls were used for this study. Mouse genotyping and CAG

repeat length determination were performed as previously described

(Mangiarini et al, 1996). All mice were housed together in numerical

birth order in groups of mixed genotypes, and male littermates were

randomly assigned to experimental groups. Data were recorded for

analysis by microchip mouse number, and experiments were

conducted in a blind-coded manner respect to genotype. The

animals were housed with access to food and water ad libitum in a

colony room kept at 19–22°C and 40–60% humidity, under a 12:12-

h light/dark cycle. All procedures were carried out in accordance

with the National Institutes of Health Guide for the Care and Use of

Laboratory Animals, and approved by the local animal care commit-

tee of the Universitat de Barcelona, following European (2010/63/
UE) and Spanish (RD53/2013) regulations for the care and use of

laboratory animals.

Post-mortem human brain tissue

Frozen samples (putamen, hippocampus, and frontal cortex) and

brain slices (5-μm-thick sections paraffin-embedded mounted in

glass slides) from HD patients and control individuals were obtained

from the Neurological Tissue Bank of the Biobank-Hospital Clı́nic-

Institut d’Investigacions Biom�ediques August Pi i Sunyer (IDIBAPS;

Barcelona, Catalonia, Spain) following the guidelines and approval

of the local ethics committee (Hospital Clı́nic of Barcelona’s Clinical

Research Ethics Committee). Informed consent was obtained from

all subjects, and experiments were performed conformed the princi-

ples set out in the WMA Declaration of Helsinki and Department of

Health and Human Services Belmont Report. Details on the sex, age,

CAG repeat length, Vonsattel grade, and post-mortem delay are

found in Appendix Table S1.

Pharmacological treatment

R6/1 mice were treated (from 8 to 20 weeks of age) with vehicle

(90% water, 10% polysorbate 80) or betulinic acid (50 mg/kg; Sigma-

Aldrich, #855057) administered by oral gavage, 3 days/week. Wild-

type mice were treated with vehicle. Animal weight was recorded

each day of treatment. Days in which treatment and tests were coinci-

dent, mice were allowed to recover during 1 h before starting a task.

Mice were sacrificed by cervical dislocation 1 h after the last dose.

Half of the brain was fixed in 4% PFA for immunostaining analysis,

and the striatum, hippocampus, and cortex from the other half were

rapidly removed and stored at –80°C until analysis.

Behavioral assessment

Spatial and recognition memory tests
NOLT and NORT were used to analyze hippocampal-dependent

spatial long term and recognition memory, respectively, in wild-type

and R6/1 mice at 13 weeks of age as previously described (Garcia-

Forn et al, 2018). In each of the tests, the object preference was

measured as the time exploring each object × 100/time exploring

both objects. The arena and the objects were rigorously cleaned

between animal trials to avoid odors. Animals were tracked with

SMART Junior software from Panlab (Barcelona, Spain). Days, in

which treatment and tests were coincident, the mice were allowed

to recover for 1 h after the treatment before starting any task.

Accelerating rotarod
For the assessment of motor learning dependent on the corticostriatal

connectivity, we performed the accelerating rotarod test at 15 weeks

of age. The protocol was performed as previously described (Garcia-

Forn et al, 2018) The final performance was calculated as the mean

latency to fall during the 3 last trials of each day. Days, in which

treatment and tests were coincident, the mice were allowed to

recover for 1 h after the treatment before starting any task.

Knock-in striatal cell line

Conditionally immortalized wild-type huntingtin knock-in striatal

cells, STHdhQ7/Q7, were grown as previously described (Trettel et al,

2000) on 12-mm round glass coverslips and were transfected at

50% of confluence. PKCδ siRNA (ON-TARGETplus Mouse Prkcd

siRNA-SMART Pool, Dharmacon) was used for PKCδ silencing, and

a scramble siRNA (Silencer® Select Negative Control No. 1 siRNA,

Catalog Number 4390844) was used as a control. To overexpress

mHtt, an exon 1 Htt plasmid expressing 94 CAG repeats tagged with

the CFP (Ortega et al, 2010) was used. Exon 1 mHtt plasmid

(0.5 µg) was transfected at the same time as the siRNAs (10 pmol)

using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA), and cells

were incubated for 24 h.

Striatal primary cultures

Striatal primary cultures were obtained and maintained as previ-

ously described (Gratac�os et al, 2001) and grown on 12-mm round

glass coverslips. At 9 days in vitro, they were transfected with a

plasmid containing lamin B1 (mApple-lamin B1-10) or with a plas-

mid containing mApple-C1 as control. Both plasmids were a gift

from Michael Davidson (Addgene plasmid, #54917 and #54631,

respectively). Transfection was performed in 24-well plates using

2 µg of DNA and 1:2 TransFectinTM Lipid Reagent (Bio-Rad) follow-

ing the manufacturer’s instructions. After 45 min, medium was

exchanged for 50% of fresh medium and 50% of neuronal condi-

tioned medium. Cells were fixed 24 h post-transfection.

Protein extraction and Western blot analyses

Animals were killed at different ages by cervical dislocation. Brains

were quickly removed, and the striata, hippocampi, and cortex were

dissected out and homogenized in lysis buffer. Protein extraction

from mouse and human brain tissue, and from cultured cells, and

Western blot analyses were performed as previously described

(Xifr�o et al, 2008; Saavedra et al, 2011). After incubation with

primary and the appropriated horseradish peroxidase-conjugated

secondary antibodies (Appendix Table S2), membranes were

washed with Tris-buffered saline containing 0.1% Tween 20.

Immunoreactive bands were finally visualized using the Western

Blotting Luminol Reagent (Santa Cruz Biotechnology, #sc-2048) and

quantified by a computer-assisted densitometer (Gel-Pro Analyzer,

version 4, Media Cybernetics).

Immunofluorescence

Mice perfusion, brain processing, and immunostaining were

performed as previously described (Ru�e et al, 2014). For human
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tissue, the first step was dewaxing and rehydrating the tissue by

performing a series of 5 min each: xylene (four times), absolute

ethanol (three times), alcohol 96% (three times), and distilled

water. The antigen retrieval was performed afterward by boiling the

sections in citrate buffer (10 mM sodium citrate, 0.05% Tween 20,

pH 6.0) in a microwave for 20 min. After this, the Dako Autostainer

Plus was used for a blocking step during 15 min at room tempera-

ture with a commercial wash buffer from Dako supplemented with

3% normal goat serum, three washes with phosphate-buffered

saline (PBS), and the incubation with the primary antibody in the

Dako Real TM antibody diluent (Agilent, #S202230-2) for 30 min.

After incubation with primary antibodies, sections were washed

with PBS and incubated overnight with corresponding secondary

antibodies (Appendix Table S2). Finally, sections were mounted

with DAPI Fluoromount-G (Thermo Fisher Scientific, #00-4959-52).

Negative controls were performed for each primary antibody, and

no signal was detected in this condition.

For immunocytochemistry, cells were washed with PBS and fixed

with 4% paraformaldehyde (PFA) in PBS for 10 min at room

temperature. To block the action of PFA, cells were incubated with

0.2 M glycine for 20 min at room temperature. After quenching with

50mM NH4Cl for 10 min, cells were permeabilized in blocking

buffer containing 1% BSA + 0.2% gelatin + 0.2% Triton X-100 in

PBS at room temperature. After blocking, cells were incubated with

rabbit anti-Lamin B1 (1:200; Abcam, Cambridge, UK) for 30 min at

room temperature. Next, cells were washed three consecutive times

with PBS and finally were incubated with Cy3 AffiniPure F(ab’)2

Fragment Goat Anti-Rabbit IgG, F(ab’)2 Fragment Specific (1:200,

Jackson ImmunoResearch, West Grove, PA, USA). Nuclei were

stained with DAPI Fluoromount.

Immunofluorescence imaging and analysis

Immunostained tissue sections and STHdhQ7/Q7 cells were examined

by using the Olympus BX60 (Olympus, Tokyo, Japan) epifluores-

cence microscope coupled to an Orca-ER cooled CCD camera

(Hamamatsu Photonics, Hamamatsu, Japan) or the Leica TCS SP5

laser scanning confocal microscope (Leica Microsystems Heidelberg

GmbH, Manheim, Germany) with Argon and HeNe lasers coupled to

a Leica DMI6000 inverted microscope at different magnifications

(from 10× to 63×). Striatal cultured neurons, striatal olig-2-positive

cells, and putamen z-stacks images were obtained with a Zeiss LSM

880 (Carl Zeiss Microscopy, LLC, Thornwood, NY, USA) confocal

microscope using the ZEN acquisition software. Confocal images

were taken as stacks differed in 0.5 μm (for mouse brain tissue),

0.3 μm (for human brain tissue), or 0.6 µm (for striatal primary

neurons) in Z-axis with an HCX PL APO lambda blue 63× numerical

aperture objective and standard pinhole (1 Airy disk), and their

reconstruction was performed using ImageJ software (NIH,

Bethesda, USA).

For morphological analysis in tissue sections, a Z-projection of

confocal stack images was generated and nuclear segmentation was

performed using default parameters of StarDist ImageJ plugin (Sch-

midt et al, 2018). A minimum of 400 (for mouse striatal sections) or

40 (for human putamen sections) nuclei were detected and

computed for posterior morphological analysis. The morphological

parameters of resulting segmented nuclei were analyzed using

MorphoLibJ ImageJ plugin (Legland et al, 2016). Cultured cell nuclei

were analyzed using the ROI manager from ImageJ (an average of

20 and 12 nuclei per condition and culture were analyzed for

STHdhQ7/Q7 cells and striatal primary neurons, respectively).

Immunohistochemistry for mHtt aggregates detection

Coronal sections (30 µm) of the whole brain were obtained as

described above. Detection of mHtt aggregates was performed as

previously described (Garcia-Forn et al, 2018) by using the anti-

EM48 antibody. EM48 staining was examined in eight slices per

animal separated by 240 µm (covering the entire striatum or CA1

hippocampal region) by using the Computer-Assisted Stereology

Toolbox (CAST) software (Olympus Danmark A/S, Ballerup,

Denmark). Images were analyzed using CellProfiler Analyst soft-

ware.

FANSI

FANSI was the result of combining nuclear purification and

immunostaining (Benito et al, 2015) with ImageStream imaging flow

cytometer technology (Barteneva & Vorobjev, 2016) (Luminex

Corporation).

Nuclear purification and immunostaining
Frozen tissue was homogenized in low sucrose buffer (LSB; 0.32 M

sucrose, 5 mM CaCl2, 5 mM Mg(Ac)2, 0.1 mM EDTA, 50 mM

HEPES pH 8.0, 1 mM DTT, 0.1% Triton X-100) and fixed in 1%

formaldehyde for 10 min at room temperature in a rotating wheel.

Formaldehyde was quenched with 125 mM glycine incubation

during 5 min at room temperature in the rotating wheel. Tissue

homogenate was collected by centrifugation, resuspended in LSB,

and mechanically homogenized. After that, the homogenized solu-

tion was layered on the top of a high sucrose buffer (1 M sucrose,

3 mM Mg(Ac)2, 10 mM HEPES, pH 8.0, 1 mM DTT) and centrifuged

at 4°C to recover the nuclei. These were then resuspended in PBTB

(PBS, 5% BSA, 0.1% Tween-20) containing the antibodies and 3%

NHS, and incubated in a rotating wheel at 4°C during 30 min. After

that, samples were washed twice with PBTB plus 3% NHS and

stained with corresponding secondary antibodies in PBTB plus 3%

NHS at 4°C during 15 min. Nuclei were then washed, stained with

Hoechst 33258 (1:10,000; Thermo Fisher Scientific, #H3569), and

directly processed for Imaging flow cytometry.

Imaging flow cytometry (ImageStream)
Purified nuclei were resuspended in 100 µl and filtered using cells

strainers of 50 µm pore size (Sysmex Partec, Kobe, Japan) and poste-

riorly sorted and imaged using a 60× objective at a maximum speed

of 600 nuclei/s depending on the sample concentration. For each

replicate, a minimum of 10,000 nuclei were recorded. Fluorescent

minus one controls were used to evaluate the specificity of the

defined populations by individually removing primary but not

secondary antibodies (Appendix Fig S13A–F). Recorded files were

processed and analyzed by the IDEAS Software provided by the

ImageStream machine’s manufacturers (Luminex, Austin, USA) after

cross-channel signal compensation. After selecting individual nuclei

(singlets, only focused acquired images were used for posterior analy-

sis) (Appendix Fig S13F and G), lamin B1-positive nuclei were

selected for posterior analysis (Appendix Fig S7I) and screened
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according to their Ctip2 and Prox1 signal and the specific neuronal

nuclear marker NeuN. For hippocampal samples, CA1 nuclei were

classified as Ctip2+/Prox1− and DG ones as Ctip2+/Prox1+ (Bagri et al,

2002; Arlotta et al, 2005). For striatum and putamen, nuclei were

classified as MSNs (NeuN+/Ctip2+) (Herculano-Houzel & Lent, 2005;

Arlotta et al, 2008), interneurons (NeuN+/Ctip2−), or glia (NeuN−/
Ctip2−). All the features analyzed (mean intensity, circularity, and

mean area) were performed using these selected populations.

FRAP in isolated nuclei

Striatal nuclei were isolated as previously described (Alvarez-Periel

et al, 2018) and then incubated for 30 min at 4°C with the corre-

sponding primary and secondary antibodies (Appendix Table S2).

Nuclei were maintained in LSB until analysis. To perform conven-

tional single-photon FRAP experiments, nuclei were incubated with

a solution of 20 kDa FITC-dextran (0.3mg/ml; Sigma-Aldrich,

#FD20) and seeded in glass-bottomed chambers and covered with a

cover slip. Striatal MSN nuclei (Ctip2+/NeuN+) and hippocampal

CA1 (Ctip2+/Prox1−) and DG (Ctip2+/Prox1+) nuclei were manually

selected. Each FRAP experiment started with 5 pre-bleach image

scans, followed by 8 bleach pulses of 156 ms each on a spot with a

diameter of 2.5 µm in the center of the nucleus. At the post-bleach

period, a series of 100 single section images were collected at 156-

ms intervals (Appendix Fig S14). A total of 113 images were

acquired for each nucleus, and an average of 25 nuclei were

analyzed for each animal. Image size was 256 × 56 pixels, and the

pixel width was 120 × 60 nm. For imaging, the laser power was

attenuated to 3% of the bleach intensity. FRAP experiments were

performed on a Leica TCS SP5 laser scanning confocal spectral

microscope (Leica Microsystems, Heidelberg, Germany) equipped

with Argon laser and Leica DMI6000 inverted microscope. Images

were acquired using a 63×, 1.4 NA oil immersion objective lens,

and 1.5 Airy units as pinhole. Image processing was performed

using LAS AF Lite Software (Leica Microsystems, Heidelberg,

Germany). For each image, the fluorescence in the bleached region

was normalized for the fluorescence of the background and the

percentage of the initial fluorescence was calculated for each time

point. FRAP recovery curves were represented (Appendix Fig S9)

following the formula % fluorescence¼ ROIt
BGt ∗

ROIto
BGto

� �
∗100, where ROIt

is the intensity in the selected ROI at time point t, BGt is the inten-

sity in the background at time point t, ROIt0 is the intensity in the

selected ROI at time 0, and BGt0 is the intensity in the background

at time 0. Data were analyzed using GraphPad Prism Software (San

Diego, USA).

Nuclear fractionation

Nuclear fractionation from hippocampus of 30-week-old wild-type and

R6/1 mice was performed using a Subcellular Protein Fractionation Kit

for Tissues (Thermo Fisher Scientific, #87790) following manufac-

turer’s instructions. Chromatin-bound and nuclear soluble fractions

were obtained and examined by Western blot as described above.

RNA-seq

RNA-seq data were generated from 30-week-old wild-type and R6/1
mice hippocampal tissue. RNA was isolated from 9 independent

biological replicates for each genotype using the RNeasy Plus Kit

(Qiagen, #74136) according to the manufacturer’s instructions.

Quality assessment was performed using Bioanalyser eukaryotic

total RNA nano series II chip (Agilent, #5067-1511), and all samples

achieved a RNA integration number (RIN) between 9 and 10.

Libraries were prepared from 9 biological replicates of each condi-

tion using the TruSeq Stranded mRNA Library Prep Kit (Illumina,

#20020594) following manufacturer’s instructions and sequenced

using the HiSeq 2500 sequencing platform (Illumina, San Diego,

USA).

ChIP-seq

Lamin B1 ChIP-seq was performed as previously described (Sadaie

et al, 2013) by using 30-week-old wild-type and R6/1 mice

hippocampal tissue. Briefly, for each biological replicate, hippocam-

pus from 5 mice was pooled together, homogenized in PBS supple-

mented with proteinase inhibitors (Sigma, #13317600), and

posteriorly cross-linked with formaldehyde 1% for 15 min at room

temperature. Cross-linking reaction was stopped by a 5 min of incu-

bation with 2 M glycine, and the cross-linked material was washed

3 times with ice-cold PBS. Cells were lysed using cell lysis buffer

(10 mM HEPES pH 8, 85 mM KCl, 0.5% NP-40), and nuclei were

extracted using nucleus extraction buffer (0.5% SDS, 10 mM EDTA

pH 8, 50 mM Tris–HCl pH 8). Purified nuclear fraction was

subjected to sonication using Bioruptor Pico (Diagenode, Belgium)

to obtain DNA fragments of 200–500 bp. Sonicated chromatin was

incubated overnight at 4°C with anti-rabbit magnetic Dynabeads

(Thermo Fisher Scientific, #11203D) pre-complexed with 10 µg of

rabbit anti-lamin B1 antibody. After 6 washes with RIPA buffer

(20 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium

pyrophosphate, 1mM b-glycerophosphate, 1 mM Na3VO), chro-

matin was eluted and de-cross-linked by overnight incubation at

65°C, followed by a 30 min of RNase (Ambion, #AM2271) and 2 h

of proteinase K (Thermo Fisher Scientific, #AM2548) treatments.

DNA purification was carried out with MinElute PCR Purification Kit

(Qiagen, #28006), and libraries were prepared using the NEBNext

Ultra II DNA Library Prep Kit from Illumina (New England Biolabs,

#37645) according to the manufacturer’s instructions. DNA size

selection was performed after PCR amplification using E-Gel Precast

Agarose Electrophoresis System (Invitrogen, #A42100). Samples

were sequenced single end using 50-bp reads on the HiSeq 2500 and

HiSeq 4000 platforms (Illumina, San Diego, USA).

ATAC-seq

ATAC-seq experiments were performed as previously described

(Buenrostro et al, 2013), with slight modifications, in 3 independent

biological replicates using hippocampal tissue from 25-week-old

wild-type and R6/1 mice. Briefly, a frozen mouse hippocampus for

each biological replicate was pulverized using a grinder and pestle

settle on dry ice, and tissue powder was lysed in LB1 buffer (1M

HEPES pH 7.5, 5 M NaCl, 0.5 M EDTA pH 8.0, 50% glycerol, 10%

NP-40, 10% Triton X-100) for nuclear isolation. Approximately

50,000 nuclei were used for the transposition reaction using hyper-

active Tn5 transposase (Illumina Cat, #FC-121-1030) followed by 13

cycles of PCR amplification. “Nucleosome free” and “mono-
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nucleosome fragments” were obtained by size selection of DNA

fragments between 170 bp and 400 bp using SPRIselect beads

(Beckman Coulter, #B23319) before single-end sequencing to gener-

ate 50-bp reads on the HiSeq 4000 platform (Illumina, San Diego,

USA).

RNA-seq, ChIP-seq, and ATAC-seq data analysis

ChIP-seq samples were mapped against the mm9 mouse genome

assembly using Bowtie with the option –m 1 to discard those reads

that could not be uniquely mapped to just one region (Langmead

et al, 2009). We ran the EDD tool (parameters: GAP = 5 and BIN

SIZE = 37) to identify LADs on our ChIP-seq samples (Lund et al,

2014). Triplicates of each condition were pooled together, once a

high degree of similarity in the set of reported LADs and target genes

was confirmed among replicates. The UCSC genome browser was

used to generate the screenshots of each group of experiments along

the manuscript (Kent et al, 2002). The RNA-seq samples were

mapped against the mm9 mouse genome assembly using TopHat

(Trapnell et al, 2009) with the option –g 1 to discard those reads

that could not be uniquely mapped in just one region. DESeq2 (Love

et al, 2014) was run over nine replicates of each genotype to quan-

tify the expression of every annotated transcript using the RefSeq

catalog of exons and to identify each set of differentially expressed

genes. ATAC-seq samples were mapped against the mm9 mouse

genome assembly using Bowtie with the option –m 1 to discard

those reads that could not be uniquely mapped to just one region,

and with the option –X 2000 to define the maximum insert size for

paired-end alignment (Langmead et al, 2009). Mitochondrial reads

were removed from each resulting map, and down-sampling was

applied to obtain the same number of mapped fragments per

sample. Correlation between biological replicates in terms of peaks

was assessed to ensure high reproducibility before pooling each set

of triplicates. MACS was run with the default parameters but with

the shift size adjusted to 100 bp to perform peak calling (Zhang

et al, 2008). The genome distribution of each set of peaks was calcu-

lated by counting the number of peaks fitted on each class of region

according to RefSeq annotations (O’Leary et al, 2016). Distal region

is the region within 2.5 Kbp and 0.5 Kbp upstream of the transcrip-

tion start site (TSS). Proximal region is the region within 0.5 Kbp

upstream of the TSS. UTR, untranslated region; CDS, protein-coding

sequence; intronic regions, introns; and the rest of the genome,

intergenic. Peaks that overlapped with more than one genomic

feature were proportionally counted the same number of times. For

the generation of metaprofiles, seqMINER tool (Ye et al, 2011) was

used in combination with ggplot2 package from R (https://ggplot2.

tidyverse.org/) using an in-house script.

Differential chromatin accessibility

Integrated analysis of ATAC-seq data was performed using the open

Galaxy platform (https://usegalaxy.org/). A list of high confident

peaks identified with MACS2 for each genotype was generated by

selecting peaks found in at least 2 different replicates. For differential

accessible region identification, edgeR galaxy tool was used with a

merge of all high confident peaks identified in both genotypes apply-

ing the TMM method implemented in edgeR for normalization and

dispersion calculation of the different biological samples. The results

were further filtered based on FDR < 0.05. Peaks were annotated to

the closest TSS using Homer tool integrated in Galaxy platform.

Motif analysis

For motif analysis, the Meme-ChIP suite (version 4.12.0) tool (Bai-

ley et al, 2009) was used in differential enrichment mode together

with Hocomoco (version 11 FULL) human and mouse PWMs. As

input, 600-bp regions surrounding the summit of differential accessi-

ble peaks were used for motif discovery (using relaxed regions as

control for compacted regions and vice-versa) and only motifs

centrally enriched were considered.

Gene ontology

For functional enrichments in biological processes (BP), DAVID

(Huang et al, 2009) tool was used by providing closest genes ID

obtained by Homer when using differentially accessible regions,

with subsets of genes identified as differentially expressed or with

genes located in LAD-identified regions. Terms with Benjamini’s

adjusted P-value < 0.05 were selected for bar graph representations.

Data visualization

UCSC genome browser (Kent et al, 2002) was used for genome-wide

visualization of ChIP-seq and ATAC-seq data.

Statistics

Sample size was determined by using the power analysis method:

0.05 alpha value, 1 estimated sigma value, and 75% of power

The paper explained

Problem
Lamins, the major structural proteins within the nuclear lamina, are
crucial for the functionality of the nucleus. Our previous results
showed that lamin B levels are increased in a brain region-dependent
manner in Huntington’s disease (HD). However, it is not known
whether this alteration has consequences for nuclear function of cells
expressing mutant huntingtin and plays a role in HD pathophysiology.

Results
Lamins levels were analyzed in the cortex, striatum, and hippocampus
of the R6/1 mouse model of HD and HD patients. We observed a brain
region and age-dependent increase in lamin B1 levels. Through fluores-
cence-activated nuclear suspension imaging, we determined that lamin
B1 levels are increased in specific neuronal populations, which is corre-
lated with alterations in nuclear morphology and nucleocytoplasmic
transport disruption as assessed by fluorescence recovery after photo-
bleaching. In addition, ChIP-seq analysis in hippocampal nuclei from
R6/1 mouse showed a partial unstructuring of lamin B1-associated
domains and changes in chromatin accessibility (assessed by ATAC-seq),
which correlates with transcriptional dysregulation determined by
RNA-seq. In support of a significant role of lamin B1 in HD pathology,
the administration of betulinic acid in R6/1 mouse partially restored
lamin B1 levels and attenuated both motor and cognitive dysfunction.

Impact
Our work highlights increased lamin B1 levels as a new pathogenic
mechanism for HD, providing a novel target for its intervention.
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detection. Such analysis was chosen as the result of previous behav-

ioral experiments in our laboratory. N values are given throughout

the manuscript in the figure legends. Grubb’s test was performed to

determine the significant outlier values with pre-established criteria.

All the results are expressed as the mean � SEM. Statistical tests

were performed using Student’s t-test for one grouping variable and

the one or two-way ANOVA for multi-component variables,

followed by Bonferroni’s or Turkey’s post hoc test as indicated in

the figure legends. Linear regression analyses were performed using

R-squared. For non-parametric ChIP-seq and ATAC-seq data analy-

sis, the Wilcoxon–Mann–Whitney test was used as indicated in fig-

ure legend. Additional statistical analysis for ChIP-seq, ATAC-seq,

and RNA-seq data is indicated in their respective sequencing analy-

sis section. A 95% confidence interval was used, and values with a

P < 0.05 were considered as statistically significant.

Data availability

Raw data and processed information of the ChIP-seq, ATAC-seq,

and RNA-seq experiments generated in this article were deposited in

the National Center for Biotechnology Information Gene Expression

Omnibus (NCBI GEO) (Barrett et al, 2013) repository under the

Accession Number GSE139884. Additionally, public datasets for

hippocampal H3K9me3 (GSM2460430, https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSM2460430) (Ding et al, 2017),

H3K9ac (GSM2415914, https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSM2415914) (Mews et al, 2017), and CTCF

(GSM2228526, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSM2228526) (Sams et al, 2016) ChIP-seq experiments were

retrieved for integrated data analysis.

Expanded View for this article is available online.

Acknowledgements
We thank Ana L�opez and Maria Teresa Mu~noz for technical assistance; Isabel

Crespo from Citomics Core Facility of the Institut d’Investigacions Biom�ediques

August Pi i Sunyer (IDIBAPS) and Maria Calvo from the Advanced Microscopy

Unit, Scientific and Technological Centers, University of Barcelona, for their

support and advice concerning Cytometry and confocal techniques, respec-

tively; Neurological Tissue Bank of the Biobank-Hospital Cl�ınic-IDIBAPS for

providing human brain tissue; Dr. Marcy MacDonald for the knock-in striatal

cell line, Dr. Lucas for the N-mHtt-CFP plasmid; and Ana Saavedra for helpful

discussions. Participant laboratories were supported by (1) EPN.: Ministerio de

Economia y Competitividad, Spain (SAF2016-08573-R; PID2019-106447RB-

100), and Fundaci�on Ram�on Areces (RL000607); (2) MN.: Cancer Research UK

Cambridge Institute Core Grant (C9545/A29580); (3) LDiC: Ministerio de Econo-

mia, Ind�ustria y Competitividad (BFU2016-75008-P and PID2019-108322GB-

100); and (4) SP: Instituto de Salud Carlos III (ISCIII; PI18/00283), FERO Founda-

tion, La Caixa Foundation (LCF/PR/PR12/51070001), and Cellex Foundation

who provided research facilities and equipment; MGF was supported by a

grant (FI-2016) from Ag�encia de Gesti�o d’Ajuts Universitaris i de Recerca

(AGAUR), and AP is a fellow of Sir Henry Wellcome (215912/Z/19/Z).

Author contributions
RAV, MGF, and EPN conceptualized the study and interpreted the results, and

EPN supervised it. RAV and MGF designed and performed most of the

experiments with the help of CCP, JCM, AG, and KCV. MN conceptualized and

contributed to the design of ChIP-seq, ATAC-seq, and RNA-seq experiments. YI

and AP contributed with the design and performance of ChIP-seq, ATAC-seq,

and RNA-seq experiments. GS and SS contributed in the analysis of ChIP-seq,

ATAC-seq, and RNA-seq. EB analyzed and composed the figures for ChIP-seq,

ATAC-seq, and RNA-seq experiments. LDiC and SP reviewed the content and

contributed in the ChIP-seq, ATAC-seq, and RNA-seq experiments and concep-

tualization and interpretation of the results. RAV and MGF analyzed data and

composed the figures. EPN secured the funding, the collaborations, and the

execution of the entire project. RAV, MGF, and EPN wrote the manuscript. All

the authors critically reviewed the content and approved the final version.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Alvarez-Periel E, Puigdell�ıvol M, Brito V, Plattner F, Bibb JA, Alberch J, Gin�es S

(2018) Cdk5 contributes to huntington’s disease learning and memory

deficits via modulation of brain region-specific substrates. Mol Neurobiol

55: 6250–6268
Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, MacKlis JD (2005)

Neuronal subtype-specific genes that control corticospinal motor neuron

development in vivo. Neuron 45: 207–221
Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD (2008) Ctip2

controls the differentiation of medium spiny neurons and the

establishment of the cellular architecture of the striatum. J Neurosci 28:

622–632
Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M, Pleasure SJ

(2002) The chemokine SDF1 regulates migration of dentate granule cells.

Development 129: 4249–4260
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW,

Noble WS (2009) MEME suite: tools for motif discovery and searching.

Nucleic Acids Res 37: 202–208
Barascu A, Le Chalony C, Pennarun G, Genet D, Imam N, Lopez B, Bertrand P

(2012) Oxidative stress induces an ATM-independent senescence pathway

through p38 MAPK-mediated lamin B1 accumulation. EMBO J 31: 1080–
1094

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,

Marshall KA, Phillippy KH, Sherman PM, Holko M et al (2013) NCBI GEO:

archive for functional genomics data sets - Update. Nucleic Acids Res 41:

991–995
Barteneva NS, Vorobjev IA (2016) Quantitative functional morphology by

imaging flow cytometry. Methods Mol Biol 1389: 3–11
Belmont AS, Zhai Y, Thilenius A (1993) Lamin B distribution and association

with peripheral chromatin revealed by optical sectioning and electron

microscopy tomography. J Cell Biol 123: 1671–1685
Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G,

Capece V, Burkhardt S, Navarro-Sala M et al (2015) HDAC inhibitor-

dependent transcriptome and memory reinstatement in cognitive decline

models. J Clin Invest 125: 3572–3584
Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A, Nairn AC,

Messer A, Greengard P (2000) Severe deficiencies in dopamine signaling in

presymp-

tomatic Huntington’s disease mice. Proc Natl Acad Sci USA 97: 6809–6814
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013)

Transposition of native chromatin for fast and sensitive epigenomic

22 of 25 EMBO Molecular Medicine 13: e12105 | 2021 ª 2020 The Authors

EMBO Molecular Medicine Rafael Alcalá-Vida et al

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139884
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2460430
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2460430
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2415914
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2415914
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2228526
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2228526
https://doi.org/10.15252/emmm.202012105


profiling of open chromatin, DNA-binding proteins and nucleosome

position. Nat Methods 10: 1213–1218
Chalovich EM, Zhu JH, Caltagarone J, Bowser R, Chu CT (2006) Functional

repression of cAMP response element in 6-hydroxydopamine-treated

neuronal cells. J Biol Chem 281: 17870–17881
Creus-Muncunill J, Badillos-Rodr�ıguez R, Garcia-Forn M, Masana M, Garcia-

D�ıaz Barriga G, Guisado-Corcoll A, Alberch J, Malagelada C, Delgado-

Garc�ıa JM, Gruart A et al (2019) Increased translation as a novel

pathogenic mechanism in Huntington’s disease. Brain 142: 3158–3175
Ding X, Liu S, Tian M, Zhang W, Zhu T, Li D, Wu J, Deng H, Jia Y, Xie W et al

(2017) Activity-induced histone modifications govern Neurexin-1 mRNA

splicing and memory preservation. Nat Neurosci 20: 690–699
Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake

AM, Shah PP et al (2015) Autophagy mediates degradation of nuclear

lamina. Nature 527: 105–109
Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, Lane EB, Lee

SJ, Vardy LA, Stewart CL et al (2013) Lamin B1 fluctuations have differential

effects on cellular proliferation and senescence. J Cell Biol 200: 605–617
Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno

Y, Cook C, Miller SJ, Dujardin S, Amaral AS et al (2018) Tau protein

disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 99:

925–940.e7
Ferrera D, Canale C, Marotta R, Mazzaro N, Gritti M, Mazzanti M, Capellari S,

Cortelli P, Gasparini L (2014) Lamin B1 overexpression increases nuclear

rigidity in autosomal dominant leukodystrophy fibroblasts. FASEB J 28:

3906–3918
Ferri G, Storti B, Bizzarri R (2017) Nucleocytoplasmic transport in cells with

progerin-induced defective nuclear lamina. Biophys Chem 229: 77–83
Francelle L, Galvan L, Brouillet E (2014) Possible involvement of self-defense

mechanisms in the preferential vulnerability of the striatum in

Huntington’s disease. Front Cell Neurosci 8: 1–13
Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K (2017) Contribution of

neuroepigenetics to Huntington’s disease. Front Hum Neurosci 11: 17

Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin B1 loss is a

senescence-associated biomarker. Mol Biol Cell 23: 2066–2075
Frost B (2016) Alzheimer’s disease: An acquired neurodegenerative

laminopathy. Nucleus 7: 275–283
Frost B, Bardai FH, Feany MB (2016) Lamin dysfunction mediates

neurodegeneration in tauopathies. Curr Biol 26: 129–136
Garcia-Forn M, Mart�ınez-Torres S, Garc�ıa-D�ıaz Barriga G, Alberch J, Mil�a M,

Azkona G, P�erez-Navarro E (2018) Pharmacogenetic modulation of STEP

improves motor and cognitive function in a mouse model of Huntington’s

disease. Neurobiol Dis 120: 88–97
Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, Atwal RS, Artates JW, Tabet

R, Wheeler VC, Bang AG, Cleveland DW, Lagier-Tourenne C (2017)

Polyglutamine-expanded huntingtin exacerbates age-related disruption of

nuclear integrity and nucleocytoplasmic transport. Neuron 94: 48–57.e4
Gratac�os E, Checa N, Alberch J (2001) Bone morphogenetic protein-2, but

not bone morphogenetic protein-7, promotes dendritic growth and

calbindin phenotype in cultured rat striatal neurons. Neuroscience 104:

783–790
Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K, Ochaba J, Geater C,

Morozko E, Stocksdale J, Glatzer JC et al (2017) Mutant Huntingtin

disrupts the nuclear pore complex. Neuron 94: 93–107.e6
Hansson O, Guatteo E, Mercuri NB, Bernardi G, Li XJ, Castilho RF, Brundin P

(2001) Resistance to NMDA toxicity correlates with appearance of nuclear

inclusions, behavioural deficits and changes in calcium homeostasis in mice

transgenic for exon 1 of the huntington gene. Eur J Neurosci 14: 1492–1504

Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of

essential genes in cultured mammalian cells using small interfering RNAs.

J Cell Sci 114: 4557–4565
Hatch E, Hetzer M (2014) Breaching the nuclear envelope in development

and disease. J Cell Biol 205: 133–141
HDCRG (1993) A novel gene containing a trinucleotide repeat that is expanded

and unstable on Huntington’s disease chromosomes. Cell 72: 971–983
Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V, Wilson Rodger N,

Durrington PN (2006) Sequencing of the reannotated LMNB2 gene reveals

novel mutations in patients with acquired partial lipodystrophy. Am J Hum

Genet 79: 383–389
Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ,

Osmand A, Paulson HL, Detloff PJ (2010) Early autophagic response in a

novel knock-in model of Huntington disease. Hum Mol Genet 19: 3702–3720
Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid

method for the quantification of total cell and neuron numbers in the

brain. J Neurosci 25: 2518–2521
Herv�as-Corpi�on I, Guiretti D, Alcaraz-Iborra M, Olivares R, Campos-Caro A,

Barco �A, Valor LM (2018) Early alteration of epigenetic-related

transcription in Huntington’s disease mouse models. Sci Rep 8: 1–14
Hozak P, Sasseville AMJ, Raymond Y, Cook PR (1995) Lamin proteins form an

internal nucleoskeleton as well as a peripheral lamina in human cells. J

Cell Sci 108: 635–644
Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat

Protoc 4: 44–57
Kaundal M, Zameer S, Najmi AK, Parvez S, Akhtar M (2018) Betulinic acid, a

natural PDE inhibitor restores hippocampal cAMP/cGMP and BDNF,

improve cerebral blood flow and recover memory deficits in permanent

BCCAO induced vascular dementia in rats. Eur J Pharmacol 832: 56–66
Kelley JB, Datta S, Snow CJ, Chatterjee M, Ni L, Spencer A, Yang C-S, Cubenas-

Potts C, Matunis MJ, Paschal BM (2011) The defective nuclear lamina in

Hutchinson-Gilford progeria syndrome disrupts the nucleocytoplasmic ran

gradient and inhibits nuclear localization of Ubc9. Mol Cell Biol 31:

3378–3395
Kemp JM, Powell TPS (1971) The structure of the caudate nucleus of the cat:

light and electron microscopy. Phil Trans R Soc Lond B 262: 383–401
Kent JW, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D

(2002) The human genome browser at UCSC. Genome Res 12: 996–1006
Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan C-M, Gaiano N, Ko MSH,

Zheng Y (2011) Mouse B-type lamins are required for proper

organogenesis but not by embryonic stem cells. Science 334: 1706–1710
Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, Lu XH,

Ramos EM, El-Zein K, Zhao Y et al (2016) Integrated genomics and

proteomics define huntingtin CAG length-dependent networks in mice.

Nat Neurosci 19: 623–633
Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome.

Genome Biol 10: R25

Lee J, Hwang YJ, Kim Y, Lee MY, Hyeon SJ, Lee S, Kim DH, Jang SJ, Im H, Min

S-J et al (2017) Remodeling of heterochromatin structure slows

neuropathological progression and prolongs survival in an animal model

of Huntington’s disease. Acta Neuropathol 134: 729–748
de Leeuw R, Gruenbaum Y, Medalia O (2018) Nuclear lamins: thin filaments

with major functions. Trends Cell Biol 28: 34–45
Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library

and plugins for mathematical morphology with ImageJ. Bioinformatics 32:

3532–3534

ª 2020 The Authors EMBO Molecular Medicine 13: e12105 | 2021 23 of 25

Rafael Alcalá-Vida et al EMBO Molecular Medicine



Li C, Zhang C, Zhou H, Feng Y, Tang F, Hoi MPM, He C, Ma D, Zhao C, Lee

SMY (2018) Inhibitory effects of betulinic acid on LPS-induced

neuroinflammation involve M2 microglial polarization via CaMKKβ-
dependent AMPK activation. Front Mol Neurosci 11: 98

Li L, Du Y, Kong X, Li Z, Jia Z, Cui J, Gao J, Wang G, Xie K (2013) Lamin B1 is a

novel therapeutic target of betulinic acid in pancreatic cancer. Clin Cancer

Res 19: 4651–4661
Lin S-T, Fu Y-H (2009) miR-23 regulation of lamin B1 is crucial for

oligodendrocyte development and myelination. Dis Model Mech 2: 178–
188

Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang

W et al (2012) Progressive degeneration of human neural stem cells

caused by pathogenic LRRK2. Nature 491: 603–607
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol 15: 1–21
Lu Q, Xia N, Xu H, Guo L, Wenzel P, Daiber A, M€unzel T, F€orstermann U, Li H

(2011) Betulinic acid protects against cerebral ischemia-reperfusion injury

in mice by reducing oxidative and nitrosative stress. Nitric oxide Biol Chem

24: 132–138
Lund E, Oldenburg AR, Collas P (2014) Enriched domain detector: a program

for detection of wide genomic enrichment domains robust against local

variations. Nucleic Acids Res 42: e92

Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C,

Lawton M, Trottier Y, Lehrach H, Davies SW et al (1996) Exon I of the HD

gene with an expanded CAG repeat is sufficient to cause a progressive

neurological phenotype in transgenic mice. Cell 87: 493–506
Merienne N, Meunier C, Schneider A, Seguin J, Nair SS, Rocher AB, Le Gras S,

Keime C, Faull R, Pellerin L et al (2019) Cell-type-specific gene expression

profiling in adult mouse brain reveals normal and disease-state

signatures. Cell Rep 26: 2477–2493.e9
Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL (2017) Acetyl-CoA

synthetase regulates histone acetylation and hippocampal memory.

Nature 546: 381–386
Morton AJ, Lagan MA, Skepper JN, Dunnett SB (2000) Progressive

formation of inclusions in the striatum and hippocampus of mice

transgenic for the human Huntington’s disease mutation. J Neurocytol

29: 679–702
Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, Bates GP, Dunnett SB,

Morton AJ (2000) Abnormal synaptic plasticity and impaired spatial

cognition in mice transgenic for exon 1 of the human Huntington’s

disease mutation. J Neurosci 20: 5115–5123
Navabi SP, Sarkaki A, Mansouri E, Badavi M, Ghadiri A, Farbood Y (2018) The

effects of betulinic acid on neurobehavioral activity, electrophysiology and

histological changes in an animal model of the Alzheimer’s disease. Behav

Brain Res 337: 99–106
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B,

Robbertse B, Smith-White B, Ako-Adjei D et al (2016) Reference sequence

(RefSeq) database at NCBI: Current status, taxonomic expansion, and

functional annotation. Nucleic Acids Res 44: D733–D745
Ortega Z, D�ıaz-Hern�andez M, Maynard CJ, Hern�andez F, Dantuma NP, Lucas

JJ (2010) Acute polyglutamine expression in inducible mouse model

unravels ubiquitin/proteasome system impairment and permanent

recovery attributable to aggregate formation. J Neurosci 30: 3675–3688
Padiath QS (2019) Autosomal dominant leukodystrophy: a disease of the

nuclear lamina. Front Cell Dev Biol 7: 41

Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T, Koeppen A, Hogan
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