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Strain-induced nonlinear spin 
Hall effect in topological Dirac 
semimetal
Yasufumi Araki1,2

We show that an electric field applied to a strained topological Dirac semimetal, such as Na3Bi and 
Cd3As2, induces a spin Hall current that is quadratic in the electric field. By regarding the strain as an 
effective “axial magnetic field” for the Dirac electrons, we investigate the electron and spin transport 
semiclassically in terms of the chiral kinetic theory. The nonlinear spin Hall effect arises as the cross 
effect between the regular Hall effect driven by the axial magnetic field and the anomalous Hall effect 
coming from the momentum-space topology. It provides an efficient way to generate a fully spin-
polarized and rectified spin current out of an alternating electric field, which is sufficiently large and can 
be directly tuned by the gate voltage and the strain.

The idea of spin current, which first emerged about 50 years ago1,2, has significantly developed the field of nanos-
cale condensed matter physics, in particular of spintronics3–5. Spin current plays an important role in controlling 
and detecting magnetization in magnetic nanostructures. The spin Hall effect (SHE) is one of the ways to obtain 
a spin current, in particular a pure spin current transverse to the injected charge current6,7. Its reciprocal effect, 
namely the inverse SHE (ISHE), converts the injected spin current into a charge current, which is useful in detect-
ing a pure spin current8,9. The SHE is efficient in that it does not require any ferromagnetic material, which makes 
the system free from stray magnetic field.

The origin of the SHE can be classified into the extrinsic and intrinsic mechanisms. While the extrinsic mech-
anism is triggered by spin-asymmetric scattering at impurities with spin-orbit coupling (SOC)10–12, the intrinsic 
effect originates from the nontrivial band topology due to SOC13,14. Since SOC violates the spin conservation, the 
spin current generated by the intrinsic SHE usually gets suppressed as it flows by a long distance. However, in 
some topological materials such as HgTe quantum well, the spin-orbit field (approximately) preserves U(1) spin 
symmetry by a certain quantization axis (e.g. Sz), yielding a spin Hall current that is fully polarized along the 
quantization axis. Its spin Hall conductivity is quantized, which is related to the 2 topology of the 
eigenstate15–17.

In three dimensions (3D), topological Dirac semimetals (TDSMs)18,19, such as Na3Bi20 and Cd3As2
21, show the 

intrinsic SHE protected by 2 topology. TDSMs are characterized by pair(s) of Dirac points (DPs/valleys) sepa-
rated in momentum space, which are protected by rotational symmetry around an axis. The intrinsic spin Hall 
conductivity is determined by the separation of the DPs in momentum space22–25, which is analogous to the 
anomalous Hall effect (AHE) in a Weyl semimetal (WSM) with broken time-reversal symmetry (TRS)26,27. The 
intrinsic SHE in TDSM is thus robust against disorders in bulk, and the value of spin Hall conductivity is fixed for 
each material.

Therefore, in order to tune and enhance the spin Hall current from its fixed value in TDSM, we need to 
go beyond the linear response regime with respect to the electric field, which is necessary in making use of 
TDSM as an efficient spin current injector. Nonlinear spin current generation is important for device applica-
tion in that it generates a rectified (stationary) spin current from an alternating electric field, or a light, which 
has been proposed in transition metal dichalcogenides28 and 2D Rashba–Dresselhaus systems29. Moreover, 
the nonlinear transport is important also from the topological point of view; a recent study has shown that the 
momentum-space Berry curvature gives rise to the nonlinear Hall transport30. For Dirac/Weyl semimetals, in 
particular, nonlinear charge current generation is proposed in several hypothetical setups, in which the strong 
Berry flux around the Dirac/Weyl points gives rise to the nonlinear current31,32. Nonlinear spin current genera-
tion might be of equal significance in Dirac/Weyl semimetals, although it has not been taken into account so far.

1Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan. 2Frontier Research Institute for 
Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan. Correspondence and requests for materials 
should be addressed to Y.A. (email: araki@imr.tohoku.ac.jp)

Received: 30 May 2018

Accepted: 3 October 2018

Published: xx xx xxxx

OPEN

mailto:araki@imr.tohoku.ac.jp


www.nature.com/scientificreports/

2ScIentIFIc ReportS |  (2018) 8:15236  | DOI:10.1038/s41598-018-33655-w

In this work, we demonstrate the nonlinear (quadratic) SHE in TDSM by introducing a lattice strain to the 
system. A lattice strain on a TDSM effectively serves as a valley-dependent magnetic field, namely the axial mag-
netic field33–36, which is essential here in filtering the spin and valley degrees of freedom [see Fig. 1(a)]. We make 
use of the chiral kinetic theory, which describes the dynamics and distribution of the Dirac electrons for each 
valley37–41, and derive the spin Hall current semiclassically up to the second order in the electric field. This non-
linear SHE can be regarded as the cross effect between the regular Hall effect (RHE) induced by the axial magnetic 
field and the AHE induced by the momentum-space topology42–44: the external electric field together with the 
axial magnetic field shifts the electron distribution in momentum space by the Lorentz force, and this shifted 
distribution yields the anomalous velocity due to the momentum-space Berry curvature, leading to the spin 
Hall current in total [see Fig. 1(b)]. We find that the nonlinear spin Hall current can be tuned by the gate voltage 
(electron chemical potential), and can reach the value comparable to the linear intrinsic spin Hall current, at the 
electric field ~10 kV/m. The spin current generated by this effect is fully spin-polarized and rectified even though 
the driving electric field is alternating, which we expect to be useful in designing TDSM-based spintronic devices.

Results
Topological Dirac semimetal and strain.  We start with the low-energy effective Hamiltonian for TDSM,

σ τ τ ητ η= − + −H v k k k kk( ) [ ( )], (1)z x x y y z zF D

with vF the material-dependent Fermi velocity18,19. This minimal Hamiltonian consists of the atomic orbital 
degrees of freedom (e.g. Na-3s and Bi-6p for Na3Bi) labeled by the Pauli matrix τ and the spin (up/down) degrees 
of freedom labeled by σ. The Hamiltonian is linearized around the two DPs, which reside at k = (0, 0, ηkD) 
with η = ± respectively. Each DP is doubly degenerate and is protected by the crystalline rotational symmetry 
around z-axis22. In the vicinity of the DPs, the energy eigenvaule for the electron (conduction) band is given as 
ε(k) = vF|k − ηkDêz|.

In the absence of nonlinear corrections in k, σz behaves as a good quantum number, which we denote s = ± or 
spin up/down. For each s = ±, the Hamiltonian takes the same form as that for a WSM with broken TRS. The 
topological charge for the valley η with spin s is νsη = sη; the net topological charge cancels within each valley and 
within each spin23. This system shows the intrinsic SHE linear in the electric field, protected by the 2 topology, 
with the spin Hall conductivity σ π= e k( / )xy

S 2 2
D

25.
A lattice strain modifies this Hamiltonian, by altering the hopping terms among the orbitals. In general lattice 

systems, the effect of lattice strain is twofold; the longitudinal component of the strain tensor leads to renormal-
ization of the hopping amplitudes, whereas the transverse part leads to new hopping terms that are allowed by 
breaking of the local crystalline symmetry45. These effects can be described as an effective vector potential in 
the continuum limit. In Dirac electron systems, such a strain-induced gauge field couples to each valley with 
the opposite sign (η) in the vicinity of the DPs, which is often referred to as an axial or chiral vector potential, to 
ensure TRS33–36. Such a correspondence is known in various crystalline systems such as graphene46–48. In TDSMs, 

Figure 1.  Schematic pictures for the nonlinear spin Hall effect in topological Dirac semimetal. (a) The setup of 
the system. A lattice strain on the topological Dirac semimetal (TDSM) is equivalent to the axial magnetic field 
B5. An alternating electric field E drives a rectified spin current J(0) quadratic in E. (b) The electron distribution 
in momentum space in response to the electric field E and the axial magnetic field B5. The distribution is shifted 
from the equilibrium distribution (dashed circle) transverse as well as longitudinal to E at linear response (red 
solid circle), due to the regular Hall effect (RHE) under B5. It induces an imbalance in the Berry curvature Ωsη 
(small grey arrows), which leads to the anomalous velocity ηv s

a  as the second-order response in E.
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such as Na3Bi and Cd3As2, a screw strain on a nanowire can generate an axial magnetic field B5 up to 0.3 T34, and 
a bending of a thin film can make it up to 15 T35. In this work, we assume that B5 is macroscopically uniform for 
simplicity, and investigate the electron and spin transport up to the linear order in B5.

Field-induced current.  In the present work, we focus on the electron transport driven by an electric field 
alternating with the frequency ω, defined by E(t) = 2E0cos ωt, which can account for a linearly polarized light as 
well. We omit the real magnetic field B, whereas fix the strain-induced axial magnetic field B5 finite and (locally) 
homogeneous. Similarly to the real magnetic field, this axial magnetic field B5 gives rise to the Landau quantiza-
tion, with the level spacing δε ~ v eB2LL F 5  at k = 0. As long as the level spacing δεLL is lower than the Fermi level 
μ of the electrons, i.e. δε μ| |LL , multiple Landau levels contribute to the electron transport, which implies that 
the transport can be well described by the semiclassical (Boltzmann) theory. By solving the Boltzmann equation 
for the electrons in terms of the chiral kinetic theory (see Methods), we estimate the driven current jsη(t) for each 
spin s and valley η up to the first order in B5 and the second order in E0. While the linear response to the electric 
field E yields an alternating current 

η
ω±js

( ), the quadratic response consists of the second harmonic part 
η

ω±js
( 2 ) and 

the stationary (rectified) part 
ηjs

(0), where the superscript with (⋅) on a physical quantity denotes its oscillation 
frequency.

Up to quadratic response to the electric field, we find that the stationary part 
ηjs

(0) depends only on the spin s but 
not on the valley η, namely ≡η sj J( /4)s

(0) (0). As a result, we obtain no net charge current but a pure spin current J(0), 
with its quantization axis taken to Sz. This stationary spin current consists of the equilibrium part Jeq

(0) that is inde-
pendent of the electric field E0 and the nonequilibrium part Jneq

(0)  that is quadratic in E0. The equilibrium spin 
current

π
μ= −

eJ B
(2)eq

(0)
2

2 5

is the axial counterpart of the chiral magnetic effect, sometimes referred to as the chiral axial magnetic or chiral 
pseudomagnetic effect49–51. It comes from all the occupied states below the Fermi level, which is robust against 
disorder but cannot be taken out of the sample. On the other hand, the nonequilibrium part is given as

π μ
τ
ω τ

= −
+

× ×
e vJ B E E4

3 (1 )
( ) ,

(3)neq
(0)

2
F
2

2

2

2 2 2 5 0 0

where τ is the relaxation time for all the relaxation processes, including the intravalley, intervalley, and spin-flip 
processes. This nonequilibrium spin current is carried by the electrons at the Fermi surface, and can be extracted 
out of the sample. Since this is the spin current that flows perpendicular to the electric field E0 and is quadratic in 
E0, we may call this effect the nonlinear spin Hall effect.

Origin of the nonlinear spin Hall effect.  This nonlinear spin Hall current can be regarded as the interplay 
effect between the regular Hall effect (RHE) and the anomalous Hall effect (AHE) as follows: Fig. 1(b) shows its 
schematic picture. At the first order in the electric field, the Lorentz force by the axial magnetic field shifts the 
distribution fsη(k) for each spin s and valley η to the direction of −η(B5 × E), which accounts for the RHE. For 
each k in this shifted distribution, the anomalous velocity, which accounts for the intrinsic AHE in various 
TRS-broken systems, is given as ηΩ× ×η η

ˆ~ ~ sv E E ks s
a , using the k-space Berry curvature Ωsη(k) = sηk/2k3 

around each Dirac point. Integrating the anomalous velocity over the whole k-space, its contribution to the cur-
rent can be qualitatively estimated as

∫ ∫π
η= − − × × ×η η η η

ˆ~ ~e d f s d f sj k v k k E k k k E B E
(2 )

( ) ( ) ( ) ( ),
(4)s s s s

a
3

3
a 3

5

which accounts for the nonlinear spin Hall current given in Eq. (3). In this sense, we can regard the nonlinear 
SHE found here as the combination of the RHE and the AHE, or the interplay between the real-space topology 
and the momentum-space counterpart. [The Lorentz force for the RHE is imprinted in the second term in Eq. (8), 
while the anomalous velocity for the AHE appears in the second term in Eq. (7); see Methods for details].

How to detect the nonlinear spin Hall current.  We are curious if the nonlinear spin Hall current 
obtained above can be observed experimentally. First, we estimate the typical magnitude of this spin current Jneq

(0) , 
by comparing it with other major spin currents, namely the equilibrium spin current Jeq

(0) given by Eq. (2), and the 
linear intrinsic spin Hall current σ= ×ω± ˆJ e E( )xy zint

( ) S
0 . As mentioned in Methods section, we explicitly supple-

ment the linear intrinsic spin Hall current here, which is not included in the present chiral kinetic theory analysis. 
Although ω±Jint

( ) driven by the AC electric field E(t) is alternating with the frequency ω, we shall compare it with the 
stationary spin currents to see which effect is the most dominant.

Using Eqs (2) and (3), the ratios among Jneq
(0) , Jeq

(0), and ω±Jint
( ) are given as

τ
μ μ

τ
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where Zω = 1 + ω2τ2. Here we employ the material parameters vF = 0.5 × 106 m/s and kD = 0.95 nm−1 observed in 
Na3Bi20, and use the typical values μ = 10 meV and τ = 1 ps. We introduce a lattice strain equivalent to the axial 
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magnetic field B5 = 0.3 T, which satisfies the semiclassical condition δε μ| |LL . Such a field can be generated in, 
for instance, a Cd3As2 nanowire that is twisted by the angle 180 degrees at the length μ~1 m34. In experimental 
studies, Cd3As2 nanowires of the diameter ~100 nm were found to be largely flexible against bending by 180 
degrees52,53, which implies that a nanowire may withstand the lattice strain generating such a large axial magnetic 
field. If an electric field E0 = 104 V/m alternating in frequency ω τ−



1 is applied to this system, the ratios among 
the induced currents are estimated as = .J J/ 0 33neq

(0)
eq
(0)  and = .ω±J J/ 0 15neq

(0)
int
( ) . From these ratios, we find that the 

nonlinear spin Hall current becomes sizable against the other two equilibrium spin currents under typical 
strengths of fields, which implies that the nonlinear spin Hall current is significant enough to be experimentally 
measured.

Next, let us check the orientation of the nonlinear spin Hall current and discuss how it can be detected exper-
imentally. We define z-axis as the centre of strain, i.e. B5 = B5êz, and introduce the electric field E0 tilted from B5 
by the angle θ, i.e. E0 = E0(cos θ êz + sin θ êx) [see Fig. 1(a)]. Then the nonlinear spin Hall current J(0)neq flows in 
parallel to

θ θ θ− × × = − .ˆ ˆB EB E E e e( ) sin (sin cos ) (6)z x5 0 0 5 0
2

As we can easily see from this equation, the nonlinear spin Hall current vanishes when E B0 5 (i.e. θ = 0, π). On 
the other hand, it is maximized when E0 ⊥ B5 (i.e. θ = π/2), flowing in parallel to B5 (z-direction). If E0 is at the 
intermediate angle, the spin current flows in x-direction as well as z-direction.

The detection method of the spin current depends on its direction. The z-component of the spin current, 
flowing parallel to the screw strain axis, can be easily extracted from the system by putting a spin-sensitive mate-
rial at the end of this axis. One can make use of a ferromagnetic metal or semiconductor, in which the injected 
spin current invokes a spin torque on the magnetization, leading to an oscillation or a switching of the magneti-
zation. Heavy metals such as Pt can also be used, in which the spin current is converted to a charge current via the 
ISHE. On the other hand, the x-component of the spin current can be measured without any such external probes: 
the spin current flowing in x-direction can induce a charge current in y-direction via the (intrinsic) ISHE in the 
TDSM itself. Using the spin Hall angle θSH = σxy

S /σxx, with σxx the in-plane longitudinal conductivity of the TDSM, 
the induced charge current can be given as θ= ×ˆj e JzISH

(0)
SH neq

(0) . The θ-dependence shown in Eq. (6) may be 
checked by these measurements, with sweeping the direction of the E-field.

Discussion
In this work, we have focused on a strained TDSM (e.g. Na3Bi, Cd3As2, etc.), and have demonstrated that such a 
system shows a significant nonlinear SHE, i.e. an external electric field induces a spin current perpendicular to the 
electric field as its quadratic response. This effect is described effectively by regarding the strain as the axial mag-
netic field B5, namely the valley-dependent magnetic field. The electron transport has been analysed semiclasi-
cally in terms of the chiral kinetic theory. The nonlinear SHE can be understood as the interplay effect between 
the RHE due to the axial magnetic field B5 and the AHE due to the finite Berry curvature in momentum space. 
This spin current reaches the magnitude comparable to the intrinsic spin Hall current under the electric field 
∼10 V/m4 , and can be successfully tuned via the gate voltage (electron chemical potential) and the strain (axial 
magnetic field). Our finding thus provides an efficient way to generate a rectified spin current out of an alternating 
electric field, which may be useful for spin injection in future spintronic devices.

Recent experiments successfully synthesized Cd3As2 nanowires with diameter of ~100 nm, which were found 
to be largely flexible against bending52,53. They also measured anomalous transport properties in those nanowires, 
namely the negative magnetoresistance arising from the chiral anomaly52 and the Aharanov–Bohm oscillations in 
conductance dominated by the Fermi-arc surface states53. These findings imply that the band topology of TDSM 
strongly affects the electron transport properties even in the nanowire geometry, from which we can expect that 
the strain-induced nonlinear SHE proposed in the present article can be realized in such nanowire systems.

We have so far treated the disorder effect in terms of a single relaxation time τ for simplicity. However, in a 
realistic TDSM, the intravalley, intervalley, and spin-flipping scattering processes should be characterised by dis-
tinct relaxation times. In particular, it is known that the O(k3) terms that become significant away from the DPs 
violate the conservation of spin Sz, which give rise to the spin-flip process in the presence of strong scatterers. We 
leave the microscopic treatment of such scattering processes as an open question here.

As we have mentioned in the beginning, since there is no term that violates the spin symmetry by Sz around the 
DPs, each spin block (up/down) of the topological Dirac Hamiltonian can be regarded as the Weyl Hamiltonian 
with broken TRS. Extracting a single spin block out of our analysis, it can also account for the transport in 
TRS-broken WSMs. In particular, in magnetic WSMs (e.g. Mn3Sn), an axial magnetic flux resides at a magnetic 
texture, such as magnetic domain walls, vortices, skyrmions, etc.54, and its effect on the electronic spectrum has 
been verified both analytically and numerically34,36,55. In the presence of such an axial magnetic field, our analysis 
implies that there arises the nonlinear Hall effect, inducing a charge current. While the general theory of intrinsic 
nonlinear Hall effect was established in terms of the momentum-space Berry curvature in the recent literature30, 
our setup also involves the real-space Berry curvature (axial magnetic field), to which their theory cannot be 
applied as it is. It will be another open question to find such theory with the Berry curvature involving the global 
phase space.

Methods
Chiral kinetic theory.  In order to deal with the electron transport driven by the normal and axial electro-
magnetic fields, we first need to understand the dynamics of an electron wave packet. The dynamics of its centre-
of-mass position r and its gauge-invariant momentum k measured from the DP is described by the semiclassical 
equations of motion56–59,
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ε Ω= ∇ − ×η η



r k k k( ) ( ) (7)s sk

= − − ×η η



e ek E r B (8)

for each spin s = ± and valley η = ± [Note that k in these equations corresponds to k − ηKêz in Eq. (1)]. Here 
Eη = E + ηE5 and Bη = B + ηB5 denote the effective electromagnetic fields for each valley. Under the alternating 
electric field E(t) = 2E0cos ωt and the lattice strain equivalent to the axial magnetic field B5, the effective electro-
magnetic fields are given by

η= + = .η
ω ω

η
−t e eE E B B( ) ( ), (9)

i t i t
0 5

One should note that there are several modifications from the fully classical (Newtonian) equation of motion: 
the electron energy is modified from its band dispersion ε(k) by the orbital magnetic moment msη(k) as ε η

~
s

(k) = ε(k) − msη(k)⋅Bη. The momentum-space Berry curvature Ωsη(k) gives rise to the anomalous velocity 
− k × Ωsη, which is the momentum-space counterpart of the Lorentz force −er × Bη. In the electron band of the 
TDSM, i.e. for ε(k) = vFk, the quantities mentioned above are given as

η ηΩ= = .η η
ˆ ˆs ev

k
s

k
m k k k k( )

2
, ( ) 1

2 (10)s
F

2

Since both of them are significant in the vicinity of the DPs, the nonlinear SHE discussed in this paper, which 
arises from these modifications, becomes stronger at lower Fermi level.

Based on the single-particle dynamics discussed above, we can describe the collective semiclassical dynamics 
of the electrons by the Boltzmann equation,

⋅ ∇ + ⋅ ∇ + ∂ =









η
η



 f t
df

dt
r k r k[ ] ( , , )

(11)
t s

s
r k

coll

for the electron distribution function fsη(r, k, t) for each spin s and valley η. The collision term  
(dfsη/dt)coll consists of various scattering processes contributing to relaxation; here we approximate 

τ= − −η η ηdf dt f t fr k k( / ) [ ( , , ) ( )]/s s scoll
eq  with a single relaxation time τ for simplicity, with which we incorporate 

spin relaxation and intervalley scattering processes as well as the intravalley process39. ε≡η ηf fk k( ) ( ( ))s s
eq eq  is the 

equilibrium distribution modified by the orbital magnetization. Here we work with the chemical potential μ > 0 
in the zero-temperature limit, which gives f eq(ε) = θ(μ − ε). We here require the spatial homogeneity of the sys-
tem, so that the r-dependence in fsη can be neglected.

By solving the kinetic equations [Eqs (7) and (8)] and the Boltzmann equation [Eq. (11)], the current for each 
spin and valley can be evaluated by

∫ π
= −η η ηt e d D f tj k k r k( )

(2 )
( ) ( , ),

(12)s s s

3

3

where r  is given as a function of k for each s and η by the solution of Eqs (7) and (8), and the factor 
Dsη(k) = 1 + eBη⋅Ωsη(k) accounts for the modification of the phase space volume. The net current, the spin cur-
rent, and the valley current can be obtained by combining those {jsη}. We estimate the current up to the first order 
in B5 and the second order in E0; details of the solution process are shown in the Supplemental Material. We 
should note that the intrinsic spin Hall current linear in E is not included in this formulation, since the locations 
of the DPs are not taken into account. In the field theory description, it is described by the Chern–Simons (or 
Bardeen–Zumino) terms40,51. However, since we are primarily interested in the nonequilibrium current in 
response to the electric field, we first ignore it and later supplement it in the final discussion.
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