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System performance evaluatio
n of the cobas t 711 and cobas
t 511 coagulation analyzers in routine laboratory settings
Steve Kitchena, Moniek de Maatb, Michael Naglerc, Robert Jonesa,
Anna Lowea, John Burdend, Kai Gronebergd and Gergely Rozsnyaid
Utility of coagulation analyzers in real-world settings

depends on characteristics that are often not studied

comprehensively. This study aimed to investigate the

analytical performance, system functionality, practicability,

consistency and throughput of two new automated

coagulation analyzers in routine laboratory practice. Real-

world settings were simulated in three major European

hemostasis laboratories and multiple assays were

performed in anonymized plasma samples in parallel with

routine clinical practice on the cobas t 711 (high-

throughput) and cobas t 511 (mid-throughput) analyzers

using activated partial thromboplastin time (aPTT), aPTT

Lupus, aPTT Screen, Antithrombin (AT), D-Dimer,

Fibrinogen, Prothrombin Time (PT)-derived Fibrinogen, PT

Owren, PT Rec (recombinant human thromboplastin

reagent) and Thrombin Time assays. Precision was tested in

a 21-day experiment and accuracy was compared with

reference methods of the same laboratory. A number of

experiments simulated challenging real-life situations.

Pearson’s correlation coefficient was more than 0.98 in all

assays. Across assays, coefficients of variation ranged from

0.0 to 1.5% for intermediate precision; 0.2 to 3.0% for

repeatability and 0.4 to 3.7% for total precision. Good

between-run comparability was seen when testing samples

under random conditions. Calculated maximum throughput
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Introduction
Coagulopathies comprise a broad group of hemostatic

disorders with various causes ranging from congenital to

trauma and pharmacotherapy related. Coagulopathies

share a common risk of serious and life-threatening

episodes of bleeding or thrombosis contributing to sig-

nificant morbidity and mortality [1–7]. Coagulation tests

are used widely in clinical practice for the screening,

diagnosis and assessment of coagulopathies, and also for

the therapeutic drug monitoring of anticoagulant thera-

pies [8–12]. Key parameters include prothrombin time

(PT), activated partial thromboplastin time (aPTT),

thrombin time (TT), fibrinogen and D-Dimer [13–23].

Indicators of the hemostatic function need to be accu-

rately, reliably and quickly measured to assist clinical

diagnosis and treatment of coagulation abnormalities

[24,25]. The availability of new-generation, fully auto-

mated, high-throughput coagulation analyzers offers
potential benefits toward meeting clinical need and

increasing accuracy while reducing errors [26].

The cobas t 711 and cobas t 511 analyzers (Roche Diag-

nostics GmbH, Switzerland) are new-generation, fully

automated coagulation analyzers. Both analyzers utilize

reagent cassettes offering automatic reconstitution of

lyophilized reagents, which is designed to maximize auto-

mation and programmability. The potential advantages

include increased precision and accuracy compared with

pipetting when manually reconstituting reagents,

increased walkaway time for operators and efficiencies

in scheduling sample runs [26]. Assays used for routine

coagulation testing with the cobas t 711 and 511 analyzers

include three different aPTT reagents (aPTT, aPTT

Lupus, aPTT Screen), AT, D-Dimer, Fibrinogen, PT-

derived Fibrinogen, PT Owren and PT Rec (recombinant

human thromboplastin reagent); their analytical perfor-

mance has been described in detail previously [26–29].
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The cobas t 711 and 511 analyzers are built on identical

technology and operating methodology, and differ only in

capacity and throughput, with the cobas t 711 a high-

throughput analyzer capable of running a maximum of

390 tests/h, and the cobas t 511 a mid-throughput analyzer

capable of running 195 tests/h. In addition, the cobas t 711

analyzer can be directly connected to laboratory automa-

tion and information technology systems, forming part of

integrated laboratory solutions.

While the analytical performance of the cobas t 711 and

cobas t 511 analyzers and the associated assays have been

demonstrated in controlled conditions, the applicability

of the system in real-world settings has not yet been

described. Determining the practicability, functionality,

throughput and consistency of analytic instruments is

vital to guide laboratory managers on their use. This

multicenter study aimed to evaluate the analytical per-

formance, functionality and reliability of the cobas t 711

and cobas t 511 analyzers under simulated routine-like

‘intended-use’ laboratory conditions.

Materials and methods
Study design
The study was conducted between January 2017 and April

2017 at three European teaching hospitals (Inselspital

University Hospital, Bern, Switzerland; Erasmus Univer-

sity Medical Center, Rotterdam, The Netherlands; Shef-

field Haemostasis and Thrombosis Centre, UK).

Anonymized residual sodium citrate (3.2%/0.109 mol/l)

plasma samples were evaluated on the cobas t 711

(high-throughput; max. 390 tests/h: all three centers)

and cobas t 511 (mid-throughput; max. 195 tests/h: UK

center only) analyzers, using a number of coagulation

assays (aPTT, aPTT Lupus, aPTT Screen, AT, D-Dimer,

Fibrinogen, PT-derived Fibrinogen, PT Owren, PT Rec

and TT; Roche Diagnostics, Switzerland) described in

detail previously [27,29]. All assays and analyzers were

used according to manufacturers’ instructions.

Independent ethics committee approval was obtained

before study initiation and the study was performed

according to the principles of the Declaration of Helsinki

and International Council for Harmonisation Good Clin-

ical Practice guidelines.

Reproducibility and quality control
A 5-day interlaboratory reduced scope reproducibility

survey was conducted using control material to confirm

comparable recovery levels between the three sites.

Quality control was performed daily throughout the study

prior to running experimental samples to ensure com-

pleteness, correctness, plausibility and validation of read-

ings. Dependent on the assay, two to three quality control

levels were used with an acceptability cutoff of �2 SDs

of defined analyte recovery target range, as per routine

laboratory practice.
Intermediate precision
Intermediate precision – within-laboratory, day-to-day

precision – was assessed as analytic performance over 21

days according to Clinical Laboratory Standards Institute

(CLSI) EP05-A3 guidelines. Quality control target value

recovery was assessed in selected control material. Two

runs daily of each quality control material were con-

ducted, with at least two quality control samples per test

using the coagulation assays described above (84 mea-

surements per material-test combination). Over the 21

days, each control sample measurement was performed

with all parameters from the same sample, to better

simulate routine conditions. Acceptance criteria included

system behavior as expected (i.e. processing, loading and

unloading without problems); sample handling as

expected (i.e. loading and unloading of sample racks,

handling of sample containers, all results available on

graphical user interface and uploaded to WinCAEv); and

coefficient of variances according to industry-standard

test-specific criteria for intermediate precision (Table

S1; Supplementary Materials, http://links.lww.com/

BCF/A72).

System precision
Precision – agreement between-run and within-labora-

tory series – was also assessed in several runs of a routine

simulation precision (RSP) experiment that tested for

systematic or random errors that may occur during ‘real-

life’ routine use by comparing recovery and imprecision

during randomized processing. This test was designed to

partially reflect sampling and testing sequences in each

laboratory, with that produced during batch analysis [30].

Reference runs using all 10 assays and the same request

panel from each sample (15 measurements) were fol-

lowed by a random part where the same samples were

tested, but both the sample order and the test requests

were randomized and spiked with provocations (e.g.

insufficient sample or reagent) to challenge the function-

ality of the analyzer (7–47 measurements depending on

test, to represent routine testing patterns). Acceptability

criteria included no random or systematic errors detected;

reproducibility during random part comparable with ref-

erence part; and system handling provoked variability

being within specification.

System consistency
Consistency – agreement in changing and challenging

situations – was assessed over several runs of a routine

simulation series (RSS) experiment that confirmed the

absence of random errors when running each analyzer

under simulated routine conditions [31]. The experiment

consisted of the routine simulation download (RSD) test

described below, followed by immediately running the

same samples in the same sequence representing various

sample concentrations over the analytical range. Results

�5% were considered acceptable with no further analysis
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required, while findings more than �5% required careful

assessment to identify route of deviation.

System throughput
Throughput was assessed in the RSD experiment that

replicated routine laboratory workflows and determined

the throughput of machines under ‘real-world’ usage.

This experiment evaluated the same test request pattern

and workload under seven different scenarios. The

detailed scenarios and outcomes for the RSD are shown

in Table S2 (Supplementary Materials, http://links.lww.

com/BCF/A72). Briefly scenarios A1–3 and B determined

the time required for all sample measurements per-

formed on the cobas t 711 or cobas t 511 analyzers,

according to various special conditions (e.g. quality con-

trol status time out on every application, optimization of

rack release times etc.); scenario C added automatic

hemolysis, icterus, lipemia (HIL) testing; scenario D

included provocations (e.g. foamy, clotted or closed sam-

ple tubes with pressure errors) performed to enable

reporting on machine performance under stress; and

scenario E determined walkaway time (i.e. time the

analyzer can run unattended) with the maximum number

of samples.

System practicability
Practicability and usability were assessed via a user

questionnaire. Operators were asked to rate both the

cobas t 711 analyzer and their routine laboratory analyzer

(score 1–10) for the following domains: general, general

aspects of software, processing of samples, test reagents,

calibration, quality control and maintenance. The fea-

tures of each domain are shown in Table S3 (Supplemen-

tary Materials, http://links.lww.com/BCF/A72).

Data analysis
All assay output was directly captured, statistically ana-

lyzed and archived by WinCAEv, a Code of Federal

Regulations Title 21 Part 11-compliant electronic data

capture and statistical analysis software developed and
Table 1 Analytical performance of the cobas t 711 and cobas t 511 an

Intermediate precision (% CV) Repeatability

Assaya cobas t 711b cobas t 511c cobas t 711b c

aPTT 0.0–0.5 0.2–0.3 0.2–0.4
aPTT Lupus 0.1–0.7 0.4–0.6 0.3–0.6
aPTT Screen 0.0–0.6 0.0–0.3 0.3–0.9
Antithrombin 0.0–1.9 0.9–1.4 1.3–1.8
D-Dimer 0.0–0.0

0.0–0.0
0.6
1.0

1.4–1.5
0.6–1.5

Fibrinogen 0.0–1.5 0.0–1.0 1.2–3.0
PT-derived Fibrinogen 0.0–0.0 0.8 1.5–2.5
PT Owrend 0.0–0.9 0.6–1.3 0.4–1.3
PT Recd 0.0–0.6 0.0–0.4 0.3–1.1
Thrombin Time 0.6–0.9

0.0–1.2
0.9
0.7

1.0–2.0
1.1–2.3

aPTT, activated partial thromboplastin time; CV, coefficient of variation; INR, internation
reagent. a Results for control samples with the same acceptance criteria are pooled,
separately (D-dimer and thrombin time). b cobas t 711 analyzer tested at three sites. c
validated for Roche-sponsored studies [30]. Where pos-

sible, discordant values and unexpected hardware or

software behavior were assessed to determine if samples

or experiments should be rerun. Outliers that could not

be omitted due to clearly identified and documented

errors (e.g. transcription, calculation errors etc.) were

included in statistical analyses. System-related outliers

were always included in the statistical analysis set, with

elucidating information on the root cause added.

The coefficient of variance was calculated for repeatabil-

ity and intermediate/total precision and compared against

prespecified acceptance ranges (Table S1; Supplemen-

tary Materials, http://links.lww.com/BCF/A72). For AT

only, SD was calculated at less than 80% activity as it was

defined at a level that was still accurate at the medical

decision point of 70–80%, where coefficient of variance

would be too great. Coefficient of variances and analyte

recoveries were calculated for RSP experiments, with an

acceptance criterion of CVrandom� 1.5�CVbatch. Poten-

tial system malfunction was defined by an analyte recov-

ery per aliquot during random part more than 10% of the

batch mean. In RSD experiments, measured average

throughput, calculated maximum throughput and

median sample processing time were calculated. For

RSS, slope and intercept were calculated according to

Passing–Bablok regression analyses and Pearson’s r cor-

relation coefficient was estimated; proportion of recover-

ies in the following ranges were reported: 5, þ5–10, �5–

10, þ10–15, �10–15%, more than þ15%, more than

�15%. Measures of practicability derived from operator

questionnaire results were expressed as average score

weighted based on responder-reported importance

(weighted averages).

Results
Intermediate precision
Analytical performance of the cobas t 711 and cobas t 511

analyzers for the 10 coagulation assays studied in the 21-

day precision analysis are presented in Table 1. All values
alyzers for each coagulation assay (21-day precision)

(% CV) Total precision (% CV)

obas t 511c cobas t 711b cobas t 511c Acceptance criteria (%)

0.3–0.4 0.4–0.7 0.4–0.6 5.0
0.4–0.5 0.6–1.4 0.8–1.3 5.0
0.6–1.0 0.5–1.3 1.0–1.3 5.0
0.9–1.0 1.0–2.7 1.4–2.2 5.0
1.5
0.9

1.5–2.7
1.0–2.0

2.4
2.0

6.0
4.0

1.7–2.6 1.8–3.6 2.0–3.7 5.0
2.1 2.3–2.9 2.2 7.0
0.7–0.9 1.0–2.2 1.8–2.2 5.0
0.3–0.5 0.5–1.8 0.6–1.8 5.0
1.1
1.4

1.5–2.1
1.9–2.5

1.6
1.8

5.0
8.0

al normalized ratio; PT, prothrombin time; Rec, recombinant human thromboplastin
and results for control samples with different acceptance criteria are presented
cobas t 511 analyzer tested at one site. d Both INR and time units summarized.
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were within the prespecified acceptance criteria (Table

1). Across assays, coefficient of variances for intermediate

precision ranged from 0.0 to 1.5% on the cobas t 711

analyzer, and from 0.0 to 1.3% on the cobas t 511 analyzer;

coefficient of variances for repeatability ranged from

0.2 to 3.0% on the cobas t 711 analyzer, and from

0.3 to 2.6% on the cobas t 511 analyzer; and coefficient

of variances for total precision ranged from 0.4 to 3.6% on

the cobas t 711 analyzer, and from 0.4 to 3.7% on the

cobas t 511 analyzer.

System precision
Up to six RSP runs were performed in each laboratory in

the RSP experiment: site 1 cobas t 711 analyzer, 3 runs/

�1500 samples/�5000 measurements; site 2 cobas t 711

analyzer, 3 runs/�700 samples/�3500 measurements; site

3 cobas t 511 analyzer, 2 runs/�330 samples/�1500

measurements; site 3 cobas t 711 analyzer, 4 runs/

�1500 samples/�5000 measurements.

Across centers, imprecision was less than 1% for the

majority of assays, with all batch and random part results

within the allowed ranges (within-run precision and

intermediate precision limits, respectively). Overall per-

formance for random part coefficient of variances never

exceeded the intermediate precision specifications

(Fig. 1). Minor variation between sites, with more fre-

quently seen imprecision in site 3, was attributed by

investigator to the use of older samples (up to 48 h).
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Where CVrandom exceeded CVbatch by greater than 1.5

times, coefficient of variances were always within the

predefined specification for intermediate precision. All

recovery levels during the random part of the analysis

(simulating systematic or random errors occurring during

routine use) were within a �10% range (Fig. 2a–d).

In ‘routine-like’ conditions, the measured average

throughput for the cobas t 511 analyzer was 124 tests/

h, and for the cobas t 711 analyzer, 303–340 tests/h. The

calculated maximum throughput was 197 tests/h for the

cobas t 511 analyzer compared with 387–402 tests/h for

the cobas t 711 analyzer.

System consistency
In the RSS experiment, good between-run comparability

was seen when testing single samples under random

mode conditions (N¼ 1370 samples: site 1 cobas t 711

analyzer, n¼ 650; site 2 cobas t 711 analyzer, n¼ 280; site

3 cobas t 511 analyzer, n¼ 240; site 3 cobas t 711 analyzer,

n¼ 200). Results from the Passing–Bablok regression

analyses are shown in Table 2, with site-specific correla-

tion graphs in Figs. S1–S4 (Supplementary Materials,

http://links.lww.com/BCF/A72).

The vast majority (95%) of the 3180 measurements

conducted across the three sites met the acceptance

criteria of �5% of expected result. The distribution of

scores was narrow in this analysis, with 3.2 and 1.1% of
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Fig. 2
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Table 2 Comparison of technical accuracy assessed by correlation and regression coefficients for samples run on the cobas t 711 (three
study sites) and cobas t 511 (one study site) analyzers for each assay

Correlation (Pearson’s r) Slope (Passing–Bablok) Intercept

Assay cobas t 711a cobas t 511b cobas t 711a cobas t 511b cobas t 711a cobas t 511b

aPTT 0.992–1.000 0.980 0.951–0.987 0.937 0.132–0.337 0.444
aPTT Lupus 0.997–1.000 0.998 0.950–1.002 0.980 �0.100–1.21 �0.052
aPTT Screen 0.998–0.999 0.999 0.985–1.005 1.000 �0.286–0.454 0.000
D-Dimer 1.000–1.000 1.000 0.992–1.000 1.002 �0.00642–0.00799 0.00145
Fibrinogenc 0.994–0.999 NR 1.006–1.032 NR �12.1–0.0774 NR
PT-derived Fibrinogen 0.995–0.999 0.998 0.987–1.000 0.993 �2.00–2.75 0.0987
PT Owren 0.999–1.000 1.000 1.000–1.004 1.000 �0.0500–0.0133 0.100
PT Rec 1.000–1.000 1.000 0.991–1.000 0.988 0.000–0.0313 0.0702
Thrombin Time 0.967–0.997 0.952 0.968–1.023 1.040 �0.476–0.252 �1.18

Reference standard was that of routine machine used in each laboratory and acceptability criteria for each assay are shown in Table S1, http://links.lww.com/BCF/A72.
aPTT, activated partial thromboplastin time; NR, none reported; PT, prothrombin time; Rec, recombinant human thromboplastin reagent. a cobas t 711 analyzer tested at
three sites (except Fibrinogen, two sites). b cobas t 511 analyzer tested at one site. c Comparison not performed on cobas t 511 analyzer.
samples falling into less than –5% and more than 5%

categories, respectively, and less than 1% of samples

falling into other categories. Investigator-reported expla-

nations for results in the more than �5% categories

included age of samples (>24–48 h) and precision of

assays. No system malfunctions were observed.

System throughput
In the RSD experiment, each laboratory used their own

daily routine’s workload from a typical day and tested the

same test request pattern and workload under different

conditions for each scenario. The results were broadly

comparable between centers (Table S4; Supplementary

Materials, http://links.lww.com/BCF/A72). Of note, the

addition of HIL testing in scenario C impacted both

throughput and the time the racks spent on the instru-

ment (from around 10 min without HIL vs. up to 38 min

with HIL). Similar outcomes were observed in scenario B

when replacing PT Rec with PT Owren (around 10 vs.

38 min). The maximum walkaway time measured with

continuous-feed rack on the cobas t 711 analyzer was 4 h

42 min compared with 1 h 1 min on the cobas t 511

analyzer with manual rack loading. The measured

throughput of the cobas t 711 instruments varied between

90 and 273 tests/h, with a calculated throughput of around

200–400 tests/h. For the cobas t 511 instrument the

measured throughput was 120–150 tests/h and the calcu-

lated throughput was 168–189 tests/h. All provocations

were handled by the operators without difficulty and did

not cause disruption to the routine. All the erroneous

samples were correctly identified via alarm messages.

System practicability
Weighted average ratings by domain from the operator-

completed practicability questionnaire are presented in

Fig. 3. Based on the responses, 98% (898/915) of all

questions were graded as met or exceeded expectation.

Among areas where operators were less satisfied, these

could be explained by the age of samples used in the

study (e.g. >24 h causing closed sample tube pipetting
issues), which would not be seen in standard laboratory

practice, or easily addressable through planned software

updates (e.g. prominence of alarms and notifications).

Discussion
The current study assessed analytical performance, func-

tionality and reliability of the cobas t 711 and cobas t 511

coagulation analyzers under simulated routine laboratory

conditions. Observed analytical performance was excel-

lent, with coefficient of variances for repeatability of 3.0%

or less and coefficient of variances for intermediate

precision and total precision of 1.5 and 3.7% or less,

respectively. Despite their increasing use, sigma scores

were not calculated in the current study. Instead, we used

reference specifications from the cobas t 711 assays’

multicenter evaluation studies, where precision and accu-

racy assessments follow CLSI guidelines, and do not

prescribe the use of sigma metrics. Furthermore, recent

evidence questions the utility of the six-sigma method for

assessing hemostatic assay performance [32]. For this

reason we followed statistical methods outlined in the

respective CLSI guidelines and have presented descrip-

tive parameters of variation. The acceptance criterion

used in this analysis was an upper percentage limit, and

observed values were consistent with investigator expec-

tations and data from similar analyzers. No systematic or

random errors were detected in the system precision

(RSP experiment) analysis. Imprecision was less than

1% for the majority of assays used and recovery levels

were within acceptance criteria. In the RSD test, both

analyzers demonstrated correct system functionality and

an acceptable number of hardware issues. There was

good comparability between runs using single samples

under random mode conditions in the RSS test, with

near-perfect correlation for all comparisons and few

deviations which were attributable to precision of assays.

Finally, system practicability determined by user survey

met or exceeded operator expectations. Previous studies

have described the excellent analytical precision of assays

used on the cobas t 711 and cobas t 511 analyzers

http://links.lww.com/BCF/A72
http://links.lww.com/BCF/A72
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Fig. 3
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compared with existing commercially available methods

[26,27,29]. Our results complement and build on these

previous data by further demonstrating consistency in

analytical performance with the two analyzers and

user satisfaction.

Our results demonstrated equivalence between the cobas

t 711 and cobas t 511 platforms. This was to be expected,

as both systems are built from functionally identical

components and implement identical assay processes

using the same reagents and disposables. The platforms

differ only with respect to throughput. The cobas t 711 –

a high-throughput analyzer capable of running a maxi-

mum of 390 tests/h according to manufacturer specifica-

tions – had a calculated maximum throughput for the

equivalent scenario in our study (PT/aPTT only) of 396

tests/h at one site, and an average throughput of 303–340

tests/h in routine-like conditions across assays and sites.

In comparison, the cobas t 511 – a mid-throughput

analyzer capable of running a maximum 195 tests/h –

had an average throughput of 124 tests/h in routine-like

conditions. These results compare favorably with data
describing other high-throughput automated analyzers

[33–35], and offer potential benefits in terms of increased

efficiency and capacity in laboratories.

Of particular note in this study, the high reagent loading

capacity with the cobas t 711 analyzer resulting in less

frequent reagent top-up required, coupled with the auto-

matic reagent reconstitution, means a reduced technician

daily workload and increased laboratory efficiency. In

addition, the potential walkaway time of several hours

seen with the cobas t 711 analyzer will be of benefit for all

laboratories with regards to resource management and

increasing efficiency.

The current analyses were conducted in a simulated

real-world, routine setting to test instrument perfor-

mance under stress, beyond the clinical conditions for

precision testing in CLSI guidelines. In addition, the

sites selected for this study represent high-workload

core laboratories for large teaching hospitals. These

settings are high case-load with broad patient popula-

tions across emergency medicine and chronic care
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settings, offering good external validity to these data in

the real world. One limitation of this study that should

be considered when interpreting the results is the lack

of comprehensive standardized method comparison

with another device. As this study was only conducted

to determine system behavior of the two analyzers in a

real-world setting, no conclusions can be made regard-

ing superiority or inferiority to other available laboratory

methods; further studies may be warranted in this

instance. In addition, while not a limitation of this study

design, current data describe only the analytic perfor-

mance of the analyzers and not their clinical perfor-

mance (e.g. ability to detect coagulation factor

abnormalities).

Conclusion
In conclusion, this multicenter study confirmed the ana-

lytical performance, functionality and reliability of the

cobas t 711 and cobas t 511 analyzers when used in

simulated routine laboratory conditions. Both analyzers

are suitable for the accurate and reliable measurement of

coagulation parameters in routine clinical practice and

offer high-workload core laboratories options and advan-

tages over existing methodologies.
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