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THE BIGGER PICTURE The transition to a sustainable energy system is challenging for the operation and
stability of electric power systems as power generation becomes increasingly uncertain, grid loads in-
crease, and their dynamical properties fundamentally change. At the same time, operational data are avail-
able at an unprecedented level of detail, enabling new methods of monitoring and control. To fully harness
these data, advanced methods from machine learning must be used.
In this paper, we present explainable artificial intelligence (XAI) as a tool to quantify, predict, and explain
essential aspects of power system operation and stability in three major European synchronous areas. We
focus on the power grid frequency, which measures the balance of generation and load and thus provides
the central observable for control and balancing. Combining XAI with domain knowledge, we identify the
main drivers and stability risks, while our model and open dataset may enable further XAI research on power
systems.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Stable operation of an electric power system requires strict operational limits for the grid frequency. Fluctu-
ations and external impacts can cause large frequency deviations and increased control efforts. Although
these complex interdependencies can be modeled using machine learning algorithms, the black box char-
acter of many models limits insights and applicability. In this article, we introduce an explainable machine
learning model that accurately predicts frequency stability indicators for three European synchronous areas.
Using Shapley additive explanations, we identify key features and risk factors for frequency stability. We
show how load and generation ramps determine frequency gradients, and we identify three classes of gen-
eration technologies with converse impacts. Control efforts vary strongly depending on the grid and time of
day and are driven by ramps as well as electricity prices. Notably, renewable power generation is central only
in the British grid, while forecasting errors play a major role in the Nordic grid.
INTRODUCTION

The power grid frequency plays a central role for power system

control, as it reflects the balance of power generation and de-

mand.1 An oversupply of power leads to a frequency increase,

while a shortage causes a frequency decrease. Large frequency

deviations correspond to large power imbalances, which
This is an open access article und
threaten system stability andmay lead to large-scale blackouts.2

Frequency stability is regarded as a major challenge for the tran-

sition to a sustainable energy system because renewable power

sources do not provide an intrinsic inertia.3 Understanding the

emergence of large frequency deviations is therefore essential.

Deviations from the reference frequency of 50/60 Hz have

distinct causes, which are in turn modified by the complex
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interplay of different elements of the energy system. For

example, changes in power generation due to electricity trading

intervals causes regular frequency jumps,4 the magnitude of

which depends on several technical parameters.3,5 Fluctuating

wind and solar power6,7 or singular load patterns due to societal

events8 create frequency fluctuations on different scales. To

guarantee frequency stability in such a complex and uncertain

environment, transmission system operators (TSOs) intensively

monitor the system and allocate expensive control reserves as

necessary. An improved understanding of the frequency dy-

namics and external influences could greatly facilitate control ef-

forts and contribute to power system stability. While several

studies have investigated univariate correlations to quantify the

impact of individual features,9–11 a comprehensive, data-based

analysis is lacking.

Modern machine learning (ML) methods are well suited to this

task as they can handle a large number of features and large vol-

umes of data. In recent years, the volume of publicly available

energy system data has grown steadily, including frequency re-

cordings12,13 and data on a variety of external features, such as

generation and load time series.14,15 An optimal basis for

analyzing and predicting grid frequency with data-driven models

therefore already exists.16 However, complex ML models do not

provide insights on the mapping of input to output.17,18 This is

particularly problematic for critical infrastructures such as power

systems, where the black box character poses a security

risk.19,20

Approaches using explainable artificial intelligence (XAI) could

change this. XAI is a quickly growing research field, which covers

inherently transparent ML models as well as post-modeling ex-

planations for black box models.21 Shapley additive explana-

tions (SHAP) values are an example of post-modeling explana-

tions, offering a method of measuring feature effects and

avoiding inconsistencies present in other approaches.22,23 In

particular, SHAP values have certain desirable properties, such

as additivity, efficiency, and symmetry. SHAP values can be

quickly computed for gradient boosted trees,24 which in turn

offer a powerful nonlinear modeling and are particularly suited

to tabular data. The combination of tree-based models and

SHAP values is already widely used, with applications ranging

frommedicine25 to geoscience.26 In contrast, only a few applica-

tions of this methodology have been presented in the field of en-

ergy systems analysis to date: for example, to explain solar po-

wer forecasts,27 transient security assessments,28 or power

project failures.29

Here, we present an explainable ML model based on gradient

boosted trees for selected indicators of frequency stability, and

we evaluate its predictive power for three grids in Europe: Con-

tinental Europe (CE), the Nordic area, and Great Britain (GB). We

demonstrate the benefits of explainability via SHAP values,

ranging from coarse-grained global feature importances to

detailed dependencies and finally to fine-grained interactions

between different external features. In particular, we quantify

the impacts of generation and load ramps on the rate of change

of frequency (RoCoF) at the beginning of each hour. SHAP

values explain the different impacts and roles of different gener-

ation technologies. We use aggregated SHAP values to analyze

efforts to control generation, which vary strongly depending on

the grid and time of the day. We then investigate enduring fre-
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quency deviations, which can be attributed to systemic power

imbalances, and discuss the role of solar power generation. As

data, we utilize the hourly time series of four stability indicators

(model outputs or targets) and 66 external features (model in-

puts) for the years 2015–2019 (see also our Zenodo30 repository).

Our approach complements established simulation-based

methods that predict frequency deviations on the basis of load

and generation forecasts. Although simulations can be very ac-

curate, they are reliant on the quality of input data, underlying

forecasts, and specific parameters. Data-driven models can

reveal additional driving factors, unknown effects, and emerging

risks and thus complement and improve existing simulations.

For instance, our analysis highlights the role of forecasting er-

rors, which varies depending on the grid.

The next two sections of this paper present the four frequency

stability indicators and our ML model. Then, the most important

features in each synchronous area are identified before the influ-

ence on generator ramps—in particular, on RoCoF predictions—

are discussed and nonlinear feature dependencies are revealed.

We go on to demonstrate how SHAP analysis reveals feature in-

teractions before concluding with a discussion.

RESULTS

Frequency stability: Indicators and influences
The power grid frequency fluctuates on various timescales,

ranging from seconds to weeks.31 In our model, we aggregated

frequency deviations to hourly indicators, which are directly rele-

vant for power system stability (Figure 1; experimental proced-

ures). We analyzed the maximum frequency deviation within

the hour (nadir)32 and the RoCoF,32 which are of central rele-

vance for grid monitoring and control. Nadirs above a threshold

level indicate immediate danger and can be counteracted with

measures such as load shedding. High RoCoFs are dangerous

because control actions require a few seconds to take effect.

In addition, we evaluated two integrated stability measures to

account for the duration of frequency deviations. We character-

ized the variability of hourly time series using the mean square

deviation (MSD) from 50 Hz. The MSD also indicates the total

(primary) control effort, meaning that a large MSD reflects high

operational costs.33 Finally, we evaluated the integrated fre-

quency deviation (integral), which is proportional to themean de-

viation within the hour. Large integrals correspond to a system-

atic imbalance between the hourly power generation and the

demand. Regional differences in the grid frequency within a syn-

chronous area are small during normal operation and are typi-

cally damped out after several seconds.34,35 Although we used

local grid frequency measurements, the above indicators char-

acterize frequency stability in an entire synchronous area.

We evaluated these four indicators on an hourly basis, as this

timescale is central for power system operation.37 Electricity is

traded predominantly in blocks of one hour, and generation is

adapted at the beginning of each hour, leading to deterministic

patterns in frequency.4 When the load decreases continuously

during an hour, but the dispatch is set to the hourly mean, then

power is scarce at the beginning of the hour and the frequency

drops. As a consequence, frequency deviations show a pro-

nounced daily profile, which we use later as a null model to eval-

uate prediction performance. Another reason for choosing to



Figure 1. Overview of our explainable ML model

From right to left: using publicly available external features from the ENTSO-E transparency platform,36 such as load ramps or generation ramps, a gradient tree

boosting ML model was constructed to predict indicators of frequency stability. The model was then interpreted using SHAP values, which quantify the effect of

the features on the model output in relation to a base value (see experimental procedures). The SHAP value of each feature is shown at the bottom of the figure,

separated by white arrows; only the most important features are named. Together with the base value, positive (red) and negative (blue) SHAP values add up to

the model prediction. The data represent a sample hour in 2016 from Continental Europe.
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evaluate on an hourly basis is that most external features are only

publicly available at an hourly resolution.14

The assessment of frequency stability indicators convention-

ally focuses on the transient response after amajor disturbance.1

Many model-based simulation studies have investigated the

effects of various parameters on the frequency response, in

particular the effect of inertia,38 as well as effects on the proper-

ties of the load-frequency control system.10 In recent years,

ambient and deterministic frequency fluctuations have received

more attention in the context of model-based simulations.

Studies have highlighted the influence of inertia, control system

parameters,5 and intermittent wind power feed-in39 on the fre-

quency statistics. Deterministic frequency deviations (DFDs)

have been studied using dynamical models4 and stochastic

models40 revealing the importance of the daily load evolution

and generation jumps caused by electricity trading. The main

limitation of the simulation approach is that data and parameters

are often not publicly available to accurately model all interac-

tions within the power system. For example, load-frequency

control systems are operated by individual TSOs, and parame-

ters may have been disclosed to other TSOs.41 Thus, simplified

assumptions are used, which often do not reflect effects present

in real-world data.

Over the last few years, comprehensive datasets have

become publicly available, enabling an empirical analysis of po-

wer system frequency stability.13,35 Most data-driven studies

focus on the impact of a single isolated feature and resort to a

linear correlation analysis. For instance, studies have quantified
the correlations between different measures of frequency quality

and the load value and ramps in the Nordic grid,11 wind power

generation in the Irish grid,9 load ramps in the British grid,10

and societal events coinciding with large frequency deviations.8

A correlation between load and solar ramps as well as trading

volumes reflects the role of solar power in power balancing.42

The relation between wind power generation and large fre-

quency increments in the CE grid has been studied using condi-

tional probabilities by Haehne et al.7 Although existing studies

provide us with essential insights into power system operation

and frequency stability, they are limited in two ways. Firstly,

linear correlation analyses cannot capture nonlinear depen-

dencies andmay thus underestimate or even overlook important

effects. Secondly, only one feature/covariate is used in most

cases, and the observed effects are not adjusted for other vari-

ables. This is problematic when features are correlated, e.g.

due to confounding. Modern ML methods can capture multiple

dependencies and thus provide more accurate results.16

An explainable model for frequency deviations
We developed an explainable ML model to predict indicators of

frequency stability from external features (Figure 1; experimental

procedures). We used gradient tree boosting (GTB), which pro-

duces nonlinear models with state-of-the-art performance for

manyML applications43 while enabling a fast and efficient calcu-

lation of SHAP values to explain the predictions.24 We fed our

model with physically meaningful features based on load, gener-

ation, and electricity price time series. Our data included both
Patterns 2, 100365, November 12, 2021 3
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day-ahead available features, such as the day-ahead predicted

load change (‘‘load ramp day-ahead’’) and ex post available fea-

tures, such as the error between the day-ahead forecast and the

actual total generation change (‘‘forecast error generation

ramp’’). Finally, we computed SHAP values to quantify how

each feature contributes to the model output. For example, in

Figure 1 (bottom), the feature ‘‘load ramp day-ahead’’ has a

negative contribution (blue), thus causing the predicted nadir

to be lower than its average. SHAP valuesmake local predictions

more transparent and enable aggregated insights into global

feature effects, dependencies, and interactions. However, it

should be noted that SHAP values do not guarantee causal

relations (see experimental procedures for a more detailed

discussion).

Based on its R2 score, our model outperformed the daily

average profile of the stability indicators, which is an important

system-specific null model (experimental procedures and sup-

plemental experimental procedures S5). We achieved perfor-

mances 3.7 (CE), 7.6 (Nordic), and 16.3 (GB) times higher than

the daily profile, thus indicating additional important depen-

dencies. Restricting the full model to day-ahead available fea-

tures resulted in similar performance gains of 2.6 (CE), 3.0

(Nordic), and 8.9 (GB), which opens the possibility of predicting

stability indicators a day ahead. The ability to include ex post

available features, such as forecast errors, was particularly

beneficial in the Nordic area. Here, the full model performed

2.6 times better than the restricted day-ahead model. This indi-

cates the importance of forecast errors for the Nordic frequency

dynamics, which we examine in the next section.

Main features affecting frequency deviations
We demonstrated our model explainability on the coarse-

grained level of global feature importances, which characterize

how much a certain feature affects the hourly frequency stability

indicators within the trained model (Figure 2).

In the RoCoF model, only a few features dominated: mainly

generation ramps from hydropower and load ramps. The impor-

tance of hydropower generation ramps relates to their large

ramping speed, which we discuss below. In the Nordic area,

the total day-ahead generation ramp is much more important

than load ramps for the RoCoF. This suggests that changes in

power export and storage may be relevant here, as these are

not represented in the load for the area.

The nadir was primarily affected by ramps and their respective

forecasting errors. In CE, the day-ahead load rampwas themost

important feature. This reflects the importance of DFDs, which

are strongly correlated to the direction of the load ramps.4 In

the Nordic grid, the forecast errors of generation and load

ramp were by far the most important features, partly explaining

the large performance gain when ex post data were included in

the model (see above). In contrast, there were many features

of almost equal importance in the British nadir model. Here,

wind power ramps and solar ramp forecast errors were among

the five most important features. This indicates the importance

of renewables for frequency deviations in GB.

TheMSD behaved similarly to the nadir in CE and in the Nordic

grid, with some subtle differences. Load ramps were the most

important feature in CE. Forecasting errors again dominated in

the Nordic grid, but load and hydropower generation ramps
4 Patterns 2, 100365, November 12, 2021
also played a role. A different situation was found in GB. Day-

ahead prices dominated the MSD prediction, with some genera-

tion forms (coal and nuclear) coming in at a distant second, while

generation ramps did not significantly contribute. These differ-

ences point to a more complex behavior of the MSD, which we

further discuss below.

Finally, the integral was largely affected by forecasting errors

for load and generation ramps, which caused long-lasting power

mismatches. This was particularly evident in the Nordic grid,

where other features were not as important. In GB, wind power

ramps were ranked highly, confirming the importance of renew-

ables. In CE, solar power generation and ramps, as well as nu-

clear power ramps, were relevant for the prediction. We investi-

gated how the interaction of these two distinct generation types

explain model variance.

In summary, CE exhibited strong DFDs that were connected to

hourly load and generation ramps. This is consistent with previ-

ous results4,41 (Figure S10). Nordic frequency deviations were

strongly connected to forecasting errors, which is in line with

Nordic TSOs reporting forecast errors as a driver.44 In GB, hourly

DFDs were less important (supplemental experimental proced-

ures S4) and frequency deviations were mainly affected by re-

newables, i.e. their fluctuations and forecast errors (cf. National-

grid ESO45). The total synchronous generation, which

approximates the inertia in ourmodel (experimental procedures),

affected the British frequency dynamics only in extreme situa-

tions where there was very low inertia (supplemental experi-

mental procedures S6). Despite the importance of reduced

inertia in renewable energy systems,3,45 our model showed

that the average effect of inertia on the aggregated stability indi-

cators is negligible (Figure 2). This was consistent with other

studies on aggregated frequency fluctuations (cf. Vorobev

et al.5), which found that inertia is important for extreme events

but aggregated dynamics are not. It should be noted that we

focused on frequent daily fluctuations and stability concerns,

which are highly relevant for TSOs and for reducing daily opera-

tional costs.33 This supplements studies focusing on blackouts

and cascading failures.46

Characterizing the effect of generation ramps
Fast generation ramps significantly affect the hourly RoCoF. For

this reason, we went beyond mean feature importances and

examined the direction of these dependencies using SHAP

values (Figure 3). The effect of ramps is mostly monotonic,

meaning that a feature effect either increases or decreases

monotonically with the feature value (Figures 3A–3C). Remark-

ably, the direction of the dependency varies depending on the

type of generation and the grid. As expected, hydropower gen-

eration ramps were consistently positively correlated (see Fig-

ure 3D for CE). The dependency of hard coal ramps for CE

was the opposite to the dependency for GB and the Nordic grid.

The observed differences between the generation types can

be explained in terms of the relative ramping speed of a genera-

tion type within a respective area (see experimental procedures

on how this speed is estimated). In the Nordic grid, hydropower,

a technology capable of fast ramps, is essential and all other

generation types must be considered slow in comparison. In

GB and CE, non-hydropower dominates the generation mix

and technologies with slower ramps than hydropower plants



Figure 2. Most important features for predicting frequency stability

The feature importance in our model is measured by the mean absolute SHAP value. The union of the five most important features for each stability indicator and

area is shown (see experimental procedures). The importance rank of the five most important features for each area is given above the corresponding bar. While

forecast errors and load and generation ramps have a high relative importance, the total synchronous generation is not among the five most important features

and its average effect is therefore negligible.
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but ramps faster than other generation types play important

roles. Notably, hard coal is one of the slow generation types in

GB but one of the fast types in CE due to the importance of nu-

clear and lignite generation in CE, which are even slower than

coal. We categorized the generation types using SHAP values

for the generation ramps to predict the RoCoF and relative ramp-

ing speeds (Figures 3D and 3E). We found that fast generation

ramps drove the RoCoF. A positive ramp was associated with

more positive frequency jumps. In contrast, ramps of slow gen-

eration types offset the RoCoF, leading to a negative correlation.

The only exception here was the behavior of gas power plants in

GB, which showed a negative correlation despite being fast. This

is due to their role as the prime source of balancing reserve in

GB.47 To summarize, the ramps no longer drove the RoCoF,

but the RoCoF drove the ramps.

Notably, a model-agnostic data analysis does not produce

such consistent results, as our features are strongly correlated
(experimental procedures). For example, the Pearson correlation

coefficient between nuclear ramps and RoCoFs in CE is positive

(supplemental experimental procedures S3). Instead, the SHAP

framework indicates a negative relationship, which we consis-

tently explain with relative ramping speeds.

Relating large control efforts to nonlinear dependencies
Frequency stability indicators often exhibit a complex nonlinear

dependency on the features. Using the MSD, an indicator for

the (primary) control effort,33 as an example, we found that the

daily profiles of the MSD differed strongly between the three

grids (Figure 4). These differences were well reproduced by the

ML model and were explained using daily aggregated SHAP

values (experimental procedures).

In CE, the control effort peaked around midnight (Figure 4A)

due to the nonlinear effects of negative load ramps. Details on

this relation are shown in a dependency plot (Figure 4D). Load
Patterns 2, 100365, November 12, 2021 5
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Figure 3. Effect of generation ramps on the RoCoF

(A–C) Examination of the effects of dispatchable, i.e., weather-independent, generation technologies, which generally affect the hourly RoCoF due to their gradual

change at the beginning of (hourly) trading intervals.4 The bee swarm chart depicts the SHAP effects on the RoCoF in the Continental Europe (A), the Nordic (B),

and the Great Britain (C) grid areas. For each area and generation type, we normalized the SHAP values by their maximum absolute value to improve visibility.

Each colored dot represents one time step in the dataset and the dots pile up vertically to indicate their density on the x axis. The figure only examines generation

ramps with a feature importance higher than 0.01 to ensure reliability of results.

(D) Quantification of the direction of the dependencies with the correlation between the feature value and the SHAP effect, shown here for pumped hydro ramps.

(E) Combining the directions with the relative ramping speeds of the generation technologies (see experimental procedures) helps to distinguish RoCoF-driving

and RoCoF-offsetting technologies within the three areas.
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ramps between �7 and +25 GW/h had a small negative effect

on the MSD because such small ramps are easy to control.

Outside this range, the effect increased strongly in a nonlinear

and asymmetric manner. Negative load ramps had much larger

effects than positive load ramps, and they occurred almost

exclusively around midnight (see color code). In the Nordic

daily profile, load ramps were also the most important feature

(Figure 4B), and they showed a very similar nonlinear depen-

dency (Figure 4E). In contrast, the daily MSD profile in GB

strongly depended on day-ahead prices (Figure 4C), which

had an almost linear dependency (Figure 4F). The control effort

peaked during the day in response to high prices in the day-

ahead market, while the MSD and the prices were low at night

(00:00 to 04:00 h).

Notably, fluctuating renewables did not contribute strongly to

the daily MSD profile in our model, although they are an impor-

tant driver for frequency fluctuations in GB in general (cf. Fig-

ure 2). The observed differences between the synchronous areas

could be due to different control regulations. For example, in GB,
6 Patterns 2, 100365, November 12, 2021
wind power farms must provide frequency control,48 and sec-

ondary control is allocated manually.49

Explaining systematic imbalances with interactions
The SHAP framework explains the role of different features and

reveals how predictions depend on the interaction of features

(see Figure 5 for an application of the integral in the CE grid

and experimental procedures for technical details). It should be

noted that the ML predictors for the other targets also displayed

clear interactions. The most important features were solar and

nuclear power ramps, which had a reverse dependency (Fig-

ure S13). Without interactions, the SHAP value increased gradu-

ally and nonlinearly with the solar ramp (Figure 5B). Strong nega-

tive ramps of solar power generation induced an ongoing

shortage of power and thus led to negative integrals.

Interactions with nuclear and gas ramps altered the effect of

solar ramps by up to 60%, leading to a strong vertical dispersion

of the observed SHAP values (Figure 5A). In particular, negative

nuclear ramps amplified the effect of negative solar ramps, while
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Figure 4. Explaining the daily average control effort with SHAP values

(A–C) The daily average profile of the MSD (dashed line), i.e., the daily average control effort, is very well reproduced by theMLmodel (solid line), but its shape differs

between the areas.We examine these differenceswith daily SHAP values for theMSD inContinental Europe (A), the Nordic grid (B), andGreat Britain (C). Daily SHAP

values (see experimental procedures) are sorted such that negative effects are plotted above the prediction line and positive effects below it. The importance of the

plotted feature effect decreases the farther away the feature is from the prediction line. Less important features are aggregated in a residual variable.

(D–F) For the Continental Europe (D) and Nordic (E) grids, the dependency plots of the most important daily SHAP effects reveal nonlinear relationships. These

relationships explain the large control effort around midnight (color code), while the linear effect of prices explains the low control effort in GB during the night (F).
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negative gas ramps dampened the effect on the integral (Figures

5C and 5D). These opposite interactions were again related to

different ramping speeds. Nuclear power has the lowest ramping

speed in CE, which meant that negative nuclear ramps amplified

the continuous ramping behavior in interaction with solar ramps.

In contrast, gas power had a fast ramp and therefore often pro-

vided balancing power, leading to the opposite effect. In general,

these results demonstrate that interactions can influence how

strongly a single feature affects power system stability.

DISCUSSION

Our model is based on explainable ML, and it predicts important

indicators for power system frequency stability using external

features, such as day-ahead electricity prices or total system

load. Using real data (ex post analysis), our ML model outper-

formed the daily profile, a system-specific null model, by a factor

of up to 16.3. Using only day-ahead available data, our ML

models performed similarly in most cases. When SHAP values

were calculated and examined, our model revealed important
features and dependencies, and could thus pave the way for

multiple applications.

Our model offers a versatile and substantially improved

approach for analyzing risks and drivers of grid frequency sta-

bility. Previous data-driven studies analyzed the impact of one

external feature on grid frequency fluctuations based on linear

correlations9–11 or conditional probabilities.7 Such univariate

analyses cannot be adjusted for effects of other features,

which could be correlated with the feature of interest and

may lead to incorrect conclusions (cf. Weißbach et al.42).

Moreover, univariate, linear dependency analyses underesti-

mate the effects of nonlinearities and ignore feature interac-

tions. Our model includes multiple variables and fits nonlinear

dependencies and interactions, which are made transparent

by SHAP values. It breaks down the effect of correlated fea-

tures (as discussed in Figure 3) and reveals otherwise unde-

tectable nonlinear effects (Figure 4) and feature interactions

(Figure 5). In addition, our model visualizes feature effects in

the daily average evolution of frequency stability (Figure 4),

which adds to the many useful visualization tools available
Patterns 2, 100365, November 12, 2021 7
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Figure 5. The effect of feature interactions on systematic power imbalances

(A) CE is used to show the SHAP effects of solar ramps on the frequency integral, which are the most important effects in CE (Figure 2). The integral, which

represents systematic imbalances, decreases for negative solar ramps, but the SHAP effects vary strongly, as indicated by their vertical dispersion.

(B–D) Using SHAP interaction values (see experimental procedures), this dispersion was broken down into different interaction effects. These effects depend on

the generation type, as negative nuclear rampsweaken the effect of negative solar ramps (C), while negative gas ramps lead to an amplified effect (D). Subtracting

all interaction effects from the original SHAP values (A) yields the remaining effect of solar ramps (B), which is strongly altered.
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in the SHAP framework. Our publicly available model50 and

dataset30 can be used to predict any frequency stability indi-

cator, thus offering a ready-to-use and flexible tool for

analyzing power grid stability.

We applied our model to three different synchronous areas

and identified options for improving power grid operation stra-

tegies. We discussed four examples for potential applications:

(1) first, we showed how generation ramps drove the RoCoF

and the nadir and revealed subtle differences between genera-

tion types and grids. These insights can help to optimize ramp-

ing behavior and mitigate DFDs51 and improve frequency qual-

ity. In particular, hydropower generation ramps should be

optimized in response to other ramps. (2) Our results show

that forecasting errors play an essential role in the Nordic

grid. While TSOs are generally aware of the problem,44 the

SHAP analysis provides a much more detailed view and reveals

when and how these errors affect frequency stability. An

example is given in Figure 4B, which shows that the features

‘‘forecasting errors of the generation ramps’’ are particularly

important during the night. Our model identifies situations

where forecasting errors are particularly critical and will thus

improve risk awareness in grid operation. (3) Low inertia has

been identified as a major threat for the stability of future power

grids.3 Our analysis provides a more finely nuanced view on

this topic. In our XAI model, inertia does not generally have a

high feature importance. Instead, the impact of inertia on fre-

quency stability is nonlinear and more pronounced for low

inertia values (Figure S14). (4) Finally, the predictive power of

our XAI model can be harnessed for online grid monitoring

and preventive control measures. For instance, a model-pre-

dictive frequency restoration reserve has been proposed to

mitigate DFDs.52 The applicability of such predictive control

strategies can be extended by data-enabled methods (cf.,

e.g., Huang et al.53).
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The main restrictions to our model performance and explain-

ability are due to the quality of available power system data.

Firstly, frequency deviations due to renewable fluctuations7 or

load fluctuations8 occur on timescales that are smaller than the

intervals of electricity trading. The limited time resolution of pub-

licly available power system time series restricts both the perfor-

mance of an ML model and its ability to suggest causal relation-

ships because the time order of events is partly hidden.

Secondly, all locations in a synchronous power grid affect the

frequency deviations; but in large grid areas, such as CE, many

countries provide no or only a limited amount of data.14 This

further emphasizes the need for open data in energy system

analysis and design.54

Our paper contributes to the applicability of XAI methods in

energy systems and engineering sciences in general. Firstly,

deriving causal relationships fromdata is a key challenge inmod-

ern ML techniques. With the power grid frequency, we provide a

very well-suited test bed; while not all features and interactions

are available, there is plenty of domain knowledge to interpret

and cross-check XAI results. Secondly, we provide an excellent

dataset30 for applications and the benchmarking ofMLmethods,

such as causal inference or predictive models. While generation

data are already publicly available,36 aggregating these for a

whole synchronous area and combining them with frequency

stability indicators yields a novel dataset for future usage. Finally,

in Figure 4, we explored how daily aggregated SHAP data may

be used to explain specific temporal profiles, which could be

useful in other ML applications when dealing with strong daily

or seasonal trends, e.g., in weather or traffic predictions.55,56

In conclusion, we hope that our work will trigger further appli-

cations of XAI in energy science, harnessing the strengths of

modern ML tools while avoiding the drawbacks of black box ap-

proaches, which impede scientific insights18 and pose security

risks.19 Our model provides insights by explaining feature effects
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with SHAP values in the context of the domain science. SHAP

dependency and interaction plots visualize the knowledge

learned by the model and offer individual explanations for each

prediction. The most predictive associations then suggest

causal relationships, which can then be validated by domain

knowledge or further experiments. For example, we identify Ro-

CoF-driving, RoCoF-offsetting, and RoCoF-balancing genera-

tion technologies by connecting our model results to physical

ramping rates, thus suggesting different causal relationships.

‘‘Suggesting relations’’ is key here since neither boosted trees

nor SHAP guarantee causal relationships but rather indicate as-

sociations based on the data. All in all, SHAP values alone do not

provide scientific insights, but, when combined with domain

knowledge, they can lead to further knowledge.

Future work includes explicitly forecasting the given indicators

and classifying whether upcoming events could be problematic

for grid operation. Once forecasts or other early warning and

control methods have been implemented, our model will need

to be retrained using these new, controlled datasets to derive

the updated feature-target interactions. Furthermore, while we

already outperform the daily profile, the performance of our

tree-based predictor could be improved if further features were

integrated and our model was compared with other ML predic-

tion models. Finally, such regression models should be comple-

mented by causal inference models to provide clear counterfac-

tual statements and comparisons with XAI approaches.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information questions should be directed to the lead author, Johannes

Kruse (jo.kruse@fz-juelich.de).

Materials availability

This study did not generate new unique materials.

Data and code availability

The dataset to reproduce our results is available on Zenodo: https://doi.org/

10.5281/zenodo.5118352. The Python code used to create our results and

the figures is also archived on Zenodo: https://doi.org/10.5281/zenodo.

5497609.
Data preparation of frequency stability indicators

In a modern AC power grid, the grid frequency is typically spatially synchro-

nized and its dynamics can be represented by a single bulk time series on time-

scales of several seconds and more.1 In Europe, different synchronous areas

exist, which are only inter-connected through DC links and hence display their

own frequency dynamics and follow their own specific regulations. We

modeled the bulk frequency dynamics for different synchronous areas in Eu-

rope, specifically for the CE, Nordic, and GB areas. We used pre-processed

frequency time series ~fðtÞ with a time resolution of t = 1 s,13 which were origi-

nally measured by regional TSOs.57–59

From the centered frequency time series fðtÞ= ~fðtÞ � 50 Hz, we extracted

four hourly stability indicators, which are directly relevant for power system

operation.32,33 For the ith hour starting at time ti , we calculated the (positive

or negative) nadir, the integral and the MSD based on the hourly time steps

Ii = fti ; ti + t;.; ti + tgg with g = 3600:

NadirðtiÞ = f

 
arg max

t˛Ii
jfðtÞj

!
;

IntegralðtiÞ = t
X
t˛Ii

fðtÞ;
MSDðtiÞ = 1

g

X
t˛Ii

f2ðtÞ:

From the derivative of the frequency time series df
dt ðtÞ, we obtained the hourly

(positive or negative) RoCoF by looking for the steepest slope within a window

Wi = ½ti �T ; ti +T� of length 2T around the beginning of the hour ti:

RoCoFðtiÞ = df

dt

 
arg max

t˛Wi

����dfdt
����
!
:

We estimated the derivative df
dt ðtÞ using a low-pass filter on the frequency

increments,60 i.e., by smoothing the incrementsDfðtÞ= fðtÞ � fðt�tÞwith a rect-

angular rolling window of length L. We chose the parameters L and T in such a

way that theyaccounted for thedifferent timescales of theRoCoF in the synchro-

nous areas (supplemental experimental procedures S2). This resulted in a choice

of L = T = 60s for the CE and GB areas, while the Nordic area with its fast hy-

dropower exhibited larger RoCoFs so that we chose L = T = 30s instead.

Data preparation of external features

We collected different power system time series as external features to predict

frequency deviations in Europe. We retrieved six different sets of publicly avail-

able time series from the ENTSO-E transparency platform.36 These sets

comprise the day-ahead load forecast, day-ahead scheduled generation, day-

ahead wind and solar power forecast, day-ahead electricity prices, actual load,

and actual generation per production type. Most of the time series are available

on an hourly basis. Since we predicted stability indicators on an hourly basis, we

downsampled a fewhigher-resolution timeseries to a commonhourly resolution.

We then aggregated the data within the three synchronous areas. Since time

series from ENTSO-E are only available for smaller regions within the synchro-

nous areas (i.e., countries), we added up the load and generation data within

each area. To aggregate the price data, we calculated area-wide averages

weighted by the regional mean load. The time series from the ENTSO-E trans-

parency platform contained multiple missing or corrupted data points,14 which

required a careful aggregation and cleansing procedure (supplemental exper-

imental procedures S1). We deemed area-wide feature aggregation necessary

because all locations within the synchronous power grid contribute to large

frequency deviations.1 We additionally prepared selected country-level data

for the CE and the Nordic areas. The area-wide aggregated features resulted

in a similar or highermodel performance than country-level data (supplemental

experimental procedures S5). Therefore, we decided to use area-wide aggre-

gated features for this publication. An overview of the available (aggregated)

features per area is available in supplemental experimental procedures S1.

Finally, we engineered additional meaningful features based on the hourly

ENTSO-E time series XðtiÞ, which comprise both day-ahead forecast data

XD�1ðtiÞ and actual data XDðtiÞ. For each hourly intervalDt = tg, we introduced

ramp features (slopes) ðXðtiÞ �Xðti �DtÞÞ=Dt, which are inspired by the impor-

tance of generation ramps for the CE frequency dynamics.4 We also added

forecast errors XD�1ðtiÞ � XDðtiÞ and the artificial features of hours (of the

day), weekdays, and months. To include the total available inertia as a feature,

we calculated the sum of the synchronous generation which approximates to

the time-dependent inertia.38

In summary, our dataset comprises hourly time series of 4 stability indicators

(model outputs or targets) and 66 external features (model inputs) for the years

2015–2019. The dataset is available on Zenodo30 and our scripts for down-

loading and preparing the dataset are online at GitHub.50

GTB model

To predict indicators of frequency stability from external features, we used

GTB. Tree-based ensemble methods, such as GTB, are complex, nonlinear

ML models, which makes them suitable for predicting the nonlinear behavior

of power grids.1 They offer a quick method of calculating SHAP values, thus

facilitating efficient post-modeling explanation.24 In addition, they are immune

to the effects of feature outliers and perform inherent feature selection, making

them robust to the inclusion of correlated or irrelevant features.16 This is bene-

ficial for our dataset, which exhibits strongly correlated features (supplemental

experimental procedures S3) as well as outliers due to bad data quality (sup-

plemental experimental procedures S1).
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To fit our GTB model, we used XGBoost, which is a scalable gradient tree

boosting system that provides state-of-the-art results for many ML applica-

tions.43 We randomly split our data into a training set (64%), a validation set

(16%), and a test set (20%). To optimize the hyperparameters of the XGBoost

model, we performed a grid search over selected parameter values and eval-

uated the performance via 5-fold cross-validation on our training set. To deter-

mine the number of trees in the XGBoost models, we performed early stopping

on the validation set. Finally, we concatenated the training and validation sets,

retrained the model on this data with optimal hyperparameters, and tested its

performance on the unseen test set. We also calculated the SHAP values on

the test set. The detailed implementation in Python code is available on Gi-

tHub50 and the sets of final hyperparameters are online at Zenodo.30

To quantify the model performance, we evaluated the R2 score, which quan-

tifies the proportion of variability explained by the model. Predicting the true

targets results in a score of 1, while always predicting the mean of the target

gives a score of 0. To benchmark our predictor, we compared its performance

with the daily profile prediction. The daily profile, i.e., the daily average evolu-

tion of a target, is the most important recurring pattern of frequency dy-

namics.61 Predicting the stability indicators based on their daily profiles thus

represents an important null model. Our GTBmodel consistently outperformed

the daily profile for all areas and indicators (see supplemental experimental

procedures S5 for a detailed performance evaluation).

Model interpretation with SHAP

SHAP values can explain the output of any ML model.23 Based on the game-

theoretical Shapley values, they attribute a model output to the individual

effects of each input feature. In particular, SHAP values quantify the marginal

effect of including a feature into the prediction and comparing themwith a ran-

domized baseline.24,62 Within the class of additive feature attributions, they

guarantee certain optimal properties, such as local accuracy and consis-

tency.22 As they are locally accurate, the SHAP values always add up to the

total model output. Consistency guarantees that a SHAP value does not

decrease if the corresponding feature contributes more to the prediction

when the model is altered.

SHAP values represent the feature effects on individual model outputs rela-

tive to the base value, which is given by the average prediction (cf. Figure 1). By

combining many of these local explanations, SHAP values also offer global

insights.24

Themean absolute SHAP valuemeasures the global importance of a feature

within a model. We identified the five most important features for each stability

indicator and area (Figure 2). Figure 2 also displays feature importances for the

union of these feature sets, i.e. features with an importance rank below five are

also displayed. In addition to global feature importances, dependency plots

show how the effect of a feature changeswith the value of the feature (e.g., Fig-

ure 4D). Notably, these dependencies differ from observing relationships in

scatterplots or between targets and features in a simple correlation analysis.

Such model-agnostic methods cannot distinguish the effect of two correlated

features. In contrast, we estimated interventional SHAP values, which quantify

the marginal feature effect in the model by breaking down correlations with

other features.63,64

In addition to first-order attributions, SHAP offers interaction values that

attribute the model output to pairs of interacting features.24 Interaction values

decompose the first-order SHAP effects into diagonal effects and pairwise

interaction effects (such as in Figure 5). The interaction effects therefore

explain the vertical dispersion within the first-order SHAP dependency plots,

thus offering scientific insights as well as additional consistency checks for

the model applications.

Finally, there is a fundamental difference between predictive models and

causal models.65 Predictive models try to infer the conditional probability of

the target given the feature variables by fitting associations. Causal models

identify the effect on the target when manipulating or intervening on a feature.

ML models, such as the boosted trees used here, are typically predictive

models. Using XAI methods to explain how these ML models work reveals

only associations learned from the data.21 In particular, using SHAP values

to explain predictive models does not necessarily reflect causal effects.66

However, causation involves correlation so that predictive and explainable

ML models can suggest causal dependencies, which then have to be further

validated, e.g. by domain knowledge or causal inference methods.
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Aggregated SHAP values

To explain daily average profiles of the model predictions, we visualized the

SHAP values in a way that builds on their additivity. Due to their property of

‘‘local accuracy,’’ the prediction fðtÞ at every point in time t can be written as

a sum of the respective SHAP values,

fðtÞ = 40 +
XN
j =1

4jðtÞ; (Equation 1)

where 4jðtÞ is the SHAP value of feature j at time t. This property of SHAP

values enables a new application in the analysis of daily profiles and other

recurrent patterns. The daily profile of the prediction is the average CfðtÞDh for

the hour h over all days. Based on the SHAP values 4jðtÞ for feature j (j = 1;

.;N) and their base value 40,
24 we decomposed the daily profile as follows:

CfðtÞDh = C40 +
XN
j = 1

4jðtiÞDh =40 +
XN
j = 1

C4jðtÞDh:

The daily aggregated SHAP values C4jDh then explain the daily profile of the

prediction. To display the daily SHAP values, such as in Figures 4A–4C, we

identified the three most important features according to their average effect
1
24

P24
h= 1

��C4jDh
�� on the daily profile in each area. In Figures 4A–4C, we then visu-

alized these features from the union of these sets to display themost important

daily SHAP values. The remaining daily SHAP valueswere aggregated and dis-

played as a residual variable.

Finally, we add three notes on the interpretation of (daily) aggregated SHAP

values. (1) We note that the aggregated SHAP values do not coincide with

SHAP values of a model trained on the aggregated data. This must be taken

into account when interpreting the results. (2) Due to the nonlinearity of an

MLmodel, a large daily SHAP value does not necessarily correspond to a large

average for the corresponding feature in that hour. (3) Second-order interac-

tions between features are ‘‘fairly’’ distributed between first-order SHAP

values according to the classical Shapley values,24 i.e., large daily SHAP

values can partly relate to strong interactionwithin this specific hour. To further

resolve interactions within the daily SHAP values, the additivity of second-or-

der SHAP values can be used to generate daily profiles of the interactions. This

is beyond the scope of this paper.

Relative ramping rates

Weused relative ramping rates to validate our SHAP results, particularly for the

prediction of the RoCoF. In particular, we quantified the relative ramping speed

of each conventional generation technology k within a synchronous area. The

ramping speed ~sk is determined both by the absolute change of generation

DXk and the timescale lk on which the generator adapts its output to the

new set point:

~sk : =
DXk

lk
:

We approximated the typical value of DXk with the median of the absolute

generation changes DXkzMedian
ti

jXkðti � DtÞ � XkðtiÞj. The relative ramp

speed sk , compared with the fastest technologym within the area, then reads

sk =
~sk
~sm

=
DXk

DXm

lm

lk
z

DXk

DXm

rk
rm
:

Finally, we approximated the ratio of timescales lk by using the inverse ratio

of technology-specific ramping rates rk .
67 The technology m with the largest

absolute ramping speed was determined by the maximum value of DXkrk .
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